

JN-AN-1171 (v1.16) 26-Jun-2017 © NXP Semiconductors 2017 1

Application Note: JN-AN-1171

ZigBee Light Link Solution

This Application Note demonstrates a typical ZigBee Light Link (ZLL) network based
on the NXP JN516x wireless microcontroller. The solution employs the following
device types from the ZigBee Light Link Profile Specification version 1.0:

• Lighting devices

• Controller devices

The accompanying software uses the ZLL clusters to transfer data between the
devices in a wireless network in order to control Lighting devices from Controller
devices. The hardware for the devices is implemented using components from the
NXP JN516x-EK001 Evaluation Kit. The device software was developed using NXP
Application Programming Interfaces (APIs).

1 Introduction

This Application Note provides a ZigBee Light Link (ZLL) wireless network solution which
uses the NXP JN516x-EK001 Evaluation Kit. The demonstration allows the user to control
ZLL Lighting devices from ZLL Controller devices. From the evaluation kit:

• the Lighting/Sensor Expansion Boards (DR1175) are used as ZLL Lighting devices

• the Remote Control Unit (DR1159) is used as a ZLL Controller device

The evaluation kit and its components are described in the JN516x-EK001 Evaluation Kit
User Guide (JN-UG-3093).

This Application Note provides implementations of the ZLL Lighting devices and ZLL
Controller devices, as specified in the ZigBee Light Link Profile Specification v1.0
(11-0037-10). Information on these devices, such as the clusters that they support, is also
provided in NXP’s ZigBee Light Link User Guide (JN-UG-3091), which you are advised to
study in order to familiarise yourself with ZLL concepts before using this Application Note.

Pre-built application binaries for implementing the ZLL devices on the JN516x-EK001
Evaluation Kit hardware are supplied with this Application Note. You will need to program the
binaries into the appropriate boards, as indicated in Section 3. Instructions for running the
demonstration are provided in Section 4. Instructions for re-building the application binaries
are provided in Section 7.3.

The device software was developed using the following NXP Application Programming
Interfaces (APIs): ZigBee PRO APIs, JenOS APIs, ZLL API and JN516x Integrated
Peripherals API. These APIs are described in their own User Guides.

1.1 System Overview

This example ZigBee Light Link (ZLL) network consists of a combination of ZLL Controller
and ZLL Lighting devices. The sub-sections below provide a brief introduction to each device
type. Advanced user information is provided in Section 5.

 ZigBee Light Link Solution

2 © NXP Semiconductors 2017 JN-AN-1171 (v1.16) 26-Jun-2017

1.1.1 ZLL Controller Device

The ZLL Controller device resides on the Remote Control Unit (from the evaluation kit) which
acts as a Sleeping End Device in the network. The ZLL Controller device is used to
commission the lighting network using Touchlink and to control the operation of the Lighting
devices, once the network is formed. For the operational details, refer to Section 4 “Running
the Demonstration”.

The ZLL Controller device can be any of the device types listed in the table below. Each
device type includes mandatory and optional clusters to provide the functionality defined in
the ZLL Profile Specification.

ZLL Controller Device Clusters Implemented Comments

Non-Colour Controller Identify, Groups, On/Off,
Level Control

This device is not capable of controlling scenes or
the colour of Lighting devices.

Colour Controller Identify, Groups, On/Off,
Level Control, Colour
Control

This device is not capable of controlling scenes
on Lighting devices.

Non-Colour Scene Controller Identify, Groups, On/Off,
Scenes, Level Control

This device is not capable of controlling the colour
of Lighting devices.

Colour Scene Controller Identify, Groups, On/Off,
Scenes, Level Control,
Colour Control

Sleeping and non-sleeping build options are
provided for this device.

On/Off Sensor Identify, Groups, On/Off,
Scenes, Level Control,
Colour Control

-

1.1.2 ZLL Lighting Devices

The ZLL Lighting devices reside on permanently powered nodes that act as Routers in the
network. On receiving Touchlink commands (from the Controller device), a ZLL Lighting
device can start a network or join an existing network.

A ZLL Lighting device can be any of the device types listed in the table below. Each device
type includes mandatory and optional clusters to provide the functionality defined in the ZLL
Specification.

ZLL Lighting Device Clusters Implemented Comments

On/Off Light Groups, Scenes, Identify,
On/Off, Level Control

This device is not capable of colour or level
control (Level Control cluster is included for a
consistent user experience so that Level Control
“with On/Off” commands can be interpreted when
the device is in a group with dimmable lights).

On/Off Plug-in Light Groups, Scenes, Identify,
On/Off, Level Control

This device is not capable of colour or level
control (Level Control cluster is included for a
consistent user experience so that Level Control
“with On/Off” commands can be interpreted when
the device is in a group with dimmable lights).
The device is typically included in nodes that
contain a controllable mains plug or adaptor.

Dimmable Light Groups, Scenes, Identify,
On/Off, Level Control

This device is not capable of colour or level
control.

Dimmable Plug-in Light Groups, Scenes, Identify,
On/Off, Level Control

This device is not capable of colour or level
control. It is typically included in nodes that
contain a controllable mains plug or adaptor.

Colour Light Groups, Scenes, Identify,
On/Off, Level Control,
Colour Control

This device supports manipulation of the lamp
colour using hue and saturation, enhanced hue,
colour loop and CIE XY coordinates. It does not
support colour temperature.

ZigBee Light Link Solution

JN-AN-1171 (v1.16) 26-Jun-2017 © NXP Semiconductors 2017 3

Extended Colour Light Groups, Scenes, Identify,
On/Off, Level Control,
Colour Control

This device supports manipulation of the lamp
colour using hue and saturation, enhanced hue,
colour loop, CIE XY coordinates and colour
temperature.

Colour Temperature Light Groups, Scenes, Identify,
On/Off, Level Control,
Colour Control

This device supports manipulation of the lamp
colour using colour temperature.

2 Compatibility

The software provided with this Application Note is intended for use with the following
evaluation kit and SDK (Software Developer’s Kit) versions:

Product Type Part Number Version or Build

Evaluation Kit JN516x-EK001 -

JN516x ZLL/HA SDK JN-SW-4168 1620

‘BeyondStudio for NXP’ Toolchain JN-SW-4141 1308

3 Loading the Application

Table 1 below lists the application binary files supplied with this Application Note and
indicates the JN516x-EK001 Evaluation Kit components on which the binaries can be used.
For the Light devices, binaries are provided for JN5168 and JN5169 – in the table below,
<x> can be 8 or 9.

Device Type / Application Binary

Expansion Board
(+ Carrier Board)

Remote
Control
Unit Generic LCD Lighting/Sensor

Light_ColorLight_JN516<x> ■

Light_ColorTemperatureLight_JN516<x> ■

Light_DimmableLight_JN516<x> ■

Light_DimmablePlug_JN516<x> * □

Light_ExtendedColorLight_JN516<x> ■

Light_OnOffLight_JN516<x> ■

Light_OnOffPlug_JN516<x> * □

Controller_ColorController_JN5168 ■

Controller_ColorSceneController_JN5168 ■

Controller_NonColorController_JN5168 ■

Controller_NonColorSceneController_JN5168 ■

Controller_OnOffSensor_JN5168 ** □

Table 1: Device Type – Evaluation Kit Compatibility Matrix

Key: ■ – Preferred hardware □ – Reduced functionality

* Not fully-functioning plug (same as ‘Light’ version except for Device ID)
** Sensor functionality of Controller_OnOffSensor_JN5168.bin is not supported on the Remote Control Unit.

In practice, any controller can be used with any light, but the following limitations apply in the
control of lights:

• A ‘non-colour’ controller can only perform on/off and level control

• A ‘non-scene’ colour controller can control colour but not save or restore scenes

• A Colour Scene Controller can perform all control operations

 ZigBee Light Link Solution

4 © NXP Semiconductors 2017 JN-AN-1171 (v1.16) 26-Jun-2017

From the pre-built binaries supplied for the JN516x-EK001 Evaluation Kit (see Table 1), as a
starting point and to fully use the features described, you are advised to program the:

• Lighting/Sensor Expansion Board with Light_ExtendedColorLight_JN516<x>.bin

• Remote Control Unit with Controller_ColorSceneController_JN5168.bin

The application binaries must be loaded into the corresponding evaluation kit boards using
the JN516x Flash Programmer within BeyondStudio for NXP or the JN51xx Production Flash
Programmer (JN-SW-4107).

! Caution: If loading this application for the first time, the persistent data
must be cleared in each of the devices using the ‘Erase EEPROM’ option
in the JN516x Flash Programmer.

 Note: The supplied software can also be built for NXP’s LED bulb
reference designs that relate to boards DR1190, DR1192 and DR1221. In
this case, use the build configuration appended with DR1190, DR1192 or
DR1221, as required, within BeyondStudio for NXP.

4 Running the Demonstration

This section describes how to demonstrate the ZLL application. You should have
programmed binaries into JN516x evaluation kit boards as described in Section 3. As stated,
you are advised to use a Colour Scene Controller and an Extended Colour Light.

4.1 Forming the ZLL Network

The primary method of forming a ZLL network is by ‘Touchlink’ commissioning, which is
introduced in the ZigBee Light Link User Guide (JN-UG-3091). Touchlink uses the inter-PAN
protocol, described in the ZigBee PRO Stack User Guide (JN-UG-3101). Touchlinking is
performed at reduced RF power, so the devices need to be brought into close proximity. As
part of Touchlinking, there are two roles that devices can play: Initiator and Target. A
Controller can be both an Initiator and a Target, while Lights can only be Targets.

