h

[
Freescale Semiconductor

HCL TECHNOLOGIES |i-Ffe"E_

Multli Service AccessLine Card
Application Note

Preliminary Draft
Rev 1.2

HCLMSP-AN/D

"

Z “freescale"
For More Information On Thi: . semiconductor

Go to: www.freescale.com

© Freescale Semiconductor, Inc., 2004. All rights reserved.

RXZB30
forward100

RXZB30
bottomline

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

Table of Contents

1 MOIFICALION HISTOMYeeiiiiiieee ettt e e anaee s 4
2 L@ YT YT SRS 4
3 Definitions, Acronyms and ADDreViationsSc..eeiiiiiiiiiiii e 6
4 ReEIAtEA DOCUMENTS ...eeiiiiiiiie ettt ettt e e sttt e e s bt e e e s bt et e e anbbe e e e snbaeeeesnbeeeesanbaeaeeans 7
5 FaY o] o] [To=a T] TNV F=T o] o1 o [USSP 8
6 NEtWOrk ProCeSSOr @rChitECIUIEuviiei i iiiiiie e et e e e e s s e e e e e s s srnaaeeeeeeeeaans 9
6.1 DAt@ PANS ... naaee s 11
7 Network proCeSSOr COMPONENTSiieeiiiciriieeeeeesesstreeeeeeeesssantaeereaessssstrreeeeeessasnnrenreeeeesaannnes 16
45 R SO 17
7.2 OAM PrOCESSINGetetieittiieeitieeee ittt e e sttt e e st e et e e aabe et e s aabe e e e s asbe et e s asbe e e e s asbe e e e s ambeeeesnbneeesnnneeas 17
7.3 StatiStiCS MANAGEIMENTcoiiiiiiie ittt e e st e e e s aabre e e s annneees 19
TATDM RX (CP O @Nd CP)ittt ettt et e e st e sttt e e st e e e s snta e e e s nnaaaeesnnnneees 21
AN Y N (O S =T o I O =) SRS 28
7.6 TDM TX (CP 2 @N0 CP B)..eiiiiiiiiieiiiiii ettt ettt sttt st e e s st e e s st e e e s antae e e s snsaaaessnsseeesannnees 32
7.7 TDM ReCIirCulation (CP3).. ..ottt sttt nnne s 35
AR T oV (1 = 4 T PR R 39
FA IS 1T e [T = LaTo T I (O <) SRS 45
A O == TToT=T 0] o Y (@ e) T SRS 50
7.11 IP QOS CIasSifier (CP L10)cciiiiiiiiiiee e e e iiititee e e e e e s e st e e e e e e s s ssae e e e e e e e s snnaaareaaaessesnnsenneeeaes 56
7.12 FR processing — SWItChiNG (CPLL)ccoiiiuiiiiieie et e e e e e e e sraae e e e e e s e nnnraaneaeee s 63
T L3 MPLS (CPL2)iiiiiiiiiie ittt ettt ettt e e st e e e ssba et e e astae e e e assaeeesassaeeesnssaeeesnsbeeesnnneeas 67
A Y I o = o (@ = e) SRRSO 74
A R Y A I I (O I OSSR 82
T.16 AAL-1 RX (CP 15) weiiiiiiiiiieiiiiee e ettt e e sttt e sttt e e sttt e e s sstt e e e s ssta e e e s nssaeeesnstaeeesssaeeesssaeeesntaeens 85
A A o= o] o = o PRSP 86
7.18 Table LOOKUP UNiL.... ... ittt e ettt e e e e e et e e e e e e e e s nnbeeeeaaeans 88
7.19 Buffer Management UNit...........cuuiiiiiee oot e e e tee e e e e e s e s e e e e e e e s e nnnnrnaeeaeeeas 95
7.20 Queue ManagemeNnt UNItccuuiiiiie e e e et e e e e s s s e e e e e e s ennrreeeaaeenan 96
7.21 Q-3 configurations for CPS, XP and FP.........cccoiiiiiiiiiiee st ee e s snene e e e 97
72 N I\ 1Y SRR 99
8 HOST PROCESSOR ARCHITECTUREociiiiiiiiiiiie et 103
9 HOST PACKET IO uiiiiiitiiee ettt sttt st e e sttt e e st e e s nnbae e e e nneee 104
0.0 RS OUICES. ..tttettttteteteeeeeeeeeeeee et ettt ee e et e ittt e e e et e e e et s e et et e e e e e e et e e e et e e ket e e e e e e ek e e eeeeeeeeeeeeeeeeeeeeeeeeeaeaeees 104
9.2 PACKEt RECEPIION. ...ttt ettt e e e et e e e e e e e st e e e e e e e e e e ababreeaaaeaaas 104
9.3 PaCKet TIraNSIMISSIONuiiiiiiiiiiiiii ettt e e e et e e e e e e e e bbb e e e e e e s e aanbaeeeaaeeas 105
10 CONSOLE COMMAND SHELL COMMANDScccctitiiiiiiie e iiiee e sie e sire e siae e snree e 105
10.1 APPLICALION CONIIOL.....eiiiiiiieiiiiei ettt e e e e e e e e e e e sanb e b e e e e e e e s snnbnreeeeens 105
10.2 Table Maintenance and DISPIAYooccuuuiiiiiiiiii e 106
10.3 Link Configuration and STAUSccoceiuriiiieeer i e e e s s s e e e e s s s ssrreer e e e e e s s nnnrnneeeeee s 106
10.4 Channel configuration and STatUSc.c.uveiiiieiiiiiiii e 107
10.5 IMA Configuration @nd SEALUS........ccceeiiiiiiiiiiiee e s e e e e e s s e e e e e s s snnnreereeeees 107
10.6 PPP Configuration and STAtUSccuiiiiriiiiiee e iiiiiieer e e e e s siieee e e e e s s snasieeee e ee e e snnnnnnneeeeeee s 107
10.7 FR Configuration @nd STATUScooiiiiiieiiiiii et e e 107
L10.8 SEALISTICS -..vveeeeeeeeiietttee e e e e ettt e e e e e e ettt e e e s e o et e ee e e e e e e s e e bbbe e e e e e e e e aaabbbe e e e e e e e e anbabebereeaaens 108
11 HOST PROCESSOR TO NETWORK PROCESSOR INTERFACEccccceoviiive e 108
I8 0N PP 108
I 7 o OSSPSR 109
I O e PP 110
I O 1 RSP 110
0000 T I 111
12 IMPLEMENTATION DETAILLSottt e et s e e e e e e e et e s e e e e e e aantaa s 111
0t 1V o 111

