

JN-AN-1217 (v1005) 5-Sep-2018 © NXP Semiconductors 2018 1

Application Note: JN-AN-1217

ZigBee 3.0 Base Device

This Application Note provides example applications to demonstrate the features and
operation of the Base Device in a ZigBee 3.0 network that employs the NXP JN516x or
JN517x wireless microcontrollers. An example application can be employed as:

• A demonstration using the supplied pre-built binaries that can be run on
nodes of the JN516x/7x Evaluation Kits

• A starting point for custom application development using the supplied C
source files and associated project files

The devices described in this Application Note provide the standard mandatory
features of the ZigBee Base Device Behaviour Specification for a Coordinator, Router
and End Device. They do not implement a complete real device, but provide the
mandatory features of the ZigBee Base Device on which an application can be built
and further developed.

The ZigBee 3.0 nodes of this Application Note can be used in conjunction with nodes
of other ZigBee 3.0 Application Notes, available from the NXP web site.

1 Introduction
A ZigBee 3.0 wireless network comprises a number of ZigBee software devices that are
implemented on hardware platforms to form nodes. This Application Note is concerned with
implementing the ZigBee Base Device on the NXP JN516x and JN517x platforms.

This Application Note provides example implementations of the following ZigBee logical
device types:

• Coordinator

• Router

• End Device

The examples of the above device types are not real world devices, like those defined in the
ZigBee Lighting & Occupancy Device Specification, but provide the basic behaviour required
by the ZigBee Base Device Behaviour Specification. They are provided as templates on
which to base further development into real physical devices. The ZigBee Base Device is
introduced and detailed in the ZigBee 3.0 Devices User Guide [JN-UG-3114].

The ZigBee Base Device Behaviour Specification provides definitions, procedures and
methods for forming, joining and maintaining ZigBee 3.0 networks. It also defines the
method for service discovery, in which a client and server of an operational cluster are
bound together in order to achieve the functionality of the physical devices.

 Note: If you are not familiar with ZigBee 3.0, you are advised to refer the
ZigBee 3.0 Stack User Guide [JN-UG-3113] for a general introduction.

 ZigBee 3.0 Base Device

2 © NXP Semiconductors 2018 JN-AN-1217 (v1005) 5-Sep-2018

2 Development Environment

2.1 Software

In order to use this Application Note, you need to install the Eclipse-based Integrated
Development Environment (IDE) and Software Developer’s Kit (SDK) that are appropriate for
the chip family which you are using - either JN516x or JN517x:

• JN516x: If developing for the JN516x microprocessors, you will need:

• ‘BeyondStudio for NXP’ IDE [JN-SW-4141]

• JN516x ZigBee 3.0 SDK [JN-SW-4170]

 For installation instructions, refer to the BeyondStudio for NXP Installation and User
Guide (JN-UG-3098).

• JN517x: If developing for the JN517x microprocessors, you will need:

• LPCXpresso IDE

• JN517x ZigBee 3.0 SDK [JN-SW-4270]

For installation instructions, refer to the JN517x LPCXpresso Installation and User
Guide (JN-UG-3109).

The LPCXpresso software can be obtained as described in the JN517x ZigBee 3.0 SDK
Release Notes, which indicate the version that you will need.

All other resources are available via the ZigBee 3.0 page of the NXP web site.

 Note: The code in this Application Note can be used in either
BeyondStudio or LPCXpresso and the process for importing the
application into the development workspace is the same for both.

 Note: Prebuilt JN5169 and JN5179 application binaries are supplied in
this Application Note package, but the applications can be rebuilt for other
devices in the JN516x and JN517x families (see Section 5.7).

The software and documentation resources referenced in this Application Note are available
free-of-charge via the ZigBee 3.0 page of the NXP web site.

2.2 Hardware

Hardware kits are available from NXP to support the development of ZigBee 3.0
applications. The following kits respectively provide JN516x-based and JN517x-based
platforms for running these applications:

• JN516x-EK004 Evaluation Kit, which features JN5169 devices

• JN517x-DK005 Development Kit, which features JN5179 devices

Both of these kits support the NFC commissioning of network nodes (see Section 3.1).

It is also possible to develop ZigBee 3.0 applications to run on the components of the earlier
JN516x-EK001 Evaluation Kit, which features JN5168 devices, but this kit does not support
NFC commissioning.

http://www.nxp.com/products/interface-and-connectivity/wireless-connectivity/2.4-ghz-wireless-solutions/zigbee/zigbee-3.0:ZIGBEE-3-0
http://www.nxp.com/products/interface-and-connectivity/wireless-connectivity/2.4-ghz-wireless-solutions/zigbee/zigbee-3.0:ZIGBEE-3-0

ZigBee 3.0 Base Device

JN-AN-1217 (v1005) 5-Sep-2018 © NXP Semiconductors 2018 3

3 Application Note Overview
The example applications provided in this Application Note are listed in the following table.

Application Device Type

Coordinator Coordinator/Trust Centre

Router Router

End Device End Device (sleepy)

Table 1: Example Applications and Device Types

For each application, source files and pre-built binary files are provided in the Application
Note ZIP package. The pre-built binaries can be run on components of the JN516x/7x
Evaluation Kits.

• To load the pre-built binaries into the evaluation kit components and run the
demonstration application, refer to Section 4.

• To start developing you own applications based on the supplied source files, refer to
Section 5.

3.1 NFC Hardware Support

Some NXP hardware kits for the development of ZigBee 3.0 applications provide the
possibility of network commissioning through Near Field Communication (NFC). The kits and
components that provide NFC support are indicated in the table below.

Hardware Kit Hardware Components for NFC Field Detect Connection

JN517x-DK005 NFC is built into the OM15028 Carrier Board GPIO 17

JN516x-EK004 DR1174 Carrier Board plus OM15044 and either
OM55679/NT3120 or OM5569/NT322E

Note: A 4K7 resistor should be fitted to the R1 pads on the
OM15044 board to avoid unnecessary reads of the NTAG
due to the FD line floating.

DIO 0

Table 2: NFC Support in JN516x/7x Hardware Kits

The Field Detect of the NFC chip needs to be connected to an IO line of the JN516x/7x
module so that an interrupt can be generated as the device is moved in or out of the field.
This is achieved by fitting a jumper to the pin specified in the above table.