In order to form a new ZLL network, you will need a factory-new Controller device (Remove
Control Unit) and a Lighting device. It does not matter whether the Lighting device is factory-
new, as its network settings will acquire values for the new network as part of the Touchlink
commissioning.

1. Power up the Lighting device (Lighting/Sensor Expansion Board). The light will attempt
to classically join any open ZigBee Light Link (or ZigBee Home Automation) network
that it finds. When this fails, it will randomly pick one of the ZLL primary channels (11,
15, 20 or 25) and wait with its receiver on for Touchlink commissioning.

 Note: To reset a Lighting device to the factory-new state, press and hold
down the button ‘DIO8’, and then press and release button ‘RST’ on the

Carrier Board.

ZigBee Light Link Solution

JN-AN-1171 (v1.16) 26-Jun-2017 © NXP Semiconductors 2017 5

2. Power up the Controller device (Remote Control Unit) by inserting batteries.

 Note 1: The Controller device goes into sleep mode after a while. To
wake up the Remote Control Unit, press hard on the button.

 Note 2: The Controller device is in the factory-new state if no LEDs blink
when buttons on the capacitive-touch keypad are pressed. If the
Controller device is not in the factory-new state on first use then the
device must be reset to the factory-new state.

 Note 3: To reset the Controller device to the factory-new state, press the
button * repeatedly until both of the LEDs illuminate and then enter the
button sequence –, +, –.

3. Perform Touchlink commissioning.

 Note: Before performing Touchlink commissioning, make sure that the

Controller device (Remote Control Unit) is not in the sleep state.

a) For successful commissioning, make sure the Controller device is close to the
target Lighting device (approximately 10 cm away).

b) Now press the # button to start the commissioning.

 The Controller device will issue inter-PAN scan requests across the ZLL primary
channels 11, 15, 20 and 25. Any target devices within range will respond with a
scan response and the Controller device will select the light in closest proximity to
be the target of the Touchlinking. If there are no suitable responses from the scan
of the primary channels then the secondary channels will be scanned for a suitable
target. Once a Touchlink target has been selected, an Identify command will be
sent to it (the identify action of a target will be device-specific: a colour light will go
red, a monochrome light will flash). After this identification, the Controller device
will send a Device Information Request to the target device which will respond with
the information that is required to control the operation of the light (Device ID,
Profile ID, endpoint number). The Controller device will then send a Network Start
Command to the target, containing the network address that the light must use and
a randomly generated network key to use. This key is encrypted using the ZLL
certification key. The target light will set up its network parameters and start as a
ZigBee Router on the chosen channel and PAN. Two seconds after this, the
Controller device will issue a ZigBee Rejoin Request to join the Router just started.
The network is now formed.

c) The Controller device will now add the device, profile, endpoint number and
address of the new light to its light database. It will also send an Add Group
command to the Lighting device to assign the light to its control group, and finally it
will send an ‘Identify with Okay effect’ command to the light to signal completion of
the Touchlinking.

 After successful commissioning, the Controller device can control the Lighting device
with the button mapping described in the next section.

 ZigBee Light Link Solution

6 © NXP Semiconductors 2017 JN-AN-1171 (v1.16) 26-Jun-2017

4.2 Adding More Lights to the Network

To add more lights to the network, repeat the Touchlink procedure above. The Controller
device will assign a network address and pass on the network parameters to the new lights
using the inter-PAN Network Join Router command.

4.3 Adding More Controllers to the Network

Touchlinking can be used to add more Controller devices to the network. The new Controller
device must be in the factory-new state - it is not possible to commission Controller devices
that are not factory-new.

1. Bring the new Controller device and existing Controller device within close proximity of
each other, and away from other ZLL devices.

2. Ensure that both devices are not sleeping and simultaneously press the # keys on the
two devices to start the commissioning.

3. Both Controller devices will issue inter-PAN scan requests and each will respond to the
other’s scan. However, the factory-new device will abandon its scanning and defer to
the non-factory-new device to become the target for Touchlink.

4. The new Controller device will be passed its network parameters and address in a
Network Join End Device command in order to become part of the network. Since
Controller devices are ‘address assignment capable’, the existing Controller device will
split the range of network and group addresses that it holds for assignment (to new
devices) - it retains half for itself and passes the other half to the new Controller device
for use in future Touchlinking.

5. The new Controller device will now issue a ZigBee Rejoin Network command and join a
suitable parent Router.

6. After successfully joining the network, the original Controller device will send an
Endpoint Information command to the new Controller device to inform it of its endpoint
number. The new Controller device can now send a Get Endpoint List command to the
original Controller device, which will then respond with the contents of its light database.
A Get Group Identifiers command will also be used to inform the new Controller device
of the Group IDs used by the original device.

7. The new Controller device will now be able to control the lights in the network.

4.4 Touchlinking to Lights Already in the Network

Touchlinking can be used to gather endpoint and device type information from lights already
in the same network. This is useful in the situation where there are two Controller devices
and the first device is used to add a new light to the network - the second device will have no
knowledge of the existence of this new light. By using Touchlink, the second device can
gather the device address and endpoint of the new light and add this information to its light
database. In this case, there is no need to exchange network parameters, just device
information.

ZigBee Light Link Solution

JN-AN-1171 (v1.16) 26-Jun-2017 © NXP Semiconductors 2017 7

4.5 ZLL Controller Device (Remote Control Unit) Operation

The button functions on the Controller device (Remote Control Unit) are as shown below.

On

Off

Scene

Shift0 Recall

Shift1 Set

Touchlink

Brightness level up

Brightness level down

Select Shift mode,
indicated by LEDs

(see table below)

Toggle
between unicast

and groupcast

Identify next bulb

Wake remote control

unit from sleep

Shift0 Saturation

2=Up, 4=Down

Shift1 Colour Loop

2=Start, 4=Stop

Shift0 Hue

1=Up, 3=Down

Shift1 Colour Temp

1=Up, 3=Down

 Note 1: When the Controller device is in the factory-new state, only the
buttons # and + are available (for commissioning ZLL devices into the
network).

 Note 2: The Controller device goes to sleep after a while. Hence, if the
Remote Control Unit LEDs do not blink on pressing a touch-button, press
hard on the button to wake up the unit.

 Note 3: The Controller device can operate the Lighting device(s) using
one of two addressing modes – unicast or groupcast. Unicast mode
allows the user to operate a single Lighting device. Groupcast mode
allows the user to operate a group of Lighting devices simultaneously.
Use the button ‘?’ to toggle between these two modes.

The Controller device can operate in four Shift modes (0, 1, 2 and 3) to accommodate
maximum functionality. The Shift mode is indicated by a combination of two LEDs on the

Remote Control Unit, as shown in the table below. You can press button * to move to the

next Shift mode.

 ZigBee Light Link Solution

8 © NXP Semiconductors 2017 JN-AN-1171 (v1.16) 26-Jun-2017

Shift Mode Left LED Right LED

Shift0 Off Off

Shift1 On Off

Shift2 Off On

Shift3 On On

Table 2: Shift Modes

The four tables below summarise the button functions in the four Shift modes.

Shift0 Mode Operation Button
On: Send a command to switch on the light(s) The transmission mode will depend

on the current mode selected. I

Off with Effect: Send a command to switch off the light(s) using the ‘Off with

Effect’ option - this has the effect of saving the current settings as the Global
Scene.

O

Increase Brightness: Increase the brightness level of the light(s). If the light is off,

this will switch on the light and then increase its level. The brightness will stop
increasing when the button is released.

+

Decrease Brightness: Decrease the brightness level of the light(s). The brightness

will stop decreasing when the button is released. –

Move Hue Up: Send a command to move the hue of the light(s) up. The movement

will stop when the button is released. 1

Move Hue Down: Send a command to move the hue of the light(s) down. The
movement will stop when the button is released. 3

Increase Saturation: Send a command to move the saturation of the light(s) up.

The movement will stop when the button is released. 2

Decrease Saturation: Send a command to move the saturation of the light(s)

down. The movement will stop when the button is released. 4

Recall Scene 1: Groupcast a Recall Scene command to restore scene 1. A
Recall Scene 2: Groupcast a Recall Scene command to restore scene 2. B
Recall Scene 3: Groupcast a Recall Scene command to restore scene 3. C
Recall Scene 4: Groupcast a Recall Scene command to restore scene 4. D
Shift Menu: Cycle through the four Shift modes (0 1 2 3 0 etc). *
Groupcast/Unicast: Toggle between groupcast and unicast transmission modes.

On waking from sleep, this mode will always be groupcast. After Touchlinking to a
light, the mode will always be unicast with that light selected.

?

Select next light: Select the next light in the light database to be controlled by

unicast. An Identify command will be sent to the relevant light, and unicast
transmission mode will be selected.

Touchlink: Start Touchlink commissioning to add new devices to the network or to
gather endpoint information about existing devices in the network. #

Table 3: Button Functions in Shift0 Mode

Shift1 Mode Operation Button
On: Send a command to switch on the light(s). The transmission mode will depend
on the current mode selected. I
Off with Effect: Send a command to switch off the light(s) using the ‘Off with Effect’

option - this has the effect of saving the current settings as the Global Scene. O
Increase Brightness: Increase the brightness level of the light(s). If the light is off,

this will switch on the light and then increase its level. The brightness will stop
increasing when the button is released.