Page 2 /146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

12.2 SOt QUEBUESccciieieeeeeee ettt ettt ettt et et et et et et et e e et et et e e e e e e e e e aeaeaaaaeeees 111
13 HOST API REFERENCE......cco ittt 114
T 1= 1o [] PSPPSR PR PTRP 114
13.2 Link, Channel, and IMA AP et e e e 128
LB PPP AP et s 131
L34 ATIM AP ettt et e et e e bt e et e e e nnnee s 135
L35 FR AP ettt e e e s 135
R N ST o] o1 o Y PR PE 136
L3.7 NP PO AP ettt ettt e e s bt e e s b et e e st e e sbb et e e snnee s 138
L3.8 1O AP ettt 140
13.9 SEGMENTATION ...ttt ittt ettt et e s s et e s asnn e e e s e e e s nnnneee s 141
13.10 REASSEMBLY ..ottt 141
L3 LT IMPLS ettt 142
13.12 TDM RECIRCULATION ...ooiiiiiiiiee ittt e e e e ee e s nnneee e 143
1313 FR SWITCHINGoviiiiiiiieie ettt ettt e e e e e e 143
14 Appendix C — Optimizations done in the appliCationcccoovveeiiiiiie e 145
Page 3/146

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

1 Modification History

Rev Date Author Department Changes

1.0 | 06-Feb-03 | HCL Technologies | Networking Draft version.

1.1 | 14-Feb-03 | HCL Technologies | Networking Additional information is
added on Q-3,
Performance
calculations,

IMEM/DMEM estimates,
ATM TM, IP QoS, Host

APIs
1.2 | 14-Mar-03 | J.Bednarek Motorola, Changes for draft for
C-Port SNDF CD

2 Overview

This document describers the design of a Multi Service Access (MSA) line card. The
intended audiences of this document are system architects, hardware designers,
software designers, testers and programmers of the line card based on the C-Port
network processor family.

The reader of this document is expected to have a fair understanding of the C-3e NP
architecture and the associated co-processor such as Q-3 (Traffic Management Co-
processor) with the basic understanding of C-Port Family of TDM Adapters (or Twister)
(Mt-21) used in the design of the MSA line card.

MSA line card application provides multiple services on different ports. It can be
connected to two Twister Mt-21 chips. The twister Mt-21 chip can have 32 T1/El
interfaces supporting upto 1K channels.(note, Mt-21 can support even higher channels,
ie 2048, but in this example, we are assuming 1000 channels).

Feature Overview and Standards Support
This application supports the following features:

64 T1/E1 interfaces supporting 2K channels

PPP / FR header processing and reassembly
MLPPP segmentation and reassembly

AAL1/5 segmentation and reassembly

ATM Cell switching

FR switching

IPv4 Unicast Routing on all interfaces (PPP/ATM/FR)
Multi-Protocol Label Switching (MPLS) on all interfaces
Ingress / Egress packet processing for MPLS

IP IntServ and DiffServ

ATM Traffic Management 4.1

MPLS QoS

IMA

Page 4/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

MSA line card is intended to work in a stack of MSA cards connected on the switching
fabric for communication with the other MSA cards as well as line cards that terminate
ATMs. The host module manages and maintains the statistics for the entire system. The
communication of the host with the line cards is through the PCI interface. Figure 1 helps
in understanding the intended use of the MSA line card.

T1/E1l
interfaces

MSA Line
card

Figure 1: MSA card within the access platform

Page 5/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

MSA Application Note

HCL TECHNOLOGIES

g o

3 Definitions, Acronyms and Abbreviations

Abbreviation

Description

AAL ATM Adaptation Layer

AAL-1 ATM Adaptation Layer 1

ABR Available Bit Rate

AF Assured Forwarding

ARP Address Resolution Protocol
ATM Asynchronous Transfer Mode
ATMTM ATM Traffic Management

BE Best effort

BOM Beginning of Message.

CBR Constant Bit Rate

CID Channel ID

CIDR Classless Inter Domain Routing
CPI Common Part Indicator.

CPRC Channel Processor RISC core.
CRC Cyclic Redundancy Check.
DLCI Data Link Connection Identifier
DWRR Dynamic Weighted Round Robin
EF Expedited Forwarding

EOM End of Message.

FEC Forwarding Equivalence class
FR Frame Relay

HDLC High Level Data Link Control
HEC Header Error Control.

HTK Hash Trie Key.

ICMP Internet Control Message Protocol
ICP IMA Control Protocol.

IP Internet Protocol

LCP Link Control Protocol

LLC Logical Link Control

LMI Local Management Interface
LPM Longest Prefix Match.

LSP Label switched path

MIB Management Information Block
ML/PPP Multi-Link PPP

MPLS Multi-Protocol Label Switching
MTU Maximum transmission Unit
NCP Network Control Protocol
NLPID Network Layer Protocol 1D
OAM Operation, Administration and Maintenance.
PDU Protocol Data Unit.

PHB Per Hop Behavior

PPP Point to Point Protocol

QoS Quality Of Service

For More Information On This Product,

Go to: www.freescale.com

Page 6/ 146

Freescale Semiconductor, Inc.

HCL TECHNOLOGIES | E

MSA Application Note

| RARP | Reverse Address Resolution Protocol |
Abbreviation Description
RED Random Early Discard
RM Resource Management.
RR Round Robin
SDhuU Service Data Unit.
SNAP Subnetwork Access Protocol.
TCP Transport Control Protocol
TDM Time Division Multiplexing
TLU Table Lookup Unit.
TMC Traffic Management Co-Processor
TOS Type of Service
TTL Time To Live
Uul User-to-User Interface.
VC ATM Virtual Connection
VOP Virtual Output Port
VP ATM Virtual Path
VPCI Virtual Path Identifier/Virtual Channel Identifier
WFQ Weighted Fair queueing

4 Related Documents

This section lists down the various documents used as reference while developing this
application notes.

MSA Line card software requirement specifications from C-Port.