 Note: Early samples of the JN516x-EK004 kit used a yellow wire rather
than a jumper for the Field Detect connection, but the pin is the same.

 ZigBee 3.0 Base Device

4 © NXP Semiconductors 2018 JN-AN-1217 (v1005) 5-Sep-2018

3.2 NFC Data Formats

Two different NFC data formats are supported for commissioning. The Router and End
Device applications can be built to support only one (or none) of these:

• ZigBee Installation Code Format: This is a newer format introduced with v1003 of
this Application Note. The applications are built to use this format by default. This
format uses a key derived from the device’s ZigBee Installation Code to encrypt data in
the NTAG.

• AES Encryption Format: This older format uses an AES key to encrypt data in the
NTAG.

The selection of the data format can be made at compile-time by using makefile variables
described in the Router Command Line Build Options or End Device Command Line Build
Options.

 Note: The Application Note JN-AN-1222, IoT Gateway Host With NFC,
versions v2007 and later is able to commission either of these formats
depending upon the data in the presented NTAG. Earlier versions support
only AES Encryption Format.

ZigBee 3.0 Base Device

JN-AN-1217 (v1005) 5-Sep-2018 © NXP Semiconductors 2018 5

4 Running the Demonstration Application
This section describes how to use the supplied pre-built binaries to run the example
applications on components of the JN516x-EK004 or JN517x-DK005 kit.

4.1 Loading the Applications

The table below lists the application binary files supplied with this Application Note and
indicates the JN516x-EK004 or JN517x-DK005 kit components with which the binaries can
be used. These files are located in the Build directories for the relevant applications.

Application JN5169 Binary File JN516x-EK004 Hardware

Coordinator Coordinator_JN5169_DR1199.bin DR1174 Carrier Board with JN5169 module
DR1199 Generic Expansion Board

Coordinator Coordinator_JN5169_DONGLE.bin OM15020 JN5169 USB Dongle

Router Router_NtagIcode_JN5169_DR1175.bin DR1174 Carrier Board with JN5169 module
DR1175 Lighting/Sensor Expansion Board
OM15044 NTAG Adaptor Board
OM5569/NT322E NTAG Board

End Device Enddevice_NtagIcode_JN5169_DR1199.bin DR1174 Carrier Board with JN5169 module
DR1199 Generic Expansion Board
OM15044 NTAG Adaptor Board
OM5569/NT322E NTAG Board

Application JN5179 Binary File JN517x-DK005 Hardware

Coordinator Coordinator_JN5179_DR1199.bin OM15028 Carrier Board with JN5179 module
DR1199 Generic Expansion Board

Coordinator Coordinator_JN5179_DONGLE.bin OM15020 JN5179 USB Dongle

Router Router_NtagIcode_JN5179_DR1175.bin OM15028 Carrier Board with JN5179 module
DR1175 Lighting/Sensor Expansion Board

End Device Enddevice_NtagIcode_JN5179_DR1199.bin OM15028 Carrier Board with JN5179 module
DR1199 Generic Expansion Board

Table 3: Application Binaries and Hardware Components

A binary file can be loaded into the Flash memory of a JN516x/7x device using the JN51xx
Flash Programmer [JN-SW-4107], available via the NXP web site. This software tool is
described in the JN51xx Production Flash Programmer User Guide [JN-UG-3099].

 Note: You can alternatively load a binary file into a JN516x/7x device
using the Flash programmer built into the relevant IDE (see Section 5).

 ZigBee 3.0 Base Device

6 © NXP Semiconductors 2018 JN-AN-1217 (v1005) 5-Sep-2018

To load an application binary file into a JN516x/7x module on a Carrier Board of a kit, follow
the instructions below:

1. Connect a USB port of your PC to the USB Mini B port on the Carrier Board using a
‘USB A to Mini B’ cable. At this point, you may be prompted to install the driver for the
cable.

2. Determine which serial communications port on your PC has been allocated to the USB
connection.

3. On your PC, open a command window.

4. In the command window, navigate to the Flash Programmer directory:

C:\NXP\ProductionFlashProgrammer

5. Run the Flash programmer to download your binary file to JN516x/7x Flash memory by
entering a command with the following format at the command prompt:

JN51xxProgrammer.exe –s <comport> -f <path to .bin file>

 where <comport> is the number of the serial communications port.

6. Once the download has successfully completed, disconnect the USB cable and, if
required, reset the board or module to run the application.

Operating instructions for the different applications are provided in the sections below.

4.2 Using the Coordinator

This section describes how to commission and operate the Coordinator application in a
ZigBee 3.0 network. To use this application, you must have programmed the application
binary into the relevant physical device – either of the following:

• Coordinator_JN51xx_DR1199.bin into the JN516x/7x module on a Carrier Board
fitted with the DR1199 Generic Expansion Board

• Coordinator_JN51xx_DONGLE.bin into a JN5169/79 USB Dongle

Programming instructions are provided in Section 4.1.

To incorporate the device into a ZigBee 3.0 network and then operate the device, work
through Sections 4.2.2 to 4.2.5.

ZigBee 3.0 Base Device

JN-AN-1217 (v1005) 5-Sep-2018 © NXP Semiconductors 2018 7

4.2.1 Coordinator Functionality

The functionality of the Coordinator application is described and illustrated below.

The Coordinator is responsible for initially forming the network and then, via the Trust Centre
functionality, managing which other devices are allowed to join the network and distributing
security materials to those that are allowed to join. The Coordinator supports the mandatory
clusters and features of the Base Device as defined in the ZigBee Base Device Behavior
Specification.

For the purpose of demonstrating the ‘Finding and Binding’ functionality, the Coordinator
also supports the On/Off Cluster as a client.

 ZigBee 3.0 Base Device

8 © NXP Semiconductors 2018 JN-AN-1217 (v1005) 5-Sep-2018

The Coordinator provides two methods for triggering its functionality:

• Using commands from a serial interface on a host terminal connected to the
Coordinator hardware – if the Coordinator application is programmed into the
JN5169/JN5179 USB Dongle, this is the only interface available. The serial interface in
not case-sensitive. For a summary of the serial interface, refer to Section 4.2.8.

• Using the push-buttons on the DR1199 Generic Expansion Board – this is obviously
only available when a Coordinator application is programmed into a JN516x/7x module
on a Carrier Board.