+

Decrease Brightness: Decrease the brightness level of the light(s). The brightness
will stop decreasing when the button is released. –
Increase Colour temperature: Send a command to increase the colour

temperature of the light(s). The increase will stop when the button is released. 1

ZigBee Light Link Solution

JN-AN-1171 (v1.16) 26-Jun-2017 © NXP Semiconductors 2017 9

Decrease Colour temperature: Send a command to decrease the colour

temperature of the light(s). The decrease will stop when the button is released. 3
Set the Colour Loop: Send a command to the light(s) to start a colour loop. The
light will start cycling through colours. 2
Stop Colour Loop: Send a command to the light(s) to stop the colour loop. A

colour loop must be stopped before other colour control commands will be accepted
by colour lights.

4

Store Scene 1: Groupcast a Store Scene command to save the current settings as

Scene 1. Note that following the saving of a scene, the menu level will automatically
revert to Shift0.

A

Store Scene 2: Groupcast a Store Scene command to save the current settings as

Scene 2. Note that following the saving of a scene, the menu level will automatically
revert to Shift0.

B

Store Scene 3: Groupcast a Store Scene command to save the current settings as

Scene 3. Note that following the saving of a scene, the menu level will automatically
revert to Shift0.

C

Store Scene 4: Groupcast a Store Scene command to save the current settings as

Scene 4. Note that following the saving of a scene, the menu level will automatically
revert to Shift0.

D

Shift Menu: Cycle through the four Shift modes (0 1 2 3 0 etc). *
Groupcast/Unicast: Toggle between groupcast and unicast transmission modes.

On waking from sleep, this mode will always be groupcast. After Touchlinking to a
light, the mode will always be unicast with that light selected.

?

Select next light: Select the next light in the light database to be controlled by

unicast. An Identify command will be sent to the relevant light, and unicast
transmission mode will be selected.

Touchlink: Start Touchlink commissioning to add new devices to the network or to

gather endpoint information about existing devices in the network. #

Table 4: Button Functions in Shift1 Mode

Shift2 Mode Operation Button
On: Send a command to switch on the light(s). The transmission mode will depend

on the current mode selected. I
Off with Effect: Send a command to switch off the light(s) using the ‘Off with Effect’

option - this has the effect of saving the current settings as the Global Scene. O
Increase Brightness: Increase the brightness level of the light(s). If the light is off,

this will switch on the light and then increase its level. The brightness will stop
increasing when the button is released.

+

Decrease Brightness: Decrease the brightness level of the light(s). The brightness

will stop decreasing when the button is released. –
No function assigned 1
No function assigned 3
No function assigned 2
No function assigned 4
No function assigned A
No function assigned B
Permit Join: Broadcast a ZigBee Management command to the network to instruct

Routers to set their ‘permit joining’ state to TRUE for 120 seconds. This opens the
network to classical joining.

C

Channel Change: Broadcast a ZigBee Management command to change the

operational channel to one of the other ZLL primary channels, selected at random. D
Shift Menu: Cycle through the four Shift modes (0 1 2 3 0 etc). *
Groupcast/Unicast: Toggle between groupcast and unicast transmission modes.

On waking from sleep, this mode will always be groupcast. After Touchlinking to a
light, the mode will always be unicast with that light selected.

?

 ZigBee Light Link Solution

10 © NXP Semiconductors 2017 JN-AN-1171 (v1.16) 26-Jun-2017

Select next light: Select the next light in the light database to be controlled by

unicast. An Identify command will be sent to the relevant light, and unicast
transmission mode will be selected.

Touchlink: Start Touchlink commissioning to add new devices to the network or to

gather endpoint information about existing devices in the network. #

Table 5: Button Functions in Shift2 Mode

Shift3 Mode Operation Button Sequence

On: Send a command to switch on the light(s). The transmission mode will depend
on the current mode selected. I

Off with Effect: Send a command to switch off the light(s) using the ‘Off with

Effect’ option - this has the effect of saving the current settings as the Global
Scene.

O

Factory Reset: Factory reset the Remote Control Unit, restoring the application

and stack persistent data to its factory-new state. - + -

No function assigned 1
No function assigned 3

No function assigned 2
No function assigned 4
Identify Effect Blink: Send a command to the light(s) to trigger the ‘Blink’ effect. A
Identify Effect Breathe: Send a command to the light(s) to trigger the ‘Breathe’

effect. B

Identify Effect Okay: Send a command to the light(s) to trigger the ‘Okay’ effect. C
Identify Effect Channel Change: Send a command to the light(s) to trigger the

‘Channel Change’ effect. D

Shift Menu: Cycle through the four Shift modes (0 1 2 3 0 etc). *
Groupcast/Unicast: Toggle between groupcast and unicast transmission modes.

On waking from sleep, this mode will always be groupcast. After Touchlinking to a
light, the mode will always be unicast with that light selected.

?

Select next light: Select the next light in the light database to be controlled by

unicast. An Identify command will be sent to the relevant light, and unicast
transmission mode will be selected.

Touchlink: Start Touchlink to send a Factory New (reset) command to the target

device. This button cannot be used to add new devices to the network. #

Table 6: Button Functions in Shift3 Mode

4.6 Light Link and Classical Joining

As an alternative to Touchlink commissioning, it is possible for a ZLL device to classically
join either a ZigBee Light Link (ZLL) or ZigBee Home Automation (ZHA) network. This is
done using the standard ‘discover then associate’ used by ZigBee. Joiners will then be
issued with a randomly generated network address and the network key sent using a
Transport Key Command.

4.6.1 Classically Joining a ZLL Network

In a ZLL network, there is no Co-ordinator device to act as the trust centre, so each Router is
capable of taking the trust centre role and transporting the network key to a new device,
encrypted using the ZLL key. In order to allow a new ZLL device to classically join a ZLL
network, the network must first be opened to allow joining. This is done by sending a
Management Permit Joining command from the Controller device (Shift2 mode, button C)
which will open the network for joining for 120 seconds.

• To join a Lighting device to the network, start or power-cycle a factory-new Lighting
device, which will attempt classical joining - success will be indicated by a short
identify effect on the light.

ZigBee Light Link Solution

JN-AN-1171 (v1.16) 26-Jun-2017 © NXP Semiconductors 2017 11

• To join a Controller device to the network, the device must be factory-new. Start the
joining process by pressing the + button. Following the join by this method, the
Controller device will need to use Touchlinking to gather device and endpoint
information about the lights in the network.

4.6.2 Classically Joining a ZHA Network

In a ZHA network, there is a trust centre which will authenticate joiners and issue the
network key. This will be encrypted with the ZHA key, which is known to the ZLL devices. In
order to join a ZHA network, the network must first be opened for joining with a Permit
Joining command. How to do this will depend on the implementation of the ZHA network.

• To join a Lighting device to the network, start or power-cycle a factory-new Lighting
device, which will attempt classical joining - success will be indicated by a short
identify effect on the light.

• To join a Controller device to the network, the device must be factory-new. Start the
joining process by pressing the + button. Following the join by this method, the
Controller device cannot be used to add new devices into the network using Touchlink,
as it is not allowed to bypass the security functions of the trust centre. However,
Touchlinking can still be used to gather endpoint information etc.

5 Advanced User Information

5.1 Saving Network Context

All device types are protected from losing their network configuration during a power outage
by means of context saving. The required network parameters are automatically preserved
in the non-volatile memory by the ZigBee PRO Stack (ZPS). On restart, the radio channel,
Extended PAN ID (EPID) and security keys are restored.

Application-specific information can also be preserved in the non-volatile memory, which is
most commonly used to preserve the application’s operating state.

5.2 Clearing Network Context

During the demonstration and development, it is often necessary to clear the context data.
To clear context on any ZLL Lighting device (JN516x-EK001 Lighting/Sensor Expansion
Board (DR1175) on Carrier Board (DR1174)), hold down the button labelled ‘DIO8’ on the
Carrier Board while resetting the device.

In order to clear context data on the ZLL Controller device (JN516x-EK001 Remote Control
Unit (DR1198)), follow the appropriate instructions from those below:

• When the Controller device is in the factory-new state or not commissioned to any
Lighting device (no LED blinks on the Remote Control Unit when any touch-button is
pressed) then the context data can be cleared by pressing the touch-button I on the
keypad.

• When the Controller device has previously been commissioned into a network (LED
blinks when a touch-button is pressed) then the context data can be cleared by means
of the following steps:

a. Press the button * repeatedly until both of the LEDs illuminate.

b. Now enter the button sequence –, +, –.

 ZigBee Light Link Solution

12 © NXP Semiconductors 2017 JN-AN-1171 (v1.16) 26-Jun-2017

5.3 Security Keys and MAC Addresses

The application uses the MAC address pre-programmed in the devices.

All the nodes in a ZLL system use ZigBee network layer security to generate a network key
for the communication with the network security enabled devices. The network key is
generated randomly by the initiator that starts the new network. All ZLL devices use the ZLL
key to encrypt/decrypt the exchanged network key.

ZLL provides Do-It-Yourself (DIY) installation and commissioning. It is required to have a
common yet secured technique to transfer the network keys during classical joining methods
or Touchlink commissioning. For ease of use during development, this key data has been
hardcoded within the application.

Figure 1 illustrates the architecture that is used for transferring the encrypted network key.
Refer to the following sub-sections for more information.