Guide to C-Ware WNI Applications, CST2.2

ATM Cell Switch Application Guide, CST 2.1.1

RFC 791, Internet Protocol

RFC 1332, The PPP Internet Protocol Control Protocol (IPCP)

RFC 1471, The Definitions of Managed Obijects for the Link Control Protocol of the
Point-to-Point Protocol

RFC 1473, The Definitions of Managed Obijects for the IP Network Control Protocol
of the Point-to-Point Protocol

RFC 1661, The Point to Point Protocol (PPP)

RFC 1812, Requirements for IP Version 4 Routers

RFC 1990, The PPP Multilink Protocol (MP)

RFC 2427, Multiprotocol Interconnect over Frame Relay

RFC 2474, Definition of the Differentiated Services Field (DS Field) in the IPv4
RFC 2475, An Architecture for Differentiated Services

RFC 2597, Assured Forwarding PHB Group

Page 7 /146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

RFC 2598, An Expedited Forwarding PHB

RFC 2702, Requirements for Traffic Engineering Over MPLS

RFC 2684, Multi Protocol Encapsulation over ATM Adaptation Layer 5

RFC 2697, A Single Rate Three Color Marker

ITU 1.361, B-ISDN ATM Layer Specification

ITU 1.363.1, B-ISDN ATM Adaptation Layer Specification: Type 1 AAL

ITU 1.363.5, B-ISDN ATM Adaptation Layer Specification: Type 5 AAL

ITU 1.610 B-ISDN Operation and Maintenance Principles and Functions

ATM Forum, Inverse Multiplexing for ATM (IMA) Specification Version 1.1

Frame Relay to ATM to 10/100 Ethernet Switch Router Application Guide, CST2.1
C-ware Q-5 TMC API User guide Rev 00

DiffDocQ-512003.doc - Functionality Comparison Between “Old” Q-5 TMC Design
and Projected Q-5 TMC FPGA

RFC3034 —Use of Label Switching on Frame Relay Networks specification

RFC 2702 — Requirements for traffic engineering over MPLS

RFC3270 — Multi-protocol label switching support of differentiated services

RFC 3031 — Multi-protocol label switching architecture

RFC 3032 — MPLS label stack encoding

Draft-ietf-mpls-ttl-04.txt - Time to Live Processing in MPLS networks.

RFC 3035 — MPLS using LDP and ATM VC switching

5 Application Mapping

This application is comprised of many software components, each of which is divided
into smaller components. The functional partitioning of the software is depicted in figure
2 with the clustering and re-circulation information. The partitioning is designed to handle
1024 channels per cluster. C-3e NP is chosen for implementing the MSA line card as the
processing power of the NP and the T1/E1 line interfaces match and also Q-3 is used for
managing the traffic management for IP, ATM and MPLS.

Page 8/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

32 TUEL CP Cluster 0 CP Cluster 2
<> Y TDM Rx ATMSEG [P
< > Twister
MEol IMA ATMRAS B
<——> «£ TDM Tx IP Classifier
PPP ReCirc [FR)
C-3e
32 T1/E1l CP Cluster 1 CP Cluster 3
< > TDM Rx MPLS ?
ad
< > Twister
M2l | IMA MLPPP [
Y
<> TDM Tx AALITX [D
P) AALLRx [
Q-3 TMC
QMU L ATM TM
QUe.UeS for } MPLS T™M
UL-2 traffic mgmt
M-2
(if required) 4 J\ FP XP Host
\ —/ Initialization & > PPP. State Machine
Host Statistics
it Mgmt Access
Communication 9
2> Byte Level Recirculation

Figure 2: MSA line card functional mapping on C-3e NP

6 Network processor architecture

The MSA application consists of many software components. One component executes
on the host and the other components execute on the various CPs within the C-3e. Each
of the NP software components provides a subset of the features of the application.
Mapping between software components and CPs was shown in the figure 2. The data
paths between these components can be conceptualized as a group of busses. In this
context, a bus is the combined use of queues and buffer memory to forward data
between two components. The queue number is analogous to the address on the bus.
Each of the buses implies a different buffer and descriptor format (for TDM, IP, MPLS,
and so on). The traffic originating from TDM channels will be HDLC or ATM or
Transparent Chunk based on the channel configuration. HDLC traffic will further be
identified as FR traffic or PPP traffic.

A buffer and a buffer descriptor can specify the interface to a component. Table below
lists each of the components and describes their interface. A component may have

Page 9/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

MSA Application Note

HCL TECHNOLOGIES | E

multiple interfaces and therefore multiple entries in the table. Unless specified otherwise
in the table, the port field indicates the output port and the length field indicates the
number of bytes in the buffer. The various buffer formats are described in section 7.19
and the buffer descriptor formats are described in appropriate sections.

Component Buffer Format Descriptor Comments
format
TDM RXx BT_ATM, ATM Only header field required
BT_MPLS_FR,
BT_MPLS_PPP,
BT _MPLS ATM
BT_MPLS MPLS
BT _HDLC N/A
BT_TDM_TRANSPARENT Transparent
Chunk
TDM Tx BT _ATM ATM Only header field required
BT _HDLC N/A

IMA Tx BT _ATM ATM Port indicates outport which
maps to IMA group; only
header field required

IMA RXx BT_IMA_CP, OAM Port indicates input port

BT IMA FILLER
BT ATM ATM Port indicates input port
ML PPP BT_HDLC, ML-PPP Port indicates input port;
BT_PPP, reassembly will be
BT _MLPPP performed
BT_IPV4, TDM Only mcClass field required,;
BT_CONTEXT_STATE, segmentation will be
BT NCP_xxx performed
IP BT_IPV4 N/A Port indicates input port; IP
forwarding will be performed
BT_HDLC, BT_PPP N/A Port indicates input port;
PPP encapsulation will be
removed and IP forwarding
performed
FR BT_MPLS_FR, MPLS
BT_MPLS_PPP,
BT MPLS ATM
BT_FR FR

MPLS BT_MPLS_PPP, MPLS Buffer type identifies the
BT_MPLS FR, egress port interface type.
BT_MPLS_IPV4,
BT_MPLS ATM

Segmentation BT _IPV4 Seg EgressQueue field is
required.

Reassembly BT _ATM ATM Port indicates input port;
AAL-5 reassembly will be
performed

IP QoS BT_IPV4 TDM

AAL-1 Rx BT_TDM_TRANSPRENT TDM

BT _ATM ATM

Page 10/ 146

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

HCL TECHNOLOGIES | E

MSA Application Note

AAL-1 Tx BT_TDM_TRANSPRENT TDM
BT _ATM ATM
UL-2 BT _ATM ATM
Host BT_ATM ATM Port indicates the input port;
only header field required
All others N/A Port indicates the input port

6.1 Data Paths

This section explains about various data paths originating from T1/E1 interfaces, flowing
through other components in the NP and going out through T1/El interfaces. Two
Twisters (Mt-21) are supported in this application.