4.2.2 Forming a Network

A network can be formed from a factory-new Coordinator (Network Steering while not on a
network) in either of the following ways, depending on the hardware being used:

• Press the button DIO8/GPIO4 on the DR1174/OM15028 Carrier Board.

• Enter “form” on the serial interface (Dongle or Carrier Board).

The Coordinator will then start a network. Using a packet sniffer (for example, on a JN5169
USB Dongle), the periodic link status messages can then be observed on the operational
channel.

4.2.3 Allowing Other Nodes to Join

Once a network has been formed, the network must be opened to allow other devices to join
(Network Steering while on a network) in either of the following ways, depending on the
hardware being used:

• Press the button SW2 on the DR1199 Generic Expansion Board.

• Enter “steer” on the serial interface (Dongle or Carrier Board).

The Coordinator will then broadcast a Management Permit Join Request to the network to
open the ‘permit join’ window for 180 seconds. The Network Steering process (for devices
not on a network) can now be triggered on the devices that are to join the network.

4.2.4 Binding Nodes

‘Finding and Binding’ is the process whereby controlling devices find controlled devices by
matching operational clusters and create entries in the Binding table. The Coordinator
supports Finding and Binding as an ‘Initiator’ that tries to find targets to bind to. For the
purpose of the demonstration, the Coordinator supports the On/Off Cluster as a client, so the
Finding and Binding process will look for devices that support the On/Off cluster as a server
in order to create bindings.

To start Finding and Binding as an Initiator, first trigger Finding and Binding on any ‘Target’
device and then do either of the following on the Coordinator (Initiator):

• Press the button SW4 on the DR1199 Generic Expansion Board.

• Enter “find” on the serial interface (Dongle or DR1199).

When Finding and Binding for a target has completed and a binding has been created, the
Coordinator will send an Identify Off command to the target device, in order to signal
completion of the process for the Target. Depending on the type of bindings being created
(either unicast or groupcast), an Add Group command may be sent to the target device.

ZigBee 3.0 Base Device

JN-AN-1217 (v1005) 5-Sep-2018 © NXP Semiconductors 2018 9

Reporting is a mandatory feature in ZigBee 3.0. A device wishing to receive periodic and on-
change reports from an operational server should create a remote binding for itself on the
target device. This Coordinator will send a Binding Request to a target with an On/Off cluster
server. It will then receive periodic and on-change reports from that device, reporting the
state of the OnOff attribute (0x0000) of the On/Off cluster. The frequency of the reports
depends on the default report configuration of the individual target device. The device
receiving the reports can request that this is changed by sending a Report Configuration
command.

4.2.5 Operating the Device

The operational functionality of this device in this demonstration is provided by the On/Off
cluster. You can now send an OnOff Toggle command to the bound devices (in the Binding
table) in either of the following ways:

• Press the button SW1 on the DR1199 Generic Expansion Board.

• Enter “toggle” in the serial interface (Dongle or DR1199).

The effect that this command has on a bound device depends on the functionality related to
the On/Off cluster on the device – for the Router in this demonstration, it will toggle a light
(see Section 4.3).

4.2.6 Re-joining the Network

As a Coordinator, when this device is restarted in a state which is not factory-new, it will just
resume operation in its previous state. All application, binding, group and network
parameters are preserved in non-volatile memory.

4.2.7 Performing a Factory Reset

The Coordinator can be returned to its factory-new state (erasing all persistent data except
the outgoing network frame counter) in either of the following ways, depending on the
hardware being used:

• Hold down the DIO8/GPIO4 button and press the RST button on the Carrier Board

• Enter “factory reset” on the serial interface (Dongle or DR1199).

4.2.8 Summary of Serial Interface Commands

Button Serial Command Action

SW1 Toggle Sends an OnOff Toggle command to bound devices

SW2 Steer Triggers Network Steering for a device on the network

SW3 Form Triggers network formation for a device not on a network

SW4 Find Triggers Finding and Binding as an Initiator

Reset+DIO8 Factory Reset Factory resets the device, erasing persistent data

Reset Soft Reset Triggers a software reset (no loss of data)

- Print Prints the Aps Key Table to the terminal

- Code <MAC> <Install Code> Provisions an install code into the Aps Key Table

The serial port is set up to use 115200 baud, 8 data bits, 1 stop bit, no parity. The serial
commands are not case-sensitive. The install code may be entered as 16 hex bytes with
either no separators or commas or colons.

 ZigBee 3.0 Base Device

10 © NXP Semiconductors 2018 JN-AN-1217 (v1005) 5-Sep-2018

4.3 Using the Router

This section describes how to commission and operate the Router application in a ZigBee
3.0 network. To use this application, you must have programmed the application
Router_NtagIcode_JN51xx_DR1175.bin into the JN516x/7x module on a Carrier Board
fitted with the DR1175 Lighting/Sensor Expansion Board, as described in Section 4.1

To incorporate the device into a ZigBee 3.0 network and then operate the device, work
through Sections 4.3.2 to 4.3.5.

4.3.1 Router Functionality

The functionality of the Router application is described and illustrated below.

ZigBee 3.0 Base Device

JN-AN-1217 (v1005) 5-Sep-2018 © NXP Semiconductors 2018 11

The Router can either join an existing network or decide to form a distributed network itself
for other nodes to join. For details of the differences between a Centralised Trust Centre
Network and a Distributed Network, refer to the ZigBee Devices User Guide [JN-UG-3114].
The Router supports the mandatory clusters and features of the Base Device as defined in
the ZigBee Base Device Behavior Specification.

For the purpose of demonstrating the ‘Finding and Binding’ functionality, the Router also
supports the On/Off Cluster as a server.

4.3.2 Forming or Joining a Network

The Router is capable of either joining an existing network or, in the absence of a network, to
form a distributed network for other devices to join.

4.3.2.1 Joining an Existing Network using Network Steering

A factory-new Router can join an existing network once the network has been opened to
accept new joiners (Network Steering for a device on a network). This is achieved as follows:

1. Trigger Network Steering on one of the devices already on the network.

2. Then reset (using the RST or RESET button) or power-on the Router device.

This will cause the Router to start a network discovery and the associate process.
Association is followed by an exchange of security materials and an update of the Trust
Centre Link Key (if joining a Centralised Trust Centre Network).

