

JN-AN-1202 (v1.1) 18-Sep-2014 © NXP Laboratories UK 2014 1

Application Note: JN-AN-1202
BeyondStudio Migration Guidelines

This Application Note provides an introduction to the new features included in the
‘BeyondStudio for NXP’ Integrated Development Environment (IDE) which can be
used to develop applications for NXP’s JN516x family of wireless microcontrollers.
Guidance is also provided on migrating existing JN516x projects to BeyondStudio for
NXP.

Introduction
Software applications for the JN516x wireless microcontrollers were previously developed in
the Eclipse IDE supplied in NXP’s JN51xx SDK Toolchain (JN-SW-4041). This toolchain is
being replaced by ‘BeyondStudio for NXP’, which is an NXP adaptation of the BeyondStudio
IDE v1.1.9 (from Beyond Semiconductor) specifically for use with the JN516x wireless
microcontrollers. BeyondStudio is itself based on the open-source Eclipse IDE.

BeyondStudio for NXP is supplied in the software package with part number JN-SW-4141.
Installation instructions and basic operational instructions are provided in the BeyondStudio
for NXP Installation and User Guide (JN-UG-3098).

 Note: Before installing BeyondStudio for NXP, check that it is supported
for your proposed software stack. To do this, refer to the relevant tab of
the NXP Wireless Connectivity TechZone.

This document describes the features that have been introduced into the NXP version of
BeyondStudio. It also provides guidance on migrating JN516x projects to BeyondStudio for
NXP that were previously developed using the former Eclipse IDE.

Compatibility
The software descriptions in this Application Note relate to the following NXP evaluation kits
and software:

Product Type Part Number Version
Evaluation Kit JN516x-EK001 -
BeyondStudio for NXP JN-SW-4141 v1111

http://www.nxp.com/techzones/wireless-connectivity

 BeyondStudio Migration Guidelines

2 © NXP Laboratories UK 2014 JN-AN-1202 (v1.1) 18-Sep-2014

Directory Structure
The directory structure of the installation has changed slightly from the previous Eclipse
version. This is to allow multiple stacks to be installed and used concurrently. All applications
are created within the Eclipse workspace folder. The new directory structure is illustrated
below.

<Installation Directory>
(e.g. C:\NXP\bstudio_nxp)

Eclipse directories

msys

workspace

sdk

tools

ba-elf-ba2-rxxxxx

JN-SW-416y

Chip

Components

Platform

Stack

Tools

Comments

MinGW applications

Application workspace

Toolchain

JN516x SDK

Stack-specific tools

Stack-independent tools

BeyondStudio Migration Guidelines

JN-AN-1202 (v1.1) 18-Sep-2014 © NXP Laboratories UK 2014 3

Application Changes
The following changes are necessary to migrate a project to BeyondStudio for NXP. These
guidelines assume that you have launched BeyondStudio for NXP and imported the project,
as described in the BeyondStudio for NXP Installation and User Guide (JN-UG-3098).

Project Changes
Launch the Properties dialogue box for your project by right-clicking on the project in the
Project Explorer pane (left) and selecting Properties from the menu.

Under C/C++ Build, check whether the “Use default build command” box is ticked. If not,
make a note of the text in the Build command field, as this information may be lost.

The project must now be configured to use the BA ELF GNU toolchain. Follow the path
C/C++ Build > Tool Chain Editor and in the Current toolchain field, select “BA ELF GNU
toolchain”. It may be necessary to uncheck the “Display compatible toolchains only” box
in order to present the option. The toolchain selection should appear as shown below:

 BeyondStudio Migration Guidelines

4 © NXP Laboratories UK 2014 JN-AN-1202 (v1.1) 18-Sep-2014

Under C/C++ Build, ensure that the “Generate Makefiles automatically” box is unticked. If
there was previously a custom make command, re-enter this now. The build options should
appear as shown below - in this example, there is a custom make command that supplies
“DEVICE_TYPE=COORD” to make. Also ensure that the Build directory field is set
correctly – for some applications, there is a Build sub-directory (where the Makefile is kept).

Repeat the above instructions for every build configuration.

Makefile Changes
Each application must now select the appropriate stack SDK. The following lines should be
included in the Makefile (this example selects JN-SW-4163, the IEEE802.15.4 SDK):

Default SDK is the IEEE802.15.4 SDK

JENNIC_SDK ?= JN-SW-4163

Path definitions

SDK_BASE_DIR ?= $(abspath ../../../../sdk/$(JENNIC_SDK))

Note that SDK_BASE_DIR must be modified, as shown above, to take the SDK value.

Available toolchains are installed in <Installation Directory>/sdk/Tools/<Toolchain
name>. Each stack SDK selects the appropriate toolchain from this directory – no Makefile
changes are required for this, as this selection is automatic.

System headers in dependency files generated during compilation may contain Windows-
style absolute paths which are not compatible with MinGW make. This can be avoided by

BeyondStudio Migration Guidelines

JN-AN-1202 (v1.1) 18-Sep-2014 © NXP Laboratories UK 2014 5

modifying the application Makefile, replacing the flags –M with –MM and –MD with –MMD
when generating the dependencies. These flags are passed to the GCC compiler by the
Makefile. Building with these flags includes only user headers in the dependencies,
removing the problematic system header paths.