6.1.1 Data Paths for FR frames

This section describes the conceptualized data flows for FR frame received in TDM RX.
The FR chunks will be reassembled as FR frame in TDM RX, recirculated in other
component CPs and finally transmitted as FR / PPP / AAL5 chunks via TDM Tx. The
detailed flow shown in figure 3 is described as follows.

FR frame is received as HDLC chunks in TDM RX, gets reassembled and
identified as FR frame based on the channel configuration. Then it will be
enqueued to FR queue for further FR processing.

FR component performs the DLCI lookup. Based on lookup response, it will
engueue the frame into IP queue or MPLS queue. For FR switching, it will modify
the FR header (with new DLCI value) and enqueue into appropriate TDM Tx
queue.

IP component dequeues the FR frame from its queue, removes the FR header
and enqueues the IP packet into destination queue (TDM recirculation queue or
ATM Segmentation queue or MPLS queue or IP QoS queue determined by IP
lookup and port lookup result.

MPLS removes the FR header (if it exists) from the frame, performs the label
processing and then enqueues the packet to destination queue (TDM
recirculation queue or ATM Segmentation queue or IP queue or Q-3 traffic queue
determined by MPLS lookup result.

ATM segmentation component will segment the IP packet into AALS cells, inserts
the ATM header and enqueues these cells to appropriate TDM Tx queue or to Q-
3 traffic queue.

TDM recirculation component encapsulates the packet into FR or PPP frame,
engueues it to TDM Tx for final transmission over TDM channel.

TDM Tx dequeues the HDLC frame(FR frame or PPP frame, No differentiation is
made between PPP and FR frame) or ATM cells from its queue. It transmits TDM
chunks of size 64 bytes. For ATM, each cell will fit into a TDM chunk. For FR or
PPP, it segments the frame into TDM chunks.

If QoS treatment is needed, packets will be enqueued to Q-3 traffic queue from
IP QoS classifier or ATM Segmentation or MPLS components for applying
various QoS parameters. Q-3 TMC provides marking/dropping, policing and
traffic shaping for the packet based on configured traffic parameters. Q-3 TMC

Page 11/ 146
For More Information On This Product,
Go to: www.freescale.com

g |

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

will enqueue the conformant packets into QMU queue. Non-conformant packets
will either be discarded or marked.

. | SECEH)

E |:J
2

IF (S Chsfier
(CEL0)

—— menn

" NELS (€E12)

(LE13)

AATI(CT4)

151411 s

Figure 3. Data paths for FR frames

Page 12/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

HCL TECHNOLOGIES | E

MSA Application Note

6.1.2 Data Paths for PPP frames
This section describes the data flow for PPP frames received in TDM RX. The PPP
chunks will be reassembled as PPP frame in TDM RX, recirculated in other component
CPs and finally transmitted as FR / PPP / AAL5 chunks via TDM Tx. The detailed flow
shown in figure 4 is described as follows.

PPP frame is received as HDLC chunks in TDM RX, gets reassembled and
identified as PPP frame based on the channel configuration. Then it will be
enqueued to IP queue or MLPPP queue or MPLS queue component based on
PPP protocol field in frame.

IP component dequeues the PPP frame from its queue, removes the PPP header
and enqueues the IP packet into destination queue (TDM recirc queue or ATM
Segmentation queue or MPLS queue or IP QoS queue determined by IP lookup
and port lookup result.

MPLS removes the PPP header (if it exists) from frame, performs the label
processing and then enqueues the packet to destination queue (TDM recirc
gueue or ATM Segmentation queue or IP queue or Q-3 traffic queue (if QoS is
needed)) determined by MPLS lookup result.

MLPPP component dequeues from its queue, removes MLPPP encapsulation
from the frame, and reassembles MLPPP fragments and enqueues the
reassembled fragment to IP queue.

ATM segmentation component will segment the IP packet into AALS5 cells, inserts
the ATM header and enqueues these cells to appropriate TDM Tx queue or to Q-
3 traffic queue.

TDM recirculation component encapsulates the packet into FR or PPP frame,
engueues it to TDM Tx for final transmission over TDM channel.

TDM Tx dequeues the FR frame or PPP frame or AAL5 cells from its queue. It
transmits TDM chunks of size 64 bytes. For ATM, each cell will fit into a TDM
chunk. For FR or PPP, it segments the frame into TDM chunks.

If QoS treatment is needed, packets will be enqueued to Q-3 traffic queue from IP QoS
classifier or ATM Segmentation or MPLS components for applying various QoS
parameters. Q-3 TMC provides marking/dropping, policing and traffic shaping for the
packet based on configured traffic parameters. Q-3 TMC will en-queue the conformant
packets into QMU queue. Non-conformant packets will either be discarded or marked.

Page 13/ 146
For More Information On This Product,
Go to: www.freescale.com

h o
g |

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

SEC{LE)

Eu
=

=

=
=
=

» TR{CHD)

NELS (CTL)

R {CH3)

—

JEI]E

CTH)

AATI (CHE)

Figure 4. Data paths for PPP frames

Page 14/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

HCL TECHNOLOGIES | E

MSA Application Note

6.1.3 Flows for ATM cells

This section describes the data flow for ATM cells received in TDM RX. The ATM cells
will be recirculated in other component CPs and finally transmitted as FR / PPP / AALS
chunks via TDM Tx. The detailed flow shown in figure 5 is described as follows.

ATM cells are received as chunks in TDM RX. These will be enqueued to TDM
Tx queue (ATM switching) or FP queue.

AAL5 cells are enqueued into reassembly queue by TDM RX that performs the
VC table lookup to send the new VPI/VCI values into the reassembly queue.
ATM reassembly component will de-queue and reassembles the cells into AAL5
PDU. It will then be enqueued into IP queue or MPLS queue,

IP component dequeues the reassembled AAL5 PDU from its queue, enqueues it
into destination queue (TDM recirc queue or ATM Segmentation queue or MPLS
gueue or IP QoS queue (if QoS is needed)) determined by IP lookup and port
lookup result.

MPLS performs the label processing and then enqueues the packet to
destination queue (TDM recirc queue or ATM Segmentation queue or IP queue
or Q-3 traffic queue (if QoS is needed)) determined by MPLS result entry.

ATM segmentation component will segment the IP packet into AAL5 cells,
modifies the AALS5 header (with new VPI/VCI) and enqueues these cells to TDM
Tx queue or to Q-3 traffic queue (if QoS is needed).