ZLL target

Network layer

Decrypt

network key

ZLL key

Network key

MAC layer

PHY layer

ZLL initiator

Network layer

Encrypt

network key

ZLL key

Network key

MAC layer

PHY layer

ID exchange

Secure encrypted communication

using the network key

ZLL encrypted network key

Figure 1: Overview of ZLL Security

The encryption and decryption are done by the following functions:

• PRIVATE uint8 eEncryptKey()

• PRIVATE uint8 eDecryptKey()

Please refer to ZigBee Light Link Specification for more details.

5.3.1 Certification Key

Prior to the successful completion of certification, a certificate key should be used to allow
testing of the security mechanisms as specified in ZigBee Light Link Specification.

5.3.2 Master Key

The ZLL master key is a secret key shared by all certified ZLL devices. It will be distributed
only to certified manufacturers by the ZigBee Alliance.

 Note: The software provided in this Application Note is NOT supplied with
the ZLL master key. As such, it is not capable of completing Touchlink
commissioning with commercial ‘off-the-shelf’ ZigBee Light Link products.

ZigBee Light Link Solution

JN-AN-1171 (v1.16) 26-Jun-2017 © NXP Semiconductors 2017 13

5.4 Adding More Groups to a Device

Each Lighting device is configured with a group addressing table of size 5. This allows each
light to be a member of 5 different groups. To increase this group addressing table size,
increase the value of the “Group Addressing Table Size” in the ZPS configuration editor.
Also update the CLD_GROUPS_MAX_NUMBER_OF_GROUPS macro in the zcl_options.h
file to match the updated value of "Group Addressing Table Size" in the ZPS configuration
editor.

Similarly, for the Controller device, the number of group records is configured to 4. To
increase this number, edit the NUMBER_GROUP_RECORDS and GROUPS_REQUIRED
macros in the zcl_options.h file for the respective device.

5.5 Adding More Scenes to a Lighting Device

Each Lighting device is configured to have 9 scenes, of which one scene, scene 0, is
reserved for use as the Global Scene. This allows 8 scenes to be added in the device. To
increase the number of scenes, edit the CLD_SCENES_MAX_NUMBER_OF_SCENES
macro in the zcl_options.h file for the respective device. Care should be taken when adding
more scenes to ensure that the EEPROM remains capable of saving all the required data.
The Persistent Data Manager (PDM) handles this, but there must be enough free sectors of
EEPROM to save the largest record. If this condition is met then the PDM will be ‘save safe’.
The Occupancy and Capacity parameters of the PDM may be examined to give information
about the state of the PDM. A callback function can be enabled to give application
indications of PDM error conditions. The use of these is recommended during development.

DBG_vPrintf(TRACE_APP|1, "PDM: Capacity %d\n",

u8PDM_CalculateFileSystemCapacity());

DBG_vPrintf(TRACE_APP|1, "PDM: Occupancy %d\n",

u8PDM_GetFileSystemOccupancy());

PDM_vRegisterSystemCallback(vPdmEventHandlerCallback);

Both of these feature are present in the application under the TRACE_APP build option.

6 Over-The-Air (OTA) Upgrade

6.1 Overview

Support for the OTA Upgrade cluster and OTA clients has been included for the Extender
Colour Light, Colour Light, Colour Temperature Light, Dimmable Light and On/Off Light

devices. In order to build with these options, add OTA=1 to the command line before

building. This will add the relevant functionality to the lights and invoke post-build processing
to create a bootable image and two upgrade images. The produced binaries will be stored in
the OTA_build directory. By default, unencrypted binaries will be produced. In order to build

encrypted binaries, add the OTA_ENCRYPTED=1 option to the command line before building.

• If built for the JN5168 device then external Flash memory will be used to store the
upgrade image before replacing the old one.

• If built for the JN5169 device then the internal Flash memory will be used to store the
upgrade image.

A device called OTA_server is provided to host the upgrade images that the clients will
request. This OTA Upgrade server must be implemented on a JN5168 device (and cannot
be implemented on a JN5169 device).

 ZigBee Light Link Solution

14 © NXP Semiconductors 2017 JN-AN-1171 (v1.16) 26-Jun-2017

6.2 OTA Upgrade Operation

To implement an OTA upgrade:

1. Build the light application with OTA=1 in the makefile to enable OTA upgrade (this option

is not enabled by default). Also comment out the line CFLAGS += -DDEBUG_APP_OTA

in the makefile so that the upgrade can be seen over the UART of the light node.

 The binary files for the light are created in the OTABuild folder – bootable binaries have
the extension .bin and upgrade binaries have the extension .ota (the latter is intended
to be loaded into external Flash memory of the OTA Upgrade server using the JN51xx
Production Flash Programmer (JN-SW-4107), as described in Step 7). There are three
encrypted binaries and three non-encrypted binaries. The three binaries in each set are
different versions with different headers so that we can test the upgrading of the light.

2. Program one of the binary files from the OTABuild folder into the internal Flash memory
of the JN516x device on the DR1174 Carrier Board of the light node - for example,
Light_ExtendedColorLight_JN5168_DR1175.bin. You can do this using the JN516x
Flash Programmer within BeyondStudio for NXP, as described in the BeyondStudio for
NXP Installation and User Guide (JN-UG-3098). Alternatively, you can use the JN51xx
Production Flash Programmer (JN-SW-4107) described in the JN51xx Production Flash
Programmer User Guide (JN-UG-3099).

3. Build the OTA server application. The resulting binary file, server.bin, will be created in
the OTABuild directory.

4. Program the file server.bin into the internal Flash memory of the JN5168 device on the
DR1198 USB Dongle, so that the dongle becomes the OTA Upgrade server. You can
do this using the JN516x Flash Programmer within BeyondStudio for NXP or the
JN51xx Production Flash Programmer (JN-SW-4107).

5. Form a network with a light node and the DR1159 Remote Control Unit in the normal
way using Touchlink (see Section 4.1).

6. Open the network for classical joining from the Remote Control Unit by pressing the
button sequence ‘’ ‘’ ‘C’ (if both LEDs on the unit are off). After pressing ‘’ ‘’, the
Remote Control Unit will be in Shift2 mode (see Section 4.5) and, to indicate this, the
left LED will be Off and the right one will be On. Pressing ‘C’ broadcasts a command to
the network nodes to enable ‘Permit Joining’ on the nodes for 120 seconds.

 The OTA Upgrade server device will now classically join the network.

7. Load a .ota upgrade image (V2 or V3) into the external Flash memory of the JN5168
device on the DR1198 USB Dongle using the JN51xx Production Flash Programmer
(JN-SW-4107) - the required command line will be similar to the following:

Jn51xxProgrammer –S external –s COM<port> -f <filename>

 Alternatively, you can load a .bin upgrade image (V2 or V3) into the external Flash
memory of the JN5168 device on DR1198 USB Dongle using the obsolete JN51xx
Flash Programmer v1.8.9.

8. When viewing the UART output from the light node, the upgraded image should be
found and the light node upgraded.

Any devices with OTA clients in the network will periodically send Match Descriptor
Requests in order to find an OTA server. Once a server responds, it will then be sent an
IEEE Address Request in order to confirm its address details. After this, the clients will
periodically send OTA Image Requests to determine whether the server is hosting an image
for that client device. In response to the Image Request, the server will return details of the
image that it is currently hosting - Manufacturer Code, Image Tag and Version Number. The
client will check these credentials and decide whether it requires this image. If it does not, it

ZigBee Light Link Solution

JN-AN-1171 (v1.16) 26-Jun-2017 © NXP Semiconductors 2017 15

will query the server again at the next query interval. If the client does require the image, it
will start to issue Block Requests to the server to get the new image. Once all blocks of the
new image have been requested and received, the new image will be verified, the old one
invalidated, and the device will reboot and run the new image. The client will resume
periodically querying the server for new images

6.3 Image Credentials

There are four main elements of the OTA header that are used to identify the image, so that
the OTA client is able to decide whether it should download the image. These are
Manufacturer Code, Image Type, File Version and OTA Header String:

• Manufacturer Code: This is a 16-bit number that is a ZigBee-assigned identifier for
each member company. In this application, this number has been set to 0x1037, which
is the identifier for NXP. In the final product, this should be changed to the identifier of
the manufacturer. The OTA client will compare the Manufacturer Code in the
advertised image with its own and the image will be downloaded only if they match.

• Image Type: This is a manufacturer-specific 16-bit number in the range 0x000 to
0xFFBF. Its use is for the manufacturer to distinguish between devices. In this
application, the Image Type is set to the ZigBee Device Type of the bulb - for example,
0x0210 for an Extended Colour Light or 0x1210 if the image is transferred in an
encrypted format. The OTA client will compare the advertised Image Type with its own
and only download the image if they match. The product designer is entirely free to
implement an identification scheme of their own.

• File Version: This is a 32-bit number representing the version of the image. The OTA
client will compare the advertised version with its current version before deciding
whether to download the image.

• OTA Header String: This is a 32-byte character string and its use is manufacturer-
specific. In this application, it is possible (through a build option) for the OTA client to
compare the string in the advertised image with its own string before accepting an
image for download. If the strings match then the image will be accepted. In this way,
the string can be used to provide extra detail for identifying images, such as hardware
sub-types.

6.4 Encrypted and Unencrypted Images

OTA images can be provided to the OTA server in either encrypted or unencrypted form.
Encrypting the image will protect sensitive data in the image while it is being transferred from
the manufacturer to the OTA server. Regardless of whether the image itself is encrypted, the
actual transfer over-air will always be encrypted in the same way as any other on-air
message. The encryption key is stored in protected e-fuse and is set by the manufacturer.