If the join is unsuccessful, it can be retried by power-cycling again. Alternatively, the process
for forming a distributed network can be follow, as described in Section 4.3.2.3.

4.3.2.2 Joining an Existing Network using NFC

A Router can join or move to an existing network by exchanging NFC data with a ZigBee IoT
Gateway Host, described in the Application Note ZigBee IoT Gateway Host with NFC
(JN-AN-1222). This provides a fast and convenient method to introduce new devices into
such a network.

Ensure the hardware is set up for NFC as described in Section 3.1.

Instructions for this process are included in the above Application Note (JN-AN-1222).

4.3.2.3 Forming a Distributed Network

The Router can form a distributed network in the absence of an open network to join. To
achieve this on a factory-new device:

• Press the DIO8/GPIO4 button on the Carrier Board (the same button is also used to
start Network Steering as well as Finding and Binding, described below).

The Router will form a network with a random network key and begin operation. To allow
other devices to join this network, follow the instructions in Section 4.3.3.

4.3.3 Allowing Other Devices to Join the Network

Once the Router is part of a network, the network must be opened to allow other devices to
join (Network Steering while on a network). To do this:

• Press the DIO8/GPIO4 button on the Carrier Board (the same button is also used to
start Finding and Binding, described in Section 4.3.4).

The Router will then broadcast a Management Permit Join Request to the network to open
the ‘permit join’ window for 180 seconds. The Network Steering process (for devices not on
a network) can now be triggered on the devices that are to join the network.

 ZigBee 3.0 Base Device

12 © NXP Semiconductors 2018 JN-AN-1217 (v1005) 5-Sep-2018

4.3.4 Binding Devices

The Router supports the On/Off cluster as a server and implements the Finding and Binding
process as a Target. To trigger Finding and Binding as a target, do the following:

1. Press the DIO8/GPIO4 button on the Carrier Boards of all the target devices (the same
button also is also used to start Network Steering, described in Section 4.3.3).

2. Start Finding and Binding on the Initiator device.

This will cause the Router to self-identify for 180 seconds, while the Initiator will try to find
the identifying devices, query their capabilities and create bindings on those with matching
operational clusters. As part of this process, the Router may receive an Add Group
Command and/or a Binding Request Command.

Reporting is a mandatory feature in ZigBee 3.0. The Router supports the On/Off cluster as a
server and the OnOff attribute of this cluster is a reportable attribute as defined in the ZigBee
Base Device Behavior Specification. The Router holds a default configuration for reporting
the state of the OnOff attribute. Once a device wishing to receive these periodic and on-
change reports has created a remote binding, the Router will start to send reports to this
bound device. The frequency of the reports depends on the default report configuration of
the individual target device, 60 seconds in this case. The device receiving the reports can
request that this is changed by sending a Report Configuration command.

4.3.5 Operating the Device

The operational functionality of this device in this demonstration is provided by the On/Off
cluster. Since the device supports the On/Off cluster server, its operation is passive and it
responds to commands sent by bound devices. It responds to an OnOff Toggle command
from a bound controller device by toggling the white light on the DR1175 Lighting/Sensor
Expansion Board.

4.3.6 Rejoining a Network

As a Router, when this device is restarted in a state which is not factory-new, it will just
resume operation in its previous state. All application, binding, group and network
parameters are preserved in non-volatile memory.

4.3.7 Performing a Factory Reset

The Router can be returned to its factory-new state (erasing all persistent data except the
outgoing network frame counter) as follows:

• Hold down the DIO8/GPIO4 button and press the RST button on the Carrier Board.

The Router will then broadcast a Leave Indication on the old network, then delete all
persistent data (except the outgoing network frame counter) and perform a software reset.

There are two supported over-the-air commands for removing a device from the network -
these are:

• Network Leave Request without rejoin

• ZDO Management Network Leave Request without rejoin

The Reset command of the Basic cluster will cause the ZCL to be reset to its factory-new
defaults, resetting all attributes and configured reports. This will not remove the device from
the network - all network parameters, groups and bindings will remain in place.

ZigBee 3.0 Base Device

JN-AN-1217 (v1005) 5-Sep-2018 © NXP Semiconductors 2018 13

4.4 Using the End Device

This section describes how to commission and operate the End Device application in a
ZigBee 3.0 network. To use this application, you must have programmed the application
EndDevice_NtagIcode_JN51xx_DR1199.bin into the JN516x/7x module on a Carrier
Board fitted with the DR1199 Generic Expansion Board, as described in Section 4.1.

To incorporate the device into a ZigBee 3.0 network and then operate the device, work
through Sections 4.4.2 to 4.4.5.

4.4.1 End Device Functionality

The functionality of the End Device application is described and illustrated below.

 ZigBee 3.0 Base Device

14 © NXP Semiconductors 2018 JN-AN-1217 (v1005) 5-Sep-2018

The End Device is a sleepy, ‘Rx Off when Idle’ device. It is not capable of forming a network
or being a parent to other devices joining a network. The End Device supports the
mandatory clusters and features of the Base Device as defined in the ZigBee Base Device
Behavior Specification.

For purpose of demonstrating the ‘Finding and Binding’ functionality, the End Device also
supports the On/Off cluster as a client.

All communications to/from the End Device are passed through its parent Coordinator or
Router and the End Device must send periodic Poll Requests to the parent in order to
receive any messages that may be waiting for it. The End Device implements a mixed sleep
pattern - for a short period after initially waking, it will perform a series of warm sleep cycles
from which it is woken on a timer or a DIO change, but after this it will enter deep sleep
mode until woken by a DIO change.

4.4.2 Joining a Network

4.4.2.1 Joining an Existing Network using Network Steering

A factory-new End Device can join an existing network once the network has been opened
to accept new joiners (Network Steering for a device on a network). This is achieved as
follows:

1. Trigger Network Steering on one of the devices already on the network.

2. Press the button SW2 on the DR1199 Generic Expansion Board of the End Device.

4.4.2.2 Joining an Existing Network using NFC

An End Device can join or move to an existing network by exchanging NFC data with a
ZigBee IoT Gateway Host, described in the Application Note ZigBee IoT Gateway Host with
NFC (JN-AN-1222). This provides a fast and convenient method to introduce new devices
into such a network.

Ensure the hardware is set up for NFC as described in Section 3.1.