TDM recirc component encapsulates the packet into FR or PPP frame, enqueues
it to TDM Tx for final transmission over TDM channel.

TDM Tx dequeues the FR frame or PPP frame or AAL5 cells from its queue. It
transmits TDM chunks of 64 bytes. For ATM, each cell will fit into a TDM chunk.
For FR or PPP, it segments the frame into TDM chunks.

If QoS is needed, packets will be enqueued to Q-3 traffic queue from IP QoS
classifier or ATM Segmentation or MPLS components for applying various QoS
parameters. Q-3 TMC provides marking/dropping, policing and traffic shaping for
the packet based on configured traffic parameters. Q-3 TMC will en-queue the
conformant packets into QMU queue. Non-conformant packets will either be
discarded or marked.

Page 15/ 146
For More Information On This Product,
Go to: www.freescale.com

g |

Freescale Semiconductor, Inc.

MSA Application Note

HCL TECHNOLOGIES

g o

R Recno MELS

SEG (LES)

TF S

(hssifier CHO)

TR(CHLD)

AL

NIELS (CH2)

[
/ | |||m TN‘-
| Rx
anm L)
- P‘Lﬂﬁ
- d-qlﬂﬁ TA (CH)
FERVERS (LT @
gme | 0
U e
Twister | TN
! Redn
i (H
| i =
A | w
31U Pﬂfﬁ (K
4%
— g] =
CH) |FEP
AT 4ft) o
el
Twister |
! (L I
|

7 Network processor components

This section describes each of the features of the applications in detail and explains how
each component or resource within the NP is used to provide the applications’ features.
The Executive Processor RISC Core (XPRC) is a general-purpose processor that

(L113)

E

U
E

Figure 5. Data paths for ATM Cells

Ll &3
L2
FF Adzpter
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
|
I 03

...

provides management, control, and exception processing functions. The XP controls NP
boot up, configuration, and initialization of all system components.

For More Information On This Product,

Go to: www.freescale.com

Page 16/ 146

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

The Channel Processors (CPs) are the components most closely associated with
processing data from a physical interface. There are 16 CPs organized as four clusters,
each of which contains four CPs. Each cluster performs several functions that aid in the
processing of data packets.

7.1 XP

The XP program is partitioned into distinct ‘initialization’ and ‘main’ executables. After
loading and running the initialization executable, the main executable is loaded and
overlayed on the initialization executable, reducing the IMEM used at run-time. This
partitioning scheme uses the available IMEM resource to its fullest.

7.1.1 Initialization Program

The initialization executable performs service initialization, configures system resources,
and loads the CPs. In particular, the initialization executable does the following:
Allocates buffer pools.

Allocates and configures queues.

Configures the fabric port.

Configures the PHY interfaces.

Loads the CPs.

Defers to the main XP executable program.

Arrays of parameter values are used to initialize the buffer pools and queues. The arrays
are made up of macros defined in the top-level configuration file (config.h).

7.1.2 Main Program

The main executable completes any necessary initialization and starts the CPs before
entering the main loop. In particular, the main executable does the following:

e Prints the application banner including version number

e Restores the offline table data. Offline table data is used to initialize the TLU
tables without host intervention for simulation purposes.

Initializes the CRC correction table

Starts the CPs and enables the fabric port.

Starts some of the SDPs

Initializes the OAM processing component.

Initializes the host communication component

Enters the main loop

The main loop within the XP performs processing for OAM handling described in section
“OAM processing” and host communication for updating statistics.

7.2 OAM Processing

OAM cells received by the TDM CPs are forwarded to the XP for processing. OAM
support in the application includes the following:
e Forward Performance Monitoring — Receive Monitoring

Page 17/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

o Blocks of user cells on a limited number of VCCs (128) are monitored for
errors per flow. A BIP-16 is generated for all the cell payloads for each
block where the block size is configurable. The block size is defaulted to
128 cells.

o The receiver checks the parity on the received block data and compares
its results with the received BIP-16. The number of errors is determined
and written to a statistics counter for the indicated VC.

OAM processing uses the ATM VC table as described in section 7.18.4.

7.2.1 SDP

The TDM CPs support OAM performance monitoring. The SDP processors on the CPs
do the following:

7.2.1.1 RxSync

The RxSync processor performs the following OAM functions:
o Determines the CRC-10 for each cell received (regardless of whether the cell is
OAM or not) and forwards a pass-fail notification to the RxByte processor.

RxSync is not configurable through its control space.

7.2.1.2 RxByte

The RxByte processor performs the following OAM functions:

e Determines whether an F4/F5 OAM cell has been received and indicates this in
extract space.

o Writes cell payload overhead to extract space.
Forwards CRC-10 pass/fail indication to the RC through extract space.

e Determines the BIP-16 value on each cell received and writes this value to
extract space.

e Determines whether a user cell has been received and writes this information to
extract space.

7.2.2 RC
The RC performs higher level processing of data packets to support OAM —FPM.

7221 Initialization
During initialization, the 128 entry OAM PM table is initialized.

7.2.2.2 Receive

The receive thread handles incoming data packets and performs OAM specific
operations. Specifically, it does the following:

Page 18/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

o Checks whether a received cell is on a VC where OAM FPM is being performed.
This information is stored in the ATM VC table (the oamPm field). If this cell is a
user cell, it does the following:

o XORs the current value of the BIP-16 into OAM FPM table running total
for all user cells.

o Increments and masks the CurrentBlockValue (ranges from 0 to
BlockSize-1).

e |If the received cell is not a user cell, then the code checks whether an OAM cell
has been received. If OAM but not of the type OAM FPM cell, the cell is
forwarded to the XP. Otherwise, it does the following:

o Compares the CurrentBipl6 value with the value received in the OAM
FPM Cell. If these values are XOR-ed, the number of bits set indicates
the number of errors. The number of bits set is determined through a
lookup into a 16-byte table (where each byte in the table indicates the
number of bits set for the index) for each nibble (camPmErrTab). The
information is used to update TotalBip16Errs counter.