For JN5169 builds, to use encrypted images the following define must be included as a build
option in the zcl_options.h file:

#define INTERNAL_ENCRYPTED

6.5 Upgrade and Downgrade

The decision to accept an image following a query response is under the control of the
application. The code, as supplied, will accept an upgrade or a downgrade. As long as the
notified image has the right credentials and a version number which is different from the
current version number, the image will be downloaded. For example, if a client is running a
V3 image and a server is loaded with a V2 image then the V2 image will be downloaded. If it
is required that the client should only accept upgrade images (V2 > V3 > V5), or only accept

 ZigBee Light Link Solution

16 © NXP Semiconductors 2017 JN-AN-1171 (v1.16) 26-Jun-2017

sequential upgrade images (V2 > V3 > V4 > V5) then the application callback function that
handles the Image Notifications in the OTA client will need to be modified.

7 Developing with the Application Note

This section provides additional information that may be useful when developing with this
Application Note.

7.1 Useful Documents

Before commencing a ZigBee Light Link development, you are recommended to familiarise
yourself with the following documents:

[R1] - JN-UG-3101 ZigBee PRO User Guide
[R2] - JN-UG-3075 JenOS User Guide
[R3] - JN-UG-3091 ZigBee Light Link User Guide
[R4] - JN-UG-3103 ZigBee Cluster Library User Guide
[R5] - JN-UG-3087 JN516x Integrated Peripherals API User Guide
[R6] - ZigBee Light Link (ZLL) Profile Specification
[R7] - ZigBee Cluster Library (ZCL) Specification

The latest versions of [R1] to [R5] can be obtained from the Wireless Connectivity area of
the NXP web site, while [R6] and [R7] can be found on the ZigBee Alliance web site,
http://www.zigbee.org.

7.2 Debugging the Demonstration Application

7.2.1 Serial Debug

Each node in the demonstration prints out debug information via the UART port based on
the debug flags set in the Makefile. This debug information can be viewed using terminal
emulator software, e.g. Tera Term. Connect the node of interest to a PC using the Mini-USB
cable (supplied in the evaluation kit) and configure the terminal emulator’s COM port as
follows:

BAUD Rate 115200

Data 8 bits

Parity None

Stop bit 1 bit

Flow Control None

Debug can be disabled for production by setting the ‘Trace’ flag in the relevant node’s
Makefile to zero. The Makefile also defines a subset of debug flags that allows localised
debug statements to be collectively enabled or disabled, e.g. TRACE_START.

7.2.2 JTAG Debug

The application on a node can be debugged from BeyondStudio for NXP via a JTAG
connection. This method requires additional hardware to form the JTAG interface on the
node, including a JTAG expansion board and JTAG adaptor/dongle. JTAG debugging is fully
described in the Application Note JN516x JTAG Debugging in BeyondStudio (JN-AN-1203).

http://www.nxp.com/products/interface-and-connectivity/wireless-connectivity:WIRELESS-CONNECTIVITY
http://www.zigbee.org/

ZigBee Light Link Solution

JN-AN-1171 (v1.16) 26-Jun-2017 © NXP Semiconductors 2017 17

7.2.3 On-Air Packets

The demonstration uses the following pre-configured link key and channel mask, in case you
wish to capture on-air data packets with a protocol analyser (such as Ubiqua from Ubilogix):

Pre-configured Link Key 0xd0d1d2d3d4d5d6d7d8d9dadbdcdddedf

Channel Mask 11, 15, 20 and 25

7.3 Building and Downloading the Application

This section provides application build instructions. If you simply wish to use the supplied
application binaries, refer to Section 3.

7.3.1 Pre-requisites and Installation

Before you start to build and load the application, please ensure that you have following
installed on your development PC:

• BeyondStudio for NXP (JN-SW-4141)

• JN516x ZigBee Light Link SDK (JN-SW-4168)

 Note: For the installation instructions, please refer to BeyondStudio for
NXP Installation and User Guide (JN-UG-3098) and the Release Notes
supplied with the JN516x ZigBee Light Link SDK (JN-SW-4168).

In order to build the application, this Application Note (JN-AN-1171) must be unzipped into
the directory:

<BeyondStudio for NXP installation root>\workspace

where <BeyondStudio for NXP Installation root> is the path into which BeyondStudio for
NXP was installed (by default, this is C:\NXP\bstudio_nxp). The workspace directory is
automatically created when you start BeyondStudio for NXP.

All files should then be located in the directory:

…\workspace\JN-AN-1171-ZigBee-LightLink-Demo

There is a sub-directory for each application, each having Source and Build sub-directories.

7.3.2 Build Instructions

The software provided with this Application Note can be built for the JN5169, JN5168 or
JN5164 device (JN5169 is the default chip for Lights, JN5168 is the default chip for
Controllers and the OTA Server).

The applications can be built from the command line using the makefiles or from
BeyondStudio for NXP – makefiles and Eclipse-based project files are supplied.

• To build using makefiles, refer to Section 7.3.2.1.

• To build using BeyondStudio for NXP, refer to Section 7.3.2.2.

 ZigBee Light Link Solution

18 © NXP Semiconductors 2017 JN-AN-1171 (v1.16) 26-Jun-2017

7.3.2.1 Using Makefiles

This section describes how to use the supplied makefiles to build the applications. Each
application has its own Build directory, which contains the makefiles for the application.

To build an application and load it into a JN516x device, follow the instructions below.

 Note: The make commands given below will build the application
according to the default build options in the makefile (e.g. device type).
To use alternative build options, these must be specified in the make
command. The required options for different builds can be obtained from
the build configurations provided in BeyondStudio for NXP.

1. Ensure that the project directory is located in

<BeyondStudio for NXP installation root>\workspace

2. Start an MSYS shell by following the Windows Start menu path:
All Programs > NXP > MSYS Shell

3. Navigate to the Build directory for the application to be built and follow the instructions
below for your chip type:

 For JN5169:

 At the command prompt, simply enter:

 make JENNIC_CHIP=JN5169 clean all <non-default make arguments>

 For JN5168:

 At the command prompt, enter:

 make JENNIC_CHIP=JN5168 clean all <non-default make arguments>

 For JN5164:

 At the command prompt, enter:

 make JENNIC_CHIP=JN5164 clean all <non-default make arguments>

 In all the above cases, the binary file will be created in the Build directory, the resulting
filename indicating the chip type (e.g. 5168) for which the application was built.

4. Load the resulting binary file into the device. You can do this from the command line
using the JN51xx Production Flash Programmer (described in the JN51xx Production
Flash Programmer User Guide (JN-UG-3099)).

ZigBee Light Link Solution

JN-AN-1171 (v1.16) 26-Jun-2017 © NXP Semiconductors 2017 19

7.3.2.2 Using BeyondStudio for NXP

This section describes how to use BeyondStudio for NXP to build the demonstration
application.

To build the application and load it into JN516x devices, follow the instructions below:

1. Ensure that the project directory is located in

<BeyondStudio for NXP installation root>\workspace

2. Start the BeyondStudio for NXP and import the relevant project as follows:

a) In BeyondStudio, follow the menu path File>Import to display the Import dialogue
box.

b) In the dialogue box, expand General, select Existing Projects into Workspace
and click Next.

c) Enable Select root directory and browse to the workspace directory.

d) In the Projects box, select the project to be imported and click Finish.

3. In the makefile(s) for application(s) to be built, ensure that the JN516x chip on which the
application is to run is correctly specified in the line beginning JENNIC_CHIP. For
example, in the case of the JN5169 device, this line should be:

JENNIC_CHIP=JN5169

4. Build an application. To do this, ensure that the project is highlighted in the left panel of

BeyondStudio and use the drop-down list associated with the hammer icon in the
toolbar to select the relevant build configuration – once selected, the application will
automatically build. Repeat this to build the other applications.

 The binary files will be created in the relevant Build directories for the applications.

5. Load the resulting binary files into the devices. You can do this using the integrated
Flash programmer, as described in the BeyondStudio for NXP Installation and User
Guide (JN-UG-3098).

 ZigBee Light Link Solution

20 © NXP Semiconductors 2017 JN-AN-1171 (v1.16) 26-Jun-2017

7.4 Application Start-up

This section describes the typical start-up flow of an NXP ZigBee PRO device. Note that not
all devices sleep, hence the ‘Warm Start’ path is not always applicable.

Cold Start

Warm Start

vInitialiseApp()

Stabilise clock

Debug initialisation

Watchdog Event Trap

Start the OS

vAppMain() PWRM_CALLBACK(Wakeup)

Debug initialisation

RAM held?

No

Restore MAC settings

General hardware re-initialisation

Restart the OS

Yes

Power Manager initialisation

Persistent Data Manager initialisation

Protocol Data Unit Manager initialisation

General hardware initialisation

APP_vInitialiseNode()

LED initialisation

Button initialisation

Clear context (optional)

Load context

Load the pre-configured link key (no context)

Initialise the Application Framework

Start the ZBP stack (context restore)

Initialise the ZCL

Commissioning initialisation

Idle Loop:

Reset the Watchdog timer

Service the Power Manager

OS_ISR(APP_ButtonsDIOChanged)

Wake Timer ISR

Clear down interrupt flag and execute

the user-defined callback function

vWakeCallBack()

Activate the wake-up task

OS_TASK(APP_WakeUpTask)

Schedule the next wake-up event

Update the local clock

Start the poll timer

Activate the main task

Returning to the idle loop

after the main task completes

Sleep?