Instructions for this process are included in the above Application Note (JN-AN-1222).

4.4.3 Allowing Other Devices to Join the Network

Once the End Device is part of a network, the End Device can request that the network is
opened to allow other devices to join (Network Steering while on a network). To do this:

• Press the button SW2 on the DR1199 Generic Expansion Board of the End Device.

The End Device will then unicast to its parent a Management Permit Join Request. The
parent will then re-broadcast this to the network and open the ‘permit joining’ window for 180
seconds. The Network Steering process (for devices not on a network) can now be triggered
on the devices that are to join the network. The End Device is capable of opening the
network to new joiners, but it is not capable of being a parent to these new joiners.

ZigBee 3.0 Base Device

JN-AN-1217 (v1005) 5-Sep-2018 © NXP Semiconductors 2018 15

4.4.4 Binding Devices

The End Device supports ‘Finding and Binding’ as an Initiator that tries to find targets to bind
to. For the purpose of the demonstration, the End Device supports the On/Off cluster as a
client, so the Finding and Binding process will look for devices that support the On/Off
cluster as a server in order to create bindings.

To trigger the Finding and Binding as an Initiator on the End Device, first trigger Finding and
Binding on any target device and then do the following on the End Device:

• Press the button SW4 on the DR1199 Generic Expansion Board of the End Device

When Finding and Binding for a Target is completed and a binding is created, the End
Device will send an Identify Off command to the target device to signal completion of the
process for this Target. Depending on the type of bindings being created (either unicast or
groupcast), an Add Group command may be sent to the Target.

Reporting is a mandatory feature in ZigBee 3.0, but it is not mandatory to request that
reports are sent to a device. As a sleepy device, the End Device will most likely be asleep
and not in a position to receive any reports, so this device does not create bindings on target
devices for them to send reports.

4.4.5 Operating the Device

The operational functionality of this device in this demonstration is provided by the On/Off
cluster. You can now send an OnOff Toggle command to the bound devices bound (in the
Binding table) as follows:

• Press the button SW1 on the DR1199 Generic Expansion Board.

The effect that this command has on a bound device depends on the functionality related to
the On/Off cluster on the device – for the Router in this demonstration, it will toggle a light
(see Section 4.3).

4.4.6 Rejoining a Network

As an End Device, when this device is restarted in a state which is not factory-new, it will
send a Network Rejoin Request to re-establish contact with its previous parent. If this fails, it
will then try to join any Router on the network that will host it. The rejoin is attempted at
power-on and when woken from deep sleep. All application, binding, group and network
parameters are preserved in non-volatile memory.

4.4.7 Performing a Factory Reset

The End Device can be returned to its factory-new state (erasing all persistent data except
the outgoing network frame counter) as follows:

• Hold down the DIO8/GPIO4 button and press the RST button on the Carrier Board.

The End Device will then unicast a Leave Indication to its parent, which will re-broadcast this
message to the old network. The End Device will then delete all persistent data (other than
the outgoing network frame counter) and perform a software reset.

There are two supported over-the-air commands for removing a device from the network -
these are:

• Network Leave Request without rejoin

• ZDO Management Network Leave Request without rejoin

The Reset command of the Basic cluster will cause the ZCL to be reset to its factory-new
defaults, resetting all attributes and configured reports. This will not remove the device from
the network - all network parameters, groups and bindings will remain in place.

 ZigBee 3.0 Base Device

16 © NXP Semiconductors 2018 JN-AN-1217 (v1005) 5-Sep-2018

4.5 Installation Codes

The ZigBee Base Device allows for devices to join a network using unique install codes,
rather than the well-known Default Link Key. This install code is only used for the initial join
and is replaced by the Trust Centre immediately after the join with a new unique Link Key to
secure future communication between the Trust Centre and the individual device. An
installation code is 16 bytes in length.

Each joining device (Router or End Device) must have a unique install code. How this code
is generated and provisioned in real devices is beyond the scope of this Application Note.
For the purpose of the demonstration, each joining device will create an install code that is
its 8-byte IEEE/MAC address repeated once. For example, a device with an IEEE/MAC
address of 00158D000035C9B8 will generate an install code of:

00:15:8D:00:00:35:C9:B8: 00:15:8D:00:00:35:C9:B8

Before a device using install codes can be joined to the network, the IEEE/MAC address and
install code of this device need to be added to the Trust Centre of the network. The serial
interface provides a command to do this. This command has the format:

Code <MAC Address> <Install code>

where:

• <MAC Address> is the IEEE/MAC address of the device (MSB first, and alphabetic

characters are not case-sensitive).

• <Install code> is the install code (MSB first, alphabetic characters are not case-

sensitive, and the bytes may be separated by colons (‘:’), commas (‘,’) or nothing).

For a device with the above IEEE/MAC address, the command would be:

Code 00158D000035C9B8 00,15,8D,00,00,35,C9,B8, 00,15,8D,00,00,35,C9,B8

After provisioning the install code and IEEE/MAC address in the Trust Centre, the normal
procedure for joining a new device to the network can be followed.

Once the install code has been used to join the new device, it is replaced with a new Trust
Centre Link Key (the install code is discarded and not stored for re-use). If a device is factory
reset, it will not be able to re-associate with the network until the install code is re-
provisioned in the Trust Centre.

To build the devices in this Application Note to use install codes for joining, edit the
command line for each device to set the build option ICODE=1, then clean and rebuild each

device.

ZigBee 3.0 Base Device

JN-AN-1217 (v1005) 5-Sep-2018 © NXP Semiconductors 2018 17

5 Developing with the Application Note
The example applications provided in this Application Note were developed using the:

• JN516x ZigBee 3.0 SDK [JN-SW-4170] and the ‘BeyondStudio for NXP’ IDE
[JN-SW-4141]

• JN517x ZigBee 3.0 SDK [JN-SW-4270] and the LPCXpresso IDE

These are the resources that you should use to develop JN516x and JN517x ZigBee 3.0
applications, respectively. They are available free-of-charge via the ZigBee 3.0 page of the
NXP web site.

Throughout your ZigBee 3.0 application development, you should refer to the documentation
listed in Section 6.

5.1 Common Code

This section lists and describes the source files that provide functionality common to all the
devices in this Application Note and are held in the Common/source directory.