7.2.3 Data Structures

7.2.3.1 OamPmTable

This OAM processor maintains OAM performance monitoring state information in the
following data structure:

Bytes 0 | 1 2 | 3
0 TotalBip16Errs CurrentBlockValue
4 CurrentBipl6 blockSize
8 SeqnumExpect | Pad

totalBip16Errs — count of BIP-16 errors calculated so far
currentBlockValue — the number of the cell in the current block
currentBip16 — the value of the BIP-16 calculated so far
blockSize — the block size (in cells)

seqNumExpect — the expected sequence number to be received
pad — unused

7.3 Statistics Managem ent

XPRC maintains all the statistics for the MSA applications. Periodically, XP updates host
with the statistics to be available to the end user. It passes the statistics storage pointer
to the CP’s at initialization. CPs update the statistics maintained in XPs at run time. As
XPRC has only 16kB of DMEM shared across CPs, the time for XP to update the host
should depend on the amount of storage, which is needed to store the statistics.

To synchronize between CPs updating XP DMEM and XP updating host, following
implementation is used:

Page 19/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

XP maintains two banks of 8KB each in its FAR DATA section (data section
which is accessible to CPs). XP keeps shuffling the pointer between these two data
banks periodically, so that at the time of updating the host, CPs should access and
update the other bank of 8KB.

A list of TDM statistics to be maintained on a per channel basis is as follows:
e chRxChunks — Number of received chunks

chRxPdus — Number of received PDUs

chRxBytes — Number of received bytes

chRxLenErrs — Number of chunks having invalid length (e.g. short chunk, long

chunk)

chRxCrcErrs — Number of chunks having invalid CRC

chRxBip8Errs — Number of chunks having BIP8 errors

chRxInvalidErrs — Number of chunks having other errors

chRxFlowChunks — Number of Flow chunks

chRxLookupErrs — Number of chunks that caused lookup failure

chTxChunks — Number of transmitted chunks

chTxPdus — Number of transmitted PDUs

chTxBytes — Number of transmitted bytes

List of IP statistics:

¢ IpInReceives - Total number packets received in IP module

e IpInHdrErrors - The number of input datagrams discarded due to errors in their IP
headers.

e IpForwDatagrams - Number of input datagrams forwarded

o IpOutPayloadErrors - Number of packets discarded due to payload errors
IpOutlinvalidPortErrors - Number of packets discarded because its route entry
mapped to an invalid egress port.

e IpOutNoRoutes - Number of IP datagrams discarded because no route could be
found to transmit them to their destination

The following statistics to be provided on a per VC basis (a maximum of 2048)
e AAL5 CRC Errors
e Over Sized PDUs
e AALS5InReceives

Within the 8 KB of DMEM, the following calculation of time and number of bits to be used
to hold values, is implemented:

Generally, if we assign 2 bits to store value for each statistic parameter, a total of 8Kb is
not sufficient to hold all the parameters. So some of the parameters may have to be
removed from this list of statistics (or) the statistics have to be provided using table
support. If AAL5S statistics parameters are removed, a total of 8KB is sufficient to hold all
the parameters.

Calculating time for updating the host: -

Per channel, 128 chunks to be received in one second i.e., 8K of bytes per second. If 2
bits are used for chRxChunks, then we will have to update host after every 4 chunk.
That works out to be around 30 milliseconds.

Page 20/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

7.4 TDM RX (CP 0 and CP 4)

CPO and CP4 implement the TDM Rx components for the MSA application. The Channel
Processors are directly connected to Twister Mt-21 from outside world. The number of
channels to be supported is 2048 (1024 by each TDM Rx component). The channel may
carry ATM/FR/PPP traffic. Chunk size support in this application is 64-bytes.

7.4.1 RxSDP

The SDP receives data from Twister Mt-21 to the RC in the receive direction and from
the RC to the Twister Mt-21 in the transmit direction. The chunks that will originate from
Twister Mt-21 will be either ATM or HDLC chunks. During the initialization phase itself
the TDM interfaces will be configured as PPP or FR. Since it is not possible to
differentiate the HDLC frames as PPP or FR in the TDM RxByte, The TDM Rx CPRC
will differentiate the PPP and FR chunks based on the channel ID information filled on
the extract space. The channel ID will be stored in extract space by the RxByte
processor. The channel configuration is stored in DMEM, which is used for identifying
the protocol running on that channel. The functions provided by each of its component
processors are described below.

7.4.11 RxByte

The RxByte processor performs the following:
e Checks for recirculation mode.
e If it is in Non-recirculation mode, it receives the bytes from the RxSync
processor. It also writes the previously dropped chunks counter in extract space.
¢ Initializes the SOP and DroppedChunks registers to 0.
e Reads chunk type, channel Id and channel type into extract space.
Reads UserValid, HDLC chunk length, HDLC Userind (SOP/non-SOP) into
extract space for User chunks. (Chunk type will determine whether it is the user
chunk or flow chunk).
Reads the HDLC crcInd into extract space.
e For flow chunk,
o Verifies flow control chunk valid bit
o Writes flow control chunk count to extract space.
o Indicates processing complete to the CPRC.
e For user chunk, check the channel type and determine whether it is HDLC chunk
or ATM chunk.

HDLC chunks
e For HDLC chunks, check whether the chunk is SOP or non-SOP.
e For SOP chunk,

o Write the first ten bytes after the TDM chunk header into the extract
space. The reason for writing the ten bytes into extract space is both FR
and PPP need ten bytes and eight bytes respectively to specify the
header information (if the packet is a MPLS packet).

o Set L1 done so that RXCPRC can start processing based on extract
space values.

Page 21/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

o Send remaining bytes of payload of the chunk to DMEM.
e For non-SOP TDM chunk, it sets L1 done for RXxCPRC and sends remaining
bytes of payload of the chunk to DMEM.
e When data9 is received, it writes the chunk status code to extract space and
switches scope.

ATM chunks
e For ATM chunks, it launches lookup into ATM VPI/VCI table for user cells.
Identifies and reports OAM/RM cells. Writes the cell header to extract space also.
e Writes the ATM cell payload to extract space also.
e Sets L1 done for RxCPRC and sends remaining bytes of cell payload of the
chunk to DMEM.
o When data9 is received, it writes the chunk status code to extract space and
switches scope.
Transparent chunks
e For transparent chunks, it writes the channel id (port) to extract space.
e Set L1 done so that RXCPRC can start processing based on extract space
values.
e Sends remaining bytes of payload of the chunk to DMEM.
o When data9 is received, it writes the chunk status code to extract space and
switches scope.

7.4.2 RC (CPO and CP4)

The TDM Rx RC performs higher level processing of chunks. The functions provided by
each of its components are described below:

7.4.2.1 Initialization

The TDM Rx component initializes the data structures and registers used by RC.
Specifically, it does the following:
o Initializes statistics and chunk reassembly control structures
o Initializes RxSDP control space, Rx DMA control blocks and ring bus Tx registers
for ATM VPI/VCI table lookups.