Sleep

PWRM_CALLBACK(PreSleep)

Save MAC settings

Disable hardware peripherals

Clear DIO interrupt flags

No

Yes

app_xxxx_node.c

app_start.c

File Key:

app_buttons.c

app_sleep_functions.c

Doze

ISR/Task

activates &

completes

Figure 2: Typical Start-up Flow

ZigBee Light Link Solution

JN-AN-1171 (v1.16) 26-Jun-2017 © NXP Semiconductors 2017 21

7.5 ZLL Device Start-up

The start-up flow for different ZLL devices (Lighting or Controller) with respect to different
states (Factory-New or Non-Factory-New) are described in the sub-sections below.

7.5.1 Factory-New Lighting Device

A ZLL Lighting device acts as a Router in the ZigBee network. On power-up, a factory-new
Lighting device performs association discovery on the ZLL primary channels (11, 15, 20 and
25). The Lighting device tries to join any open network through MAC association when a
network is found during the discovery.

If no network is found or the association on the primary channel is unsuccessful, the factory-
new Light device scans the secondary channels and attempts MAC association when a
network is found.

If the light successfully joins a network, it will indicate this by self-identifying for a few
seconds.

Whenever the above procedure fails, the Router selects a random primary channel number
from the set of primary channels and a random PAN ID. At this point, it switches its radio
receiver on. An initiator device will then be able to ‘Touchlink’ to it.

7.5.2 Non-Factory-New Lighting Device

Once the Lighting device has been commissioned into a network, it stores its own state as
persistent data. When it powers up again, the device restores the network and application
settings, and starts as a Router. In line with the ZLL specification, it sends out three Device
Announce commands.

7.5.3 Factory-New Controller Device

The Controller device is an End Device in the ZLL network and is termed a network ‘initiator’.
Hence, on power-up, the device waits for a user action to initiate a Touchlink action or
classical commissioning.

In this application, the classical joining is initiated by pressing the button ‘+’. For the Router,
‘Permit Join’ must be set to TRUE. This can be achieved on the Lighting device by pressing
the button labelled DIO8 on the Carrier Board (DR1174).

7.5.4 Non-Factory-New Controller Device

On power-up, the non-factory-new Controller device attempts to join a network that was
initiated or commissioned earlier. The device also restores the stack settings from the non-
volatile memory and attempts a network rejoin. If successful, the Controller device then
resumes normal operation.

In the case of a failure to rejoin a network on power-up, the Controller device waits for a
configurable time of 20 seconds to allow the user to use the Controller to ‘Touchlink’ to
another device. After this, it enters sleep with RAM on for another configurable time of 20
seconds before entering deep sleep mode to conserve battery power.

7.6 Memory Allocation from Application

The application is responsible for allocating memory for the ZigBee Cluster Library (ZCL).
The sub-sections below describe the important memory allocations.

 ZigBee Light Link Solution

22 © NXP Semiconductors 2017 JN-AN-1171 (v1.16) 26-Jun-2017

7.6.1 Device Table

The application must allocate the device table of type tsCLD_ZllDevice for storing the
device records for its own endpoints. The ZCL accesses this table through the API function
psGetDeviceTable().

7.6.2 Endpoint Record Table

The remote control application must hold an endpoint information table of type
tsZllEndpointInfoTable. This table holds the network address, device type, profile ID and
endpoint number of each light of which it controls. This information is gathered as part of the
Touchlinking process. The ZCL accesses this table though the API function
psGetEndpointRecordTable().

7.6.3 Group ID Table

The application must allocate the groups record table of type tsZllGroupInfoTable. The ZCL
accesses this table through the API function psGetGroupRecordTable().

7.7 Commissioning

In general, all the ZLL devices can join a ZLL network or non-ZLL network using either of the
following methods:

• ZLL Touchlink commissioning

• Classical joining

7.7.1 ZLL Touchlink Commissioning

A ZLL device can be in either of two states for the Touchlink operation – Factory New (FN)
or Non-Factory New (NFN). This state will determine how a device responds to
‘Touchlinking’.

In this application, a Controller device can be both a Touchlink initiator and target while in
the FN state. The Controller device in the NFN state cannot be a target and needs to be
factory reset before it can be commissioned to any network. The Lighting devices are always
considered as targets in both the FN and NFN states.

The Touchlink implementation is present in the app_remote_comission_task.c file for the
Controller device and app_light_comission_task.c file for the Lighting device. Both of
these files contain a commissioning state machine as an OS task, APP_Commission_Task.
All the Touchlink commands are performed from this task.

A timer task, APP_CommissionTimerTask, is associated with APP_Commission_Task for
the periodic activities in commissioning such as transaction ID expiration.

During Touchlink commissioning, there is a requirement to reduce the transmission power.
Setting the ADJUST_POWER flag to TRUE will enable the following function for
transmission power adjustment.

eAppApiplmeSet(PHY_PIB_ATTR_TX_POWER, TX_POWER_LOW);

The normal power is restored by calling the following function:

eAppApiPlmeSet(PHY_PIB_ATTR_TX_POWER, TX_POWER_NORMAL);

The minimum Link Quality Indication (LQI) to complete the Touchlink process is set by the
ZLL_SCAN_LQI_MIN macro.

The Touchlink process comprises the phases outlined in the sub-sections below. For more
details, refer to the ZLL Specification.

ZigBee Light Link Solution

JN-AN-1171 (v1.16) 26-Jun-2017 © NXP Semiconductors 2017 23

7.7.1.1 Device Discovery

The device discovery phase is initiated by the Controller device. The initiator broadcasts a
Touchlink Scan Requests on the primary channel set (11, 15, 20 and 25) as inter-PAN
messages to the devices that are present within Touchlink proximity (for this application,
around 10cm or closer). In this process, 5 scan requests are sent out on channel 11,
followed by one request on each of channels 15, 20 and 25. In between each broadcast
scan request, there is a waiting time of aplcScanTimeBaseDuration (250 ms) to receive any
responses.

If the primary channel scan does not get any responses, the Controller device will send out
similar scan requests on each of the secondary channels (12, 13, 14, 16, 17, 18, 19, 21, 22,
23, 24 and 26) with a waiting time of aplcScanTimeBaseDuration.

On receiving any response that has a valid transaction ID, the initiator selects as its target
the closest device, as determined by the received signal strength.

7.7.1.2 Identify

The Touchlink initiator issues an Inter-PAN Identify command as an optional command to
identify the device from which it has received a response - this is mainly to confirm the
device identity through a user-defined effect. If the identifying device is not the user’s desired
Touchlink target, by pressing # again that target will be dropped and ignored in the new scan
sequence that will start. This can be repeated 3 times.

7.7.1.3 Device Information Request Command

The remote control unit will send a Device Iinformation Request to the target to obtain
information about the endpoint(s) of the target device.

7.7.1.4 Starting a Network

Once the discovery phase is complete and the target is identified, if the initiator is in the
Factory New (FN) state and the target is a Router then the initiator sends out a Start
Network request to the target with the required network settings. The Router then starts the
network and sends out a Start Network response. After receiving a response from the Router
indicating a successful network start, the initiator rejoins the network.

7.7.1.5 Joining a Light Device to the Network

After the discovery and identify phases, if the initiator is in the Non-Factory New (NFN) state
and the target is a Router then it sends a ‘Join network as Router’ command to the target.

The above sections allow a target Lighting device to be in any state, either FN or NFN. In the
case of a Lighting device in the NFN state, the device first issues a network leave command
to the existing network before it can become part of the initiator’s network. This is termed
“stealing” a Lighting device from an existing network by an initiator (of another network)
through Touchlink.

7.7.1.6 Joining an End Device to the Network

After the discovery and identify phases, if the initiator is already part of a network and the
target is an FN Controller device then the initiator sends a ‘Join as End Device’ command to
the target. However, it is not possible to add a NFN Controller device to any network.

This procedure allows Controller-to-Controller device commissioning. In such a case, the
newly joined Controller device needs to acquire the network database, containing
information such as Endpoint IDs, Endpoint List and Group IDs, from the initiator by issuing
Commissioning Utility commands.

 ZigBee Light Link Solution

24 © NXP Semiconductors 2017 JN-AN-1171 (v1.16) 26-Jun-2017

7.7.1.7 Network ID Update

As part of the processing of the Touchlink scan responses, for any responders that are in the
same network as the initiator the returned Network Update ID will be examined. If these IDs
are not identical, one of two actions will be taken:

• If the Network Update ID of the target is older than that of the initiator, the initiator will
send the target a Network Update Request command containing the logical channel,
Pan ID and Network Update ID. The target can then update its network parameters.

• If the Network Update Id of the initiator is older than that of the target, the initiator will
update its channel, PAN ID and Network Update ID from the details in the scan
response. Then in the case of an End Device, Touchlink will be ended and and a
ZigBee Network Rejoin initiated.

7.7.2 Classical Joining

A ZLL device can join a ZLL or non-ZLL (ZHA) network by the classical commissioning
method. In this method, the device joins the network through MAC association and obtains
the network key that is encrypted with the pre-configured link key. For more information,
refer to the ZLL Specification.