App.zpscfg is a configuration file for the ZigBee stack. For each of the devices in the
application, it defines all the required stack parameters, table sizes, servers etc. This file is
processed as part of the build process and creates device-specific source files to be built
into each device.

app_buttons.c provides an interface to read the switches/buttons on the expansion boards
and to post button-press events to the application event queue.

app_events.h contains type definitions of the application events.

app_ntag_aes.c contains the code that drives the NFC commissioning data exchange and
initiates the joining process when valid data is read from the NTAG. This code uses the older
NTAG data format that employs AES encryption and is not used in the default builds.

app_ntag_icode.c contains the code that drives the NFC commissioning data exchange
and initiates the joining process when valid data is read from the NTAG. This code uses the
newer NTAG data format that employs ZigBee Installation Code encryption and is used in
the default builds.

app_pdm.c provides error event callbacks for the Persistent Data Manager (PDM), in order
to notify the application of the state of the PDM.

PDM_IDs.h provides unique identifiers for all the data records in the PDM.

5.2 NTAG Folder (AES Format)

The NTAG library and header files containing the public APIs for NFC are held in the NTAG
directory. This code uses the older NTAG data format that employs AES encryption and is
not used in the default builds.

5.3 NFC Folder (ZigBee Installation Code Format)

The NFC libraries and header files containing the public APIs for NFC are held in the NFC
directory. This code uses the newer NTAG data format that employs ZigBee Installation
Code encryption and is used in the default builds.

Documentation for these APIs and the app_ntag_icode.c/h APIs can be found in the
NFC.chm help file in the Doc directory of this Application Note.

http://www.nxp.com/products/interface-and-connectivity/wireless-connectivity/2.4-ghz-wireless-solutions/zigbee/zigbee-3.0:ZIGBEE-3-0

 ZigBee 3.0 Base Device

18 © NXP Semiconductors 2018 JN-AN-1217 (v1005) 5-Sep-2018

5.4 Coordinator Application Code

This section lists and describes the source files for the Coordinator application code, which
are provided in the Source directory for the application. You may wish to use this code as a
basis for your own application development. You can rebuild your customised application as
described in Section 5.7.

app_main.c hosts the main program loop, and defines and initialises system resources,
queues, timers etc.

app_start.c manages the JN516x/7x chip start-up, calls the initialisation functions and
launches the main program loop.

app_coordinator.c hosts the event handlers for the application and the Base Device
callback. The Base Device callback receives Base Device Events and AF Stack events after
the Base Device has completed any processing that is required. These events can then be
further processed by the application. The events include data indications that are passed to
the ZCL for processing and network management events (such a ‘network formed’ and ‘new
node has joined’) in order to keep the application informed of the network state. The
application event queue is processed to receive button-press events.

app_zcl_task.c hosts the device-specific ZCL initialisation and callback functions. The ZCL
callbacks notify the application of the results of received ZCL commands and responses, so
that the application can take the appropriate action. The ZCL tick timer is used to provide
ticks for the ZCL to manage timer-dependent events or state transitions.

app_serial_commands.c provides the command interpreter of the serial interface - where
appropriate, the serial commands create application button-press events to trigger the
required actions.

uart.c receives and handles characters transmitted on the serial interface.

irq_JN516x.s defines which of the JN516x hardware interrupts are supported and serviced,
and at which priority. This is defined by two tables - an interrupt priority table and a table of
handler functions. This file is not used for JN517x.

bdb_options.h defines parameters used by the Base Device, such as primary and
secondary channel masks.

zcl_options.h defines the features of the ZCL, such as which clusters are supported,
whether a client and or a server, and which optional commands and attributes are
supported. The mandatory commands and attributes of the selected cluster will be
automatically included.

5.4.1 Command Line Build Options

The following command line options can be used to configure the built devices:

• JENNIC_CHIP_FAMILY=JN516x to build for a JN516x microcontroller

• JENNIC_CHIP_FAMILY=JN517x to build for a JN517x microcontroller

• JENNIC_CHIP=JN5169 to build for a JN5169 microcontroller

• JENNIC_CHIP=JN5168 to build for a JN5168 microcontroller

• JENNIC_CHIP=JN5164 to build for a JN5164 microcontroller

• JENNIC_CHIP=JN5179 to build for a JN5179 microcontroller

• JENNIC_CHIP=JN5178 to build for a JN5178 microcontroller

• JENNIC_CHIP=JN5174 to build for a JN5174 microcontroller

ZigBee 3.0 Base Device

JN-AN-1217 (v1005) 5-Sep-2018 © NXP Semiconductors 2018 19

• DR=DR1199 to build for hardware based around DR1199 expansion board (default)

• DR=DONGLE to build for hardware based on USB dongle

• GROUPS=0 to build so that bound commands use unicast transmission

• GROUPS=1 to build so that bound commands use groupcast transmission

• ICODES=0 to build so that install codes are not used

• ICODES=1 to build so that install codes are used

5.5 Router Application Code

This section lists and describes the source files for the Router application code, which are
provided in the Source directory for the application. You may wish to use this code as a
basis for your own application development. You can rebuild your customised application as
described in Section 5.7.

app_main.c hosts the main program loop, and defines and initialises system resources,
queues, timers etc.

app_start.c manages the JN516x/7x chip start-up, calls the initialisation functions and
launches the main program loop.

app_router_node.c hosts the event handlers for the application and the Base Device
callback. The Base Device callback receives Base Device Events and AF Stack events after
the Base Device has completed any processing that is required. These events can then be
further processed by the application. The events include data indications that are passed to
the ZCL for processing and network management events (such a ‘network formed’ and ‘new
node has joined’) in order to keep the application informed of the network state. The
application event queue is processed to receive button-press events.

app_zcl_task.c hosts the device-specific ZCL initialisation and callback functions. The ZCL
callbacks notify the application of the results of received ZCL commands and responses, so
that the application can take the appropriate action. The ZCL tick timer is used to provide
ticks for the ZCL to manage timer-dependent events or state transitions.

app_reporting.c provides the support for the reporting functionality of the device. It
manages the restoring of the reporting configuration and the saving of any changes, when a
Configure Reports command is received.

irq_JN516x.s defines which of the JN516x hardware interrupts are supported and serviced,
and at which priority. This is defined by two tables - an interrupt priority table and a table of
handler functions. This file is not used for JN517x.

bdb_options.h defines parameters used by the Base Device, such as primary and
secondary channel masks.

zcl_options.h defines the features of the ZCL, such as which clusters are supported,
whether a client and or a server, and which optional commands and attributes are
supported. The mandatory commands and attributes of the selected cluster will be
automatically included.