7.4.2.2 Chunk Processing

The Rx RC handles incoming ATM cells or HDLC frames or Transparent chunks.
Specifically, it does the following:

HDLC Rx:
e Waits for L1 done so that SDP has completed the header processing and put the
necessary information into extract space.
o Make the pointer (chRxCCBPtr) to TDM Rx Control block in DMEM. chRxCCBPtr
will depict the TDM chunks reassembly information in DMEM.
e Processes chunk based on chunk type (flow control or user) in extract space
after checking for errors.

Page 22/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

e For User chunk, differentiate the HDLC frame as PPP or FR chunks based on
the Channel ID filled in the extract space and the channel configuration
information.

FR processing
e For SOM chunk,
o Allocate new buffer for reassembling the FR chunks
o Destination queue will be the FR processing queue.
o Getthe FR header information by properly interpreting the extract space.
o Write the FR header into TDM Rx channel control block (chRxCCBPtr).

o Initiate the payload transfer from DMEM to SDRAM if no error is indicated in
chunk. Update the buffer offset in TDM Rx channel control block (chRxCCBPtr)
by incrementing it with chunk length.

e For non-SOM chunks, retrieve reassembly state information (buffer handle and
buffer offset) from TDM Rx channel control block (chRxCCBPtr) and initiate the
payload transfer from DMEM to SDRAM if no error is indicated in chunk. Also,
update the buffer offset in TDM Rx channel control block (chRxCCBPtr).

e For EOM chunk, build the descriptor with buffer handle, buffer length and FR
header (DLCI value). En-queue it to the FR processing queue.

PPP processing
e For SOM chunk,
o Read the 4-byte PPP header from extract space and check for the PPP
protocol length. The PPP protocol may be of 1-byte or 2- byte. If the least
significant bit of first protocol byte is cleared, then the protocol will be of 2
bytes.
o Set the buffer type for PPP as following based on protocol field value:
= For value 0x0021, bufferType will be BT _IPV4
= For value 0x0821, bufferType will be BT_MPLS
= For value 0x003d, bufferType will be BT _MLPPP
o Read the 4-bytes MLheader from extract space for MLPPP.
o Allocate new buffer and determine destination queue based on buffer
type. The destination queues will be IP_QUEUE, MPLS_QUEUE and
MLPPP_QUEUE

o Write bufferHandle, destination queue and MLheader into TDM Rx control
block (ChRxCCBPtr). Buffer offset will be O for SOM.

e Initiate the payload transfer from DMEM to SDRAM if no error is indicated in
chunk. Update the buffer offset in TDM Rx channel control block (chRxCCBPtr)
by incrementing it by chunk length.

e For non-SOM chunks, retrieve reassembly state information (buffer handle and
buffer offset) from TDM Rx channel control block (chRxCCBPtr) and initiate the
payload transfer from DMEM to SDRAM if no error is indicated in chunk. Also
update the buffer offset in TDM Rx channel control block (chRxCCBPtr).

e For EOM chunk, build the queue descriptor and en-queue it to the destination
gueue taken from TDM Rx channel control block (chRxCCBPtr). The port buffer

Page 23/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

type will be filled with the concatenation of input channel Id and BT_HDLC in the
descriptor. For MPLS the inlfType_action will be filled as MPLS_PPP.
e Gives scope back to SDP.

ATM Rx:
ATM Rx component in TDM Rx CP handles ATM cells. Specifically, it does the
following:
o Waits for ATM VPI/VCI lookup to complete
e Lookup failure causes the cell to be dropped and a statistics counter is
incremented.

Allocates new buffer and initiates payload transfer from DMEM to SDRAM.

Builds descriptor with forwarding information from lookup response

Waits for payload transfer to complete.

Determines whether OAM FPM is being performed on this VC. If so:

o For user cells, read the current BIP16 value from extract space and XOR
with current value. Update OAM fields.

o For OAM FPM cells, check BIP16 and maintain count of total BIP16
errors.

e For cells other than AAL-5 or AAL-1, it launches port table lookup.

o Waits for port lookup to complete
o En-queues descriptor to egress queue or QoS queue indicated by port
lookup

e For AAL-5 cells, with the lookup response from the ATM VC table, the decision is
made if the AAL-5 PDU has to be MPLS switched.

e With last AAL-5 cell, fills the descriptor with the information required for MPLS
processing. The reassembly module forwards this information to the MPLS
processing module.

e For AAL-1 cells, build the descriptor with the following fields:

o AAL1 header from extract space

o egress port and vcindex from the ATM VC lookup response.
For AAL-1 cells, set the destination queue to AAL1Rx queue.
En-queues the descriptor to the destination queue

Transparent chunk processing:

This component handles transparent TDM chunks. Specifically, it does the following
o Fetch the egress port and ATM cell header from the Rx channel control block
indexed by the channel Id.
Allocates new buffer and initiates payload transfer from DMEM to SDRAM.
Builds descriptor with AAL1 information (egress port, egress cell header).
Waits for payload transfer to complete.
En-queues the descriptor to AAL1TX queue

Page 24/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

HCL TECHNOLOGIES | E

MSA Application Note

7.4.3

7.4.3.1

Data Structures

Extract Space

RxByte writes information about data-grams into extract space for the RC.
typedef volatile struct {

intl6u chnkType_chanld;
int8u chanType;

int8u userValid;

int8u flowChunkCnt;
int8u chunkStatus;

int8u droppedChunks;

union {
struct {
CellHeader header;
intl6u bipl6;
int8u encodedPti;
int8u payload[48];
}atm;

struct {
int8u userind;
int8u crclnd;
int8u chunkLength;

int32u headerl;
int32u header?;
intl6u header3;

thdic;
} proto;

} TdmExtract;

The explanations for the above-mentioned fields will be as follows:

chnkType_chanld — a bitmap defined as follows:
o bl1l5 :chnkType - specifies the chunk type(user chunk or flow chunk)
o bl4-11: unused.
o bl0-0:chanld — specifies the input channel ID
chanType — specifies the channel type (HDLC/ATM).
userValid — specifies the user valid indicator.
flowChunkCnt — specifies the flow chunk counter.
chunkStatus — specifies the chunk status (good or bad chunk).
droppedChunks — number of dropped chunks.
userind — user indicator (BOM/COM/EOM).
crcind — CRC indicator (for CRC16 or CRC32 calculation).
chunkLength — specifies the chunk length.
headerl, header2, header3 — HDLC header information (could be FR or PPP)

Page 25/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

o Cell header — cell header of the ATM AAL-5 cell.
o EncodedPti — field to identify the ATM payload type.
e atmPayload — 48 bytes of AAL-5 cells.