In this demonstration, the Lighting device (if on the DR1175 hardware) enables ‘Permit Join’
for 60 seconds when the button labelled ‘DIO8’ is pressed on the Carrier Board.
Alternatively, the remote control unit can be used to broadcast a Management Permit Join
command to the network. During this time, other devices can request MAC associations to
join.

If joining a ZLL network, the Transport Key command uses the ZLL key to encrypt the
network key. If joining a ZHA network then the ZHA key is used to encrypt the network key.

7.7.3 Network Address Assignment

Network address assignment in a ZLL network is done by an ‘address assignment capable
device’ as an incremental address starting from the minimum network address of 0x0001.
When an initiator forms a network, the application specifies an address range for the network
in terms of minimum and maximum network addresses.

• When a device that is not ‘address assignment capable’ is added to the network, the
initiator issues a network address to the target.

• When a device that is ‘address assignment capable’ is added to the network, it
receives its address from the initiator. It also receives a range of addresses for it to use
later when Touchlinking devices .onto the network

If a device cannot be assigned a network address, it cannot join the network.

If a device is added as part of the classical join method, the network address is not assigned
by the initiator and will be a random address. The device must then be ‘touchlinked’ to the
initiator, so that the Controller device can update its End Device table with the address,
device ID and endpoint ID of the new Lighting device.

7.7.4 Group Address Assignment

The number of group IDs is specified by an application in the device information table. The
total number of groups required by a target is indicated in the network response. The target
receives its free group identifier range during commissioning. A network initiator that is
‘network address assignment capable’ will also be a ‘group address assignment capable’
device. The group address can range from 0x0001 to 0xFF00. The default group 0x0000 is
used by the Scenes cluster.

ZigBee Light Link Solution

JN-AN-1171 (v1.16) 26-Jun-2017 © NXP Semiconductors 2017 25

When a Controller-to-Controller touchlink exchange occurs, the new Controller device that is
added to the network must send out Commissioning Utility commands to obtain information
such as an endpoint list and group ID list, to allow the initiator to control the commissioned
devices in the network.

7.8 Sleep Wake-up Cycle for Remote Control Unit

The Remote Control Unit in a ZLL network can typically be a Sleeping End Device, in order
to conserve battery power. This application demonstrates sleep in two modes – Sleep with
RAM ON and Deep Sleep.

The diagram below illustrates the sleep state machine.

PwrBtn=PRESSED

TL commissioning=DONE KeepAliveTime=0

KeepAliveTime=0

Factory New Run Deep Sleep

POR

Non Factory New Run
Sleep with OSC

ON RAM ON

Check button for 100

msec.

PwrBtn=PRESSED

KeepAliveTime=T1

PwrBtn=NOT PRESSED

Touch button=FALSE

Timer Wakeup @ T2

PwrBtn=PRESSED

OR

Touch button=TRUE

Figure 3: Sleep state machine

The following sub-sections describe the different states.

7.8.1 Power On Reset

A ‘Power On Reset’ can be performed on either a Factory New or Non-Factory New device.
The KeepAliveTime value is loaded with T seconds.

7.8.2 Factory New Run

In the ‘Factory New Run’ state, the KeepAliveTime value will decrement and then enter into
Deep Sleep mode when there is no touch activity on the keypad. Pressing the wake-up
button will cause the unit to wake and continue to run.

7.8.3 Non Factory New Run

In the ‘Non-Factory New Run’ state, the Remote Control Unit will be reset the timer while
there is activity from touch-button presses on the keypad. Otherwise, the KeepAliveTime
value is decremented. When there is no activity for T1 seconds, the unit enters the ‘Sleep
with RAM ON’ state.

 ZigBee Light Link Solution

26 © NXP Semiconductors 2017 JN-AN-1171 (v1.16) 26-Jun-2017

7.8.4 Sleep With RAM ON

In the ‘Sleep with RAM ON’ state, a wake timer is configured to wake up the device every
second. The Remote Control Unit checks for touch-button activity in order to come out of
sleep and set the KeepAliveTime value to T seconds. On a touch-button press, the device
enters into OS restart mode, continues with the network and keeps polling.

If there is no button press, the device keeps decrementing the KeepAliveTime value and
enters Deep Sleep mode when KeepAliveTime reaches zero.

7.8.5 Deep Sleep

When in Deep Sleep mode, the unit can be woken by pressing the wake-up button. The unit
then rejoins the network.

7.8.6 PollTask

PollTask is a task that performs the following:

• Runs at the rate of once per second and issues a poll request.

• Decrements KeepAliveTime

• When KeepAliveTime expires, the device stops all the timers using the function
vStopAllTimers(), re-initialises the power manager for Deep Sleep mode and
eventually enters into Deep Sleep mode.

• Declares the SleepWithRamOn as TRUE, so that the PreSleep() callback will be able
to configure the appropriate wake-up signal.

7.8.7 PreSleep Callback

The PreSleep() callback function is entered when all activities have been shut down. The
function does the following.

• Saves the MAC settings

• If SleepWithRamOn is TRUE, schedules the wake-up input as a 1-second wake timer.

7.8.8 WakeUp Callback

If SleepWithRamOn is TRUE, the Wakeup() callback function restores the MAC settings,
wakes up the touch-button interface, restarts the OS and activates APP_ScanInputTask.

7.8.9 APP_ScanInputTask

This task runs every 10 ms for 10 cycles and scans the touch-button interface for any input.
If an appropriate input is detected, it activates PollTask and the button scan timer task. In the
case of no input detected, the task returns the unit to sleep by stopping all the timers.

7.9 Guidelines for Modifying the Remote

This section highlights the key areas of interest within the code, in case the developer
wishes to alter the Remote Control Unit’s functional states or switch to a different user
interface.

7.9.1 Operational State Machine

The operational state machine (sDeviceDesc.eNodeState) is located within
zll_remote_node.c. Additional states must be added to this switch statement if further
operational modes are required.

ZigBee Light Link Solution

JN-AN-1171 (v1.16) 26-Jun-2017 © NXP Semiconductors 2017 27

7.9.2 Handling a Key Press and Release

The function that handles a key press and release is located in zll_remote_node.c as part
of APP_ZLL_RemoteTask. The events related to key input are processed as in the task with
the sAppEvent.eType event. Any changes to the key handling should be made within the
corresponding switch statement. The file also contains the key press handler function,
APP_vHandleKeyPress(). Any alteration to the key map to allow different functionality
should go in this function.

Similarly, the APP_vHandleKeyRelease() function can be altered to add a function that is
called upon release of a key.

7.10 Guidelines for Modifying the Light Identify Effects

This section highlights the key areas of interest within the code, in case the developer
wishes to alter the identify effect on the Lighting device.

The file app_zcl_light_task.c contains an endpoint callback function
APP_ZCL_cbEndpointCallback() in which the identify and trigger effect commands are
translated into an effect that a Lighting device can use to visually identify itself. The RGB
components and levels for identification can be set here to achieve a different effect, if
desired.

Similarly, in the function vIdEffectTick(), the level step for the effect can be set to the
desired value.

 ZigBee Light Link Solution

28 © NXP Semiconductors 2017 JN-AN-1171 (v1.16) 26-Jun-2017

8 Release Details

8.1 New Features

ID Feature Description

Version 1.16

Version 1.15

Version 1.14

lpsw8157 Lights: Allow scans for
classic join while
waiting for Touchlink

At power on the lights scan all channels attempting to classically
join (unchanged). If a classic join does not complete the lights listen
for Touchlink commands on channel 11 (previously a random
primary channel was chosen). Every 1.25s whilst waiting to be
Touchlinked a single channel is scanned to attempt classic joining
resulting in each channel being scanned once every 20s (new).

The previous algorithm can be restored by building with
SCAN_IN_TOUCHLINK defined to TRUE in zpr_light_node.c.

Version 1.13

Version 1.12

Version 1.11

Version 1.10

N/A OTA download of
same image

Same version of an OTA image can now be downloaded from the
OTA server to a client.

8.2 Known Issues

There are no known issues in this release.

8.3 Bug Fixes

ID Description

Version 1.16

Version 1.15

Version 1.14

lpsw8158 Extended Color Light: Revert endpoints back to standard values.

In Extended Color Light the endpoints have been altered to match the other light
applications: Light endpoint is 1, Commission endpoint is 2.

Version 1.13

lpsw7797 CCLD_SCENES_SUPPORT_ZLL_ENHANCED_COMMANDS name corrected.

lpsw7789 Stack and heap sizes defined by SDK. LD files have been removed from application.

lpsw7788 eOTA_UpdateClientAttributes() function updated to include image stamp value.

Version 1.12

lpsw7777 Deleted scenes on a light node were not properly removed and were reinstated
following a power-cycle (failed ZigBee certification test 3.13).

Version 1.11

Version 1.10

lpsw7320 OTA needs to take into account the remapping of Flash by the bootloader.

lpsw7444 Some ZLL bulbs identify as OTA servers as well as clients. This has been corrected
such that OTA clients on bulbs do not advertise as OTA servers.

lpsw7445 Touchlink handling of scan response fails if number of endpoints is not 1.

ZigBee Light Link Solution

JN-AN-1171 (v1.16) 26-Jun-2017 © NXP Semiconductors 2017 29

lpsw7448 OTA images did not include any chip type in the headers, so a device built for JN5168
could accept an image built for JN5169, or vice versa. This has been corrected such
that OTA clients only accept images for the correct chip type.

Appendix A - Source File Descriptions

Automatically Generated Files

Each device has several files that are automatically generated at build-time from the JenOS
and ZPS configuration diagrams. These files are not generally used by the developer but are
located in the respective device’s \Source folders, in case they are of interest.