 ZigBee 3.0 Base Device

20 © NXP Semiconductors 2018 JN-AN-1217 (v1005) 5-Sep-2018

5.5.1 Command Line Build Options

The following command line options can be used to configure the built devices:

• JENNIC_CHIP_FAMILY=JN516x to build for a JN516x microcontroller

• JENNIC_CHIP_FAMILY=JN517x to build for a JN517x microcontroller

• JENNIC_CHIP=JN5169 to build for a JN5169 microcontroller

• JENNIC_CHIP=JN5168 to build for a JN5168 microcontroller

• JENNIC_CHIP=JN5164 to build for a JN5164 microcontroller

• JENNIC_CHIP=JN5179 to build for a JN5179 microcontroller

• JENNIC_CHIP=JN5178 to build for a JN5178 microcontroller

• JENNIC_CHIP=JN5174 to build for a JN5174 microcontroller

• ICODES=0 to build so that install codes are not used

• ICODES=1 to build so that install codes are used

• APP_NTAG_ICODE=0 to build without NTAG/NFC (ZigBee Installation Code format)

support

• APP_NTAG_ICODE=1 to build with NTAG/NFC (ZigBee Installation Code format)

support (this is the default option)

• APP_NTAG_AES=0 to build without NTAG/NFC (AES Encryption format) support (this

is the default option)

• APP_NTAG_AES=1 to build with NTAG/NFC (AES Encryption format) support

ZigBee 3.0 Base Device

JN-AN-1217 (v1005) 5-Sep-2018 © NXP Semiconductors 2018 21

5.6 End Device Application Code

This section lists and describes the source files for the End Device application code, which
are provided in the Source directory for the application. You may wish to use this code as a
basis for your own application development. You can rebuild your customised application as
described in Section 5.7.

app_main.c hosts the main program loop, and defines and initialises system resources,
queues, timers etc.

app_start.c manages the JN516x/7x chip start-up, calls the initialisation functions and
launches the main program loop.

app_end_device_node.c hosts the event handlers for the application and the Base Device
callback. The Base Device callback receives Base Device Events and AF Stack events after
the Base Device has completed any processing that is required. These events can then be
further processed by the application. The events include data indications that are passed to
the ZCL for processing and network management events (such a ‘network formed’ and ‘new
node has joined’) in order to keep the application informed of the network state. The
application event queue is processed to receive button-press events.

app_zcl_task.c hosts the device-specific ZCL initialisation and callback functions. The ZCL
callbacks notify the application of the results of received ZCL commands and responses, so
the application can take the appropriate action. The ZCL tick timer is used to provide ticks for
the ZCL to manage timer-dependent events or state transitions.

irq_JN516x.s defines which of the JN516x hardware interrupts are supported and serviced,
and at which priority. This is defined by two tables - an interrupt priority table and a table of
handler functions. This file is not used for JN517x.

bdb_options.h defines parameters used by the Base Device, such as primary and
secondary channel masks.

zcl_options.h defines the features of the ZCL, such as which clusters are supported,
whether a client and or a server, and which optional commands and attributes are
supported. The mandatory commands and attributes of the selected cluster will be
automatically included.

5.6.1 Command Line Build Options

The following command line options can be used to configure the built devices:

• JENNIC_CHIP_FAMILY=JN516x to build for JN516x microcontrollers

• JENNIC_CHIP_FAMILY=JN517x to build for JN517x microcontrollers

• JENNIC_CHIP=JN5169 to build for a JN5169 microcontroller

• JENNIC_CHIP=JN5168 to build for a JN5168 microcontroller

• JENNIC_CHIP=JN5164 to build for a JN5164 microcontroller

• JENNIC_CHIP=JN5179 to build for a JN5179 microcontroller

• JENNIC_CHIP=JN5178 to build for a JN5178 microcontroller

• JENNIC_CHIP=JN5174 to build for a JN5174 microcontroller

• GROUPS=0 to build so that bound commands use unicast transmission

• GROUPS=1 to build so that bound commands use groupcast transmission

• ICODES=0 to build so that install codes are not used

 ZigBee 3.0 Base Device

22 © NXP Semiconductors 2018 JN-AN-1217 (v1005) 5-Sep-2018

• ICODES=1 to build so that install codes are used

• APP_NTAG_ICODE=0 to build without NTAG/NFC (ZigBee Installation Code format)

support

• APP_NTAG_ICODE=1 to build with NTAG/NFC (ZigBee Installation Code format)

support (this is the default option)

• APP_NTAG_AES=0 to build without NTAG/NFC (AES Encryption format) support (this

is the default option)

• APP_NTAG_AES=1 to build with NTAG/NFC (AES Encryption format) support

ZigBee 3.0 Base Device

JN-AN-1217 (v1005) 5-Sep-2018 © NXP Semiconductors 2018 23

5.7 Rebuilding the Applications

This section describes how to rebuild the supplied applications, which you will need to do if
you customise the applications for your own use.

5.7.1 Pre-requisites

It is assumed that you have installed the relevant NXP development software on your PC, as
detailed in Section 2.

In order to build the application, this Application Note [JN-AN-1217] must be unzipped into
the directory:

<IDE installation root>\workspace

where <IDE Installation root> is the path in which the IDE was installed. By default, this is:

• C:\NXP\bstudio_nxp for BeyondStudio

• C:\NXP\LPCXpresso_<version>_<build>\lpcxpresso for LPCXpresso

The workspace directory is automatically created when you start the IDE.

All files should then be located in the directory:

…\workspace\JN-AN-1217-Zigbee-3-0-Base-Device

There is a sub-directory for each application, each having Source and Build sub-directories.
There will also be sub-directories JN516x and JN517x containing the project definition files.

5.7.2 Build Instructions

The software provided with this Application Note can be built for the JN516x and JN517x
devices.

The applications can be built from the command line using makefiles or from the IDE
(BeyondStudio or LPCXpresso) – makefiles and Eclipse-based project files are supplied.