The build process no longer supplies include paths for every available component. The
application Makefile must add include paths as well as library names for the components it
uses - for example, to add the DBG library:
INCFLAGS += -I$(COMPONENTS_BASE_DIR)/DBG/Include
APPLIBS += DBG

Changes to the Debug Library
The SDK Libraries compatible with this new toolchain include several new features in the
Debug (DBG) library.

Flags
The DBG library now has a flags field that may be used to fine-tune the library’s operation.
The flags are stored in the global variable DBG_u32Flags. The flags are as follows:

Flag Meaning
DBG_FLAG_NONE None of the following flags are set.
DBG_FLAG_OUTGOING_NL_CRNL If set, every \n character in the outgoing string is sent as \r\n. This is for

compatibility with certain terminal programs.
DBG_FLAG_AUTO_FLUSH If set, DBG_vFlush() is called at the end of each DBG_vPrintf()

invocation. The application may instead choose to flush the outgoing
characters in idle time rather than at the end of each outputted string.

DBG_FLAG_FLUSH_WHEN_FULL If the DBG back-end buffers outgoing characters then it will be
automatically flushed when it is full, if this flag is set. Otherwise,
characters that do not fit in the buffer may be lost.

DBG_FLAG_OUTGOING_NL_CRNL and DBG_FLAG_AUTO_FLUSH are set by default.

DBG Terminal IO
The DBG library has also been extended to allow full duplex interaction with a terminal, by
allowing the reception of characters in addition to printing them. An application may poll for
characters by calling:
DBG_iGetChar();

This function will return a character if one has been received or -1 if no character is
available.

JTAG DBG_vPrintf
The SDK Libraries compatible with this new toolchain include a new back-end to the DBG
library, allowing the user to printf() to the debug terminal within BeyondStudio for NXP.

Instead of initialising the DBG library with the UART back-end, when using JTAG debugging
the JTAG back-end can be enabled as follows:
#if defined HWDEBUG
 DBG_vJtagInit();
#else
 DBG_vUartInit(DBG_UART, DBG_BAUD_RATE);
#endif /* HWDEBUG */

 BeyondStudio Migration Guidelines

6 © NXP Laboratories UK 2014 JN-AN-1202 (v1.1) 18-Sep-2014

The debug printf() implementation may then be used as normal - for example:
DBG_vPrintf(TRUE, "Hello world!\n");

When the project is compiled for hardware debugging, this string will be printed to the
BeyondStudio target debug console. Otherwise, the string will be printed to the UART and
may be received in the BeyondStudio serial terminal.

When using the JTAG back-end to the DBG library, calling DBG_vFlush() (this is done
automatically within DBG_vPrintf() if the DBG_FLAG_AUTO_FLUSH flag is set) will trigger
a syscall exception in the CPU. This is caught by the debugger. When the syscall exception
occurs, the address of the outgoing string buffer and its length are stored in CPU registers 4
and 5 respectively. The address of the incoming string buffer and its length are stored in
CPU registers 6 and 7 respectively. The debugger reads the outgoing buffer and prints it.
The debugger may also write data to the target in the incoming buffer. The debugger then
resumes the CPU automatically.

Writing the incoming buffer is not supported by the debugger in this release. Calling
DBG_iGetChar() when using the JTAG back-end will always return -1.

Standardised Back-end Functions
In previous SDKs, it was necessary to call certain back-end functions directly, such as to
flush the UART. In this release, there are additional functions common to all back-ends that
will call the appropriate function of the initialised back-end. This means that the back-end
can be replaced (for example, by swapping from UART to JTAG) without changing any
source code and with minimal conditional compilation.

The new functions are:

• DBG_vFlush() – Flushes outgoing characters:

• For the UART back-end, this blocks until the transmit shift register is empty

• For the JTAG back-end, it performs the system call to transfer the output buffer to
the debugger

• DBG_iGetChar() – Reads incoming characters from the terminal:

• For the UART back-end, this checks for a received character in the incoming buffer

• For the JTAG back-end, it will return data that has been written into a buffer by the
debugger (not currently supported by GDB)

Toolchain Features

MinGW
The new toolchain does not include Cygwin. The toolchain is compiled natively for Windows
using MinGW. Users should not use the Cygwin shell when working with the new toolchain
and should instead switch to the included MinGW shell. This is because tools compiled using
MinGW expect Windows-style paths (e.g. c:\test or /c/test/) whereas tools compiled with
Cygwin expect Cygwin-style paths (e.g. /cygdrive/c/test). The Cygwin shell will expand
Windows-style paths to Cygwin-style paths, which MinGW applications cannot understand.
Likewise, running Cygwin applications from a MinGW shell will not work because Cygwin
applications do not understand Windows-style paths.

A shortcut to the MinGW shell is created in the Windows Start menu when BeyondStudio for
NXP is installed. This shell may be used to run any installed MinGW applications.