Common Files

A number of common files are used across all device types and are located within the
\Common\Source folder. The following table gives a brief description of each of the
common files.

Filename Description

app_common.h Contains the common macro definitions used in the project. It contains the
conditional inclusion of the appropriate device headers.

app_events.h Contains global definitions for the events in the ZLL application.

ecb_decrypt.c Contains the AES128 decryption functions.

eventStrings.c/h Contains strings for the ZPS and application events.

os_msg_types.h Contains all the include files required.

PDM_ID.h Contains the PDM_IDs that are used in PDM load and restore.

app.zpscfg This is the ZPS configuration diagram, which is used to configure generic
network and node parameters. This includes profile, cluster, endpoint and RF
channel configurations. For more information, refer to the “ZPS Configuration
Editor” chapter of the ZigBee PRO Stack User Guide (JN-UG-3048).

Common Controller Files

The following table gives a brief description of the common files used by all the Controller
devices, and are located in the \Commom_Controller\Source folder.

Filename Description

app_captouch_buttons.c/h Capacitive-touch remote button task and event handler. It also defines the
DIO ISR that is used for capacitive touch.

app_remote_commission_task.c Commissioning task and state machine handler.

app_start_remote.c Start-up module with vAppMain and sleep wake-up callbacks. All the
initialisation for start-up and wake-up is available in this module.

app_zcl_remote_task.c/h ZCL event handler for the node - the endpoint callback function is part of this
module. This also has the node task and functional state machine.

DriverCapTouch.c/h Capacitive-touch driver module.

zll_remote_node.c/h Contains the ZLL application command send/receive functions - key map for
the Remote Control Unit. It also handles the initialisation of ZLL states by
calling the appropriate PDM store and retrieve descriptors.

App_ZLL_Remote_JN516x.oscf
gdiag

This is the JenOS configuration diagram, which is used to configure certain
application building blocks, such as pre-emptive tasks, software timers,
mutexes and Interrupt Service Routines. For more information, refer to the
JenOS User Guide (JN-UG-3075).

 ZigBee Light Link Solution

30 © NXP Semiconductors 2017 JN-AN-1171 (v1.16) 26-Jun-2017

Common Light Source Files

The following table gives a brief description of the common files used by all the Lighting
devices, and are located in the \Commom_Light\Source folder.

Filename Description

app_buttons.c/h Contains application buttons mask and ISR routines.

app_light_commission_task.c Contains commissioning task and state machine handle for the Lighting devices.

app_start_light.c Start-up module with vAppMain and sleep wake-up callback functions. All the
initialisation for start up and wake up is available in this module.

app_zcl_light_task.c/h ZCL event handler for the node - the endpoint callback function is part of this
module. This also has the note task and functional state machine.

zpr_light_node.c/h Contains ZLL application command send/receive functions. It also handles
initialisation of ZLL states by calling appropriate PDM store and retrieve
descriptors.

App_ZLL_Light_JN516x.oscfg
diag

This is the JenOS configuration diagram, which is used to configure certain
application building blocks, such as pre-emptive tasks, software timers, mutexes
and Interrupt Service Routines. For more information, refer to the JenOS User
Guide (JN-UG-3075).

Device-specific Source Files

The following table gives a brief description of the device-specific source files, located in the
\Controller_<DeviceType>\Source\ or \Light_<DeviceType>\Source\ folder.

Filename Description

App_Controller_<DeviceType>.c/h Controller device-specific module that has the device definition and
registration functions for each device type. It also handles device-specific
initialisation.

App_Light_<DeviceType>.c/h Lighting device-specific module that has the device definition and
registration functions for each device type. It also handles device-specific
initialisation.

ZigBee Light Link Solution

JN-AN-1171 (v1.16) 26-Jun-2017 © NXP Semiconductors 2017 31

Appendix B – Pre-processing Macros Description

Compile-time macros to manipulate ZigBee Cluster Library functionality are defined in the
zcl_options.h file for the respective device. Other than these ZCL-specific macros, the
demonstration application uses the following macros for ease of development and testing.

Macro Description

TEST_RANGE Enables code for testing low and high ranges during development

ZLL_PRIMARY Uses primary channels 11,15, 20 and 25

ZLL_PRIMARY_PLUS3 Uses primary channel set, offset by 3, for use during development.

FIX_CHANNEL Allows the application to use fixed channels, as specified in the channel
mask.

RAND_KEY A random network key is generated when the RAND_KEY macro is
defined as TRUE. A fixed network key of
0XCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC is generated when
the RAND_KEY macro is defined as FALSE. The fixed key is useful during
the development/verification stage.

SHOW_KEY Allows application to print the keys to the debug terminal to aid debugging.

HALT_ON_EXCEPTION Stops execution in the case of an exception. Otherwise, allows the
application to continue after a reset following an exception.

OS_STRICT_CHECKS OS strict check for task handlers.

SLEEP_ENABLE Enables sleep for the Remote Control Unit.

NEVER_DEEP_SLEEP If set to TRUE, the Remote Control Unit will never enter Deep Sleep. It
will, however, sleep with memory held and wake at one second intervals.

CLASSIC_JOIN Allows a classic join by pressing the + button on a Remote Control Unit in

the FN state.

BUTTON_MAP_DR1175 Button mapping for DR1175 (Lighting/Sensor Expansion Board).

Appendix C - Build File Descriptions

Common Build Files

The following table gives a brief description of the build files, located in the
\Common_<Light>or<Controller>\Build folder.

Filename Description

Makefile This common Makefile is used to build the binary for the specific ZLL device
based on input flags (e.g., make REMOTE=Controller_ColorSceneController -f
Makefile)

Device-specific Linker Files

The following table gives a brief description of the device-specific linker files, located in the
\Controller_<DeviceType>\Build\ or \Light_<DeviceType>\Build\ folder.

Filename Description

APP_stack_size_JN5168.ld Linker command file defining the default application stack size. Can adjust
_stack_size for the desired stack size.

Appendix D - Known Issues

ID Severity Description

- - -

 ZigBee Light Link Solution

32 © NXP Semiconductors 2017 JN-AN-1171 (v1.16) 26-Jun-2017

Appendix E - Application Code Size Statistics

The demonstration application of this Application Note has the following memory footprint,
using the JN516x ZLL SDK (JN-SW-4168).

Components Chip Text Size

(In Bytes)

Data Size

(In Bytes)

BSS Size

(In Bytes)

Controller_NonColorController JN5168 121790 1896 20917

Controller_ColorController JN5168 123190 1912 21313

Controller_NonColorSceneController JN5168 122734 1912 21045

Controller_ColorSceneController JN5168 125474 1928 21557

Controller_OnOffSensor JN5168 124142 1928 21349

Light_OnOffLight JN5169 138882 1976 22321

Light_OnOffPlug JN5169 138826 1976 22305

Light_DimmableLight JN5168 138938 2040 22801

 JN5169 139438 2048 22825

Light_DimmablePlug JN5169 139462 2048 22825

Light_ColorLight JN5168 158348 2416 22665

 JN5169 158789 2412 22685

Light_ExtendedColorLight JN5168 159688 2416 23097

 JN5169 160200 2416 23097

Light_ColorTemperatureLight JN5168 151686 2416 22649

 JN5169 152158 2416 22665

ZigBee Light Link Solution

JN-AN-1171 (v1.16) 26-Jun-2017 © NXP Semiconductors 2017 33

Revision History

Version Notes

1.0 First release

1.1 General updates and improvements, new functionality added to the remote control unit

1.2 Note about master key added and application build sizes updated

1.3-1.5 General updates and improvements made. Shift LED issue fixed

1.6 Default interpolation points set to stop bulbs flashing when switched off following first use

1.7 Updated for new SDK and ‘BeyondStudio for NXP’ toolchain, added OTA Upgrade support and
other minor updates/corrections made

1.8 Added support for JN5169 device

1.9 Binaries rebuilt on JN-SW-4168 SDK v1279 for improved radio settings

1.10 Updated with the new features and bug fixes detailed in Section 8.
Binaries rebuilt on JN-SW-4168 SDK v1455.

1.11 Binaries rebuilt on JN-SW-4168 SDK v1461.

1.12 Updated with bug fix detailed in Section 8.

Binaries rebuilt on JN-SW-4168 SDK v1470.

1.13 Updated with bug fixes detailed in Section 8.

1.14 Updated with bug fixes detailed in section 8.

Binaries rebuilt on JN-SW-4168 SDK v1595

1.15 Updated with bug fixes detailed in section 8.

Binaries rebuilt on JN-SW-4168 SDK v1611

1.16 Updated with bug fixes detailed in section 8.

Binaries rebuilt on JN-SW-4168 SDK v1620

 ZigBee Light Link Solution

34 © NXP Semiconductors 2017 JN-AN-1171 (v1.16) 26-Jun-2017

Important Notice

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP
Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of
such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including
- without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products
or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any
other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and
cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and
conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This document
supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life
support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP
Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in
such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP
Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further
testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is
customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s
applications and products planned, as well as for the planned application and use of customer’s third party customer(s).
Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications
and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any
weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s).
Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and the products or of the application or use by
customer’s third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export
might require a prior authorization from competent authorities.

All trademarks are the property of their respective owners.

 NXP Semiconductors

For the contact details of your local NXP office or distributor, refer to:

 www.nxp.com

http://www.nxp.com/