• To build using makefiles, refer to Section 5.7.2.1.

• To build using the IDE, refer to Section 5.7.2.2.

5.7.2.1 Using Makefiles

This section describes how to use the supplied makefiles to build the applications. Each
application has its own Build directory, which contains the makefiles for the application.

To build an application and load it into a JN516x/7x board, follow the instructions below:

1. Ensure that the project directory is located in

<IDE installation root>\workspace

2. Start an MSYS shell by following the Windows Start menu path:
All Programs > NXP > MSYS Shell

3. Navigate to the Build directory for the application to be built and at the command
prompt enter an appropriate make command for your chip type, as illustrated below.

 For example, for JN5169:

 make JENNIC_CHIP_FAMILY=JN516x JENNIC_CHIP=JN5169 clean all

 ZigBee 3.0 Base Device

24 © NXP Semiconductors 2018 JN-AN-1217 (v1005) 5-Sep-2018

For example, for JN5179:

 make JENNIC_CHIP_FAMILY=JN517x JENNIC_CHIP=JN5179 clean all

 The binary file will be created in the Build directory, the resulting filename indicating the
chip type (e.g. 5169) for which the application was built.

4. Load the resulting binary file into the board. You can do this from the command line
using the JN51xx Production Flash Programmer, as described in Section 4.1.

5.7.2.2 Using the IDE (BeyondStudio for NXP or LPCXpresso)

This section describes how to use the IDE to build the demonstration application.

To build the application and load it into JN516x/7x boards, follow the instructions below:

1. Ensure that the project directory is located in

<IDE installation root>\workspace

2. Start the IDE and import the relevant project as follows:

a) In the IDE, follow the menu path File>Import to display the Import dialogue box.

b) In the dialogue box, expand General, select Existing Projects into Workspace
and click Next.

c) Enable Select root directory and browse to the workspace directory.

d) In the Projects box, select the project to be imported, only select the project file
appropriate for the chip family and IDE that you are using, and click Finish.

3. Build an application. To do this, ensure that the project is highlighted in the left panel of

the IDE and use the drop-down list associated with the hammer icon in the toolbar
to select the relevant build configuration – once selected, the application will
automatically build. Repeat this to build the other applications.

 The binary files will be created in the relevant Build directories for the applications.

4. Load the resulting binary files into the board. You can do this using the integrated Flash
programmer, as described in the User Guide for the IDE that you are using.

ZigBee 3.0 Base Device

JN-AN-1217 (v1005) 5-Sep-2018 © NXP Semiconductors 2018 25

6 Related Documents
The following manuals will be useful in developing custom applications based on this
Application Note:

• ZigBee 3.0 Stack User Guide [JN-UG-3113]

• ZigBee 3.0 Devices User Guide [JN-UG-3114]

• ZigBee Cluster Library (for ZigBee 3.0) User Guide [JN-UG-3115]

• JN51xx Core Utilities User Guide [JN-UG-3116]

• BeyondStudio for NXP Installation and User Guide [JN-UG-3098]

• JN517x LPCXpresso User Guide [JN-UG-3109]

• JN51xx Production Flash Programmer User Guide [JN-UG-3099]

All the above manuals are available as PDF documents from the ZigBee 3.0 page of the
NXP web site.

http://www.nxp.com/products/interface-and-connectivity/wireless-connectivity/2.4-ghz-wireless-solutions/zigbee/zigbee-3.0:ZIGBEE-3-0

 ZigBee 3.0 Base Device

26 © NXP Semiconductors 2018 JN-AN-1217 (v1005) 5-Sep-2018

Important Notice

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP
Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of
such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including
- without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products
or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any
other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and
cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and
conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This document
supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life
support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP
Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in
such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP
Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further
testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is
customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s
applications and products planned, as well as for the planned application and use of customer’s third party customer(s).
Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications
and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any
weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s).
Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and the products or of the application or use by
customer’s third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export
might require a prior authorization from competent authorities.

All trademarks are the property of their respective owners.

 NXP Semiconductors

For the contact details of your local NXP office or distributor, refer to:

 www.nxp.com

http://www.nxp.com/

	1 Introduction
	2 Development Environment
	2.1 Software
	2.2 Hardware

	3 Application Note Overview
	3.1 NFC Hardware Support
	3.2 NFC Data Formats

	4 Running the Demonstration Application
	4.1 Loading the Applications
	4.2 Using the Coordinator
	4.2.1 Coordinator Functionality
	4.2.2 Forming a Network
	4.2.3 Allowing Other Nodes to Join
	4.2.4 Binding Nodes
	4.2.5 Operating the Device
	4.2.6 Re-joining the Network
	4.2.7 Performing a Factory Reset
	4.2.8 Summary of Serial Interface Commands

	4.3 Using the Router
	4.3.1 Router Functionality
	4.3.2 Forming or Joining a Network
	4.3.2.1 Joining an Existing Network using Network Steering
	4.3.2.2 Joining an Existing Network using NFC
	4.3.2.3 Forming a Distributed Network

	4.3.3 Allowing Other Devices to Join the Network
	4.3.4 Binding Devices
	4.3.5 Operating the Device
	4.3.6 Rejoining a Network
	4.3.7 Performing a Factory Reset

	4.4 Using the End Device
	4.4.1 End Device Functionality
	4.4.2 Joining a Network
	4.4.2.1 Joining an Existing Network using Network Steering
	4.4.2.2 Joining an Existing Network using NFC

	4.4.3 Allowing Other Devices to Join the Network
	4.4.4 Binding Devices
	4.4.5 Operating the Device
	4.4.6 Rejoining a Network
	4.4.7 Performing a Factory Reset

	4.5 Installation Codes

	5 Developing with the Application Note
	5.1 Common Code
	5.2 NTAG Folder (AES Format)
	5.3 NFC Folder (ZigBee Installation Code Format)
	5.4 Coordinator Application Code
	5.4.1 Command Line Build Options

	5.5 Router Application Code
	5.5.1 Command Line Build Options

	5.6 End Device Application Code
	5.6.1 Command Line Build Options

	5.7 Rebuilding the Applications
	5.7.1 Pre-requisites
	5.7.2 Build Instructions
	5.7.2.1 Using Makefiles
	5.7.2.2 Using the IDE (BeyondStudio for NXP or LPCXpresso)

	6 Related Documents