BeyondStudio Migration Guidelines

JN-AN-1202 (v1.1) 18-Sep-2014 © NXP Laboratories UK 2014 7

Some common MinGW applications are installed to <Installation directory>/msys/. These
include, for example, GNU Make for managing the building of applications.

Link-time Optimisation
The new toolchain supports link-time optimisation, which is enabled by default. Link-time
optimisation makes it possible to perform many additional optimisations, due to the fact that
the linker has visibility of the entire program. It can therefore do things such as inlining
functions that are used in only one place, rearranging program sections in memory to reduce
jump sizes, removing unused function arguments and variables, etc.

Link-time optimisation can be disabled by adding the following line to the application
Makefile:
DISABLE_LTO=1

Of course, this will have a detrimental effect on the size of the generated program and can
mean the binary file grows by 5-10%.

GCC Warnings
This release of the toolchain supports and enables GCC warnings as documented here:

http://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html

A description of these warnings and potential issues follows:

-Wpacked
This warning is given if the packed attribute is applied to a structure but has no effect on the
layout or size of the structure. However, the packed attribute is regularly used to ensure that
structures which encode protocol definitions are unpadded. In this case, the secondary
property of the packed attribute which allows structures to be misaligned is useful, as byte
buffers are frequently cast to/from these structures. If the structure was declared without the
packed attribute then misalignment exceptions may occur. Therefore it is recommended that
structures defining an ‘on-wire’ protocol be wrapped in the following:
#pragma GCC diagnostic ignored "-Wpacked"
#pragma GCC diagnostic ignored "-Wattributes"

/** Structure definitions */

#pragma GCC diagnostic pop

In all other cases, ignoring this warning will result in inefficient code being generated to
access structure members. Use of the packed attribute is therefore discouraged. The
programmer should take steps to ensure that structure members are, as far as practical, laid
out to allow the compiler to pack them naturally. This means that structure members should
be declared in order of descending alignment requirement, i.e. pointers first, 32-bit values
next, 16-bit values next, with 8-bit values and bit-fields last.

-Wcast-align
This warning is given whenever a pointer is cast such that the required alignment of the
target is increased. For example, casting an 8-bit byte pointer to a 32-bit word pointer will
give this warning. If the source pointer is not word-aligned (which the compiler cannot
guarantee in this case) then this will generate an alignment exception at run-time. It is better

http://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html

 BeyondStudio Migration Guidelines

8 © NXP Laboratories UK 2014 JN-AN-1202 (v1.1) 18-Sep-2014

to be warned about this at compile-time, so that the code can be fixed, than to get alignment
exceptions at run-time.

If data must be accessed as words then it should be copied from the source pointer into a
word-aligned variable.

Possible Issues

Const Arrays with Function Scope
A const array declared locally in a function may be copied onto the stack rather than
referenced in place, leading to sub-optimal memory usage and unnecessary CPU cycles
being consumed. This can be fixed by declaring the array as a static const within the
function.

Link-time Optimisation Removing Arguments
If a function does not make use of some arguments then GCC may choose to remove them
from the calling code. Normally this is not a problem, since if they are genuinely not used
then it is wasteful to generate the code to pass them. Problems may occur, however, if the
function relies on those arguments being present - for example, in inline assembly. In this
case, assembly constraints should be used to inform GCC that the arguments are used by
the assembly code. If the inline assembly implicitly uses arguments that are being optimised
out then it may be necessary to disable LTO when compiling the C file in order to prevent
this optimisation.

Internal Compiler Error in do_SUBST
The following error message has been observed when compiling certain code constructs:

internal compiler error: in do_SUBST

This appears to be a bug in the GCC compiler. If this error is observed, the workaround is to
disable optimisation of the function in which the compiler error occurs. To do this, add the
following attribute to the function:

__attribute__((optimize("O0")))

So the function definition appears in full as:

void __attribute__((optimize("O0"))) function_name (void)

{

}

BeyondStudio Migration Guidelines

JN-AN-1202 (v1.1) 18-Sep-2014 © NXP Laboratories UK 2014 9

Revision History
Version Notes

1.0 First release
1.1 Updated branding

Important Notice
Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP
Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of
such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages
(including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any
products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and
cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and
conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This document
supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life
support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP
Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in
such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP
Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further
testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is
customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s
applications and products planned, as well as for the planned application and use of customer’s third party customer(s).
Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications
and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any
weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s).
Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and the products or of the application or use by
customer’s third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export
might require a prior authorization from competent authorities.

All trademarks are the property of their respective owners.

 NXP Semiconductors

For the contact details of your local NXP office or distributor, refer to:

 www.nxp.com

http://www.nxp.com/

	Introduction
	Compatibility
	Directory Structure
	Application Changes
	Project Changes
	Makefile Changes

	Changes to the Debug Library
	Flags
	DBG Terminal IO
	JTAG DBG_vPrintf
	Standardised Back-end Functions

	Toolchain Features
	MinGW
	Link-time Optimisation
	GCC Warnings
	-Wpacked
	-Wcast-align

	Possible Issues
	Const Arrays with Function Scope
	Link-time Optimisation Removing Arguments
	Internal Compiler Error in do_SUBST