7.4.3.2 TDM Rx Control Block

The state maintained (in DMEM) for each HDLC frame being reassembled has the
following data structure:

Note: Some of the fields of this block are replaced to maintain the egress port and ATM
cell header for every transparent channel configured.

Byte Offset 0 | 1 | 2 | 3
0 chBufHandle
4 chBufOffset | chDestQ
16 chMIHeader

typedef struct {

BsBufHandle chBufHandle;
int16u chBufOffset;
int16u chDestQ;
int32u chMIHeader;
} TdAMRXCCB;

The explanations for the above-mentioned fields will be as follows:

o chBufHandle: — specifies the handle of the reassembled buffer.

o chBufOffset: — specifies the offset in the reassembled buffer.
chDestQ: — destination queue where the EOM chunk will be en-queued. This field
corresponds to ‘egressPort’ in the case of transparent chunks.

e chMIHeader: — ML header/FR header for PPP/FR respectively. This field
corresponds to ATM ‘cellHeader’ in the case of transparent chunks.

7.4.3.3 Descriptor Structure
The following is the data structure of the descriptor to be en-queued.

Byte Offset 0 | 1 | 2 | 3
0 bufHandle
4 Length | Port_bufType
8 AppData
12 AppData
typedef struct {

BsBufHandle bufHandle;
intléu length;

Page 26/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

intléu port_bufType;

union {
int8u byte[8];
intl6u hword[4];
int32u word[2];
AtmDescData atm;
FrDescData frameRe;
SegDescData seg;
TdmDescData tdm;
MIPppDescData mlPpp;
MplsDescData mpls;
AallTxDescData aallTx;
AallRxDescData aallRx;

} appData;
} DescriptorMsg;

The explanations for the above-mentioned fields will be as follows:

o bufHandle — specifies the handle of the reassembled buffer.

e length — specifies the chunk length.

e port_bufType — specifies the input port and buffer type of the next module.
e appData - Application specific data (FR/PPP/ATM/Transparent TDM).

7.4.3.4 Ring Bus Slots

TDM Rx CP needs to launch lookups in following tables for various packet processing:
e ATMVC Table and Port Table.

ATM VC table lookup uses these slots:

e ATM VC request slot 0

e ATM VC response slot 0
Port table lookup uses these slots:

e Port table request slot 1

e Port table response slot 4

7.4.4 TDM statistics

typedef struct {
intl6u chRxChunks;
int16u chRxPdus;
intl6u chRxBytes;
intl6u chRxBIip8Errs; [/l for ATM cells
int16u chRxLenErrs;
intl16u chRxInvalidErrs;
intl6u chRXCrcErrs;
intl6u chRxFlowChunks;

Page 27/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

intl6u chRxLookupErrs; /ffor ATM cells
int16u chTxChunks;
intl6u chTxPdus;
int16u chTxBytes;
} TdmStats;

The description of each field is given below.

chRxChunks — Number of received chunks

chRxPdus — Number of received PDUs

chRxBytes — Number of received bytes

chRxLenErrs — Number of chunks having invalid length (e.g. short chunk, long chunk)
chRxCrcErrs — Number of chunks having invalid CRC
chRxBip8Errs — Number of chunks having BIP8 errors
chRxInvalidErrs — Number of chunks having other errors
chRxFlowChunks — Number of Flow chunks

chRxLookupErrs — Number of chunks that caused lookup failure
chTxChunks — Number of transmitted chunks

chTxPdus — Number of transmitted PDUs

chTxBytes — Number of transmitted bytes

7.5 IMA (CP 1 and CP 5)

CP 1 and CP5 implement the IMA processing. In the transmit direction, this processor
handles outgoing cells from other ATM processes and sends them in a round robin
fashion among several TDM links in the IMA group. It generates ICP and filler cells and
maintains the link and group state machines necessary for IMA connections. In the
receive direction, the IMA processor receives cells from the TDM links and performs
synchronization to reconstruct the ATM cell stream. It handles ICP and filler cells and
maintains the link and group state machines necessary for IMA connections. The IMA
component does not use the SDP.

7.5.1 SDP
Since IMA component does not use SDP, this section is not filled in.

7.5.2 RC

The component uses three threads to perform its task, namely, one Receive thread and
two Transmit threads.

75.2.1 IMA Receive

The IMA Receive thread processes cells received from the TDM links in the following
manner:
e Waits for a descriptor to be available in the IMA RX queue then de-queues it.
e Determines the IMA group and link based on the input port from the descriptor.
e For ICP cells, does the following:
o Initiates a DMA transfer of the cell payload from SDRAM to local DMEM.

Page 28/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

HCL TECHNOLOGIES | E

MSA Application Note

7.5.2.2

o Ifthe ICP cell is a stuffed ICP cell, it is dropped.
o Run the link state machine based on link state information from the ICP
cell.
o Run the group state machine based on group state information from the
ICP cell.
o Run the frame synchronization state machine.
o If frame sync, put the ICP cell in the link differential delay queue as a filler
cell.
For filler and user cells, if frame synchronization has been attained and the link is
active, put the cell in the link differential delay queue.
Uses round robin to determine which link differential delay queue of the group to
service. Removes a cell from the link differential delay queue and does the
following:
o Ifthe cell is afiller cell, it is dropped.
o Ifthe cell is a user cell, it is en-queued to the next processing block (AAL-
1, ATM TM, etc.) determined by data in the descriptor.
Switches to the next context.
Loops and waits for next descriptor.

IMA Transmit Input

The IMA Transmit Input thread de-queues cells and puts them in the transmit soft
gueues in the following manner:

7.5.2.3

Waits for a descriptor to be available in the IMA Tx queue, then de-queues it.
Determines the IMA group based on the output port from the descriptor.
Puts the user cell in the transmit soft queue for the group

Switches to the next context

Loops and waits for the next descriptor.

IMA Transmit Output

The IMA Transmit Output thread runs at the group cell rate. On each tick of the group
cell rate clock, the thread does the following:

Determines the link within the group, which should receive the next cell. This is
done in a round robin fashion among all active or usable links in the group.

If it is time to send an ICP cell on the link, the group state ICP cell storage is
updated for the current link and the cell is transferred to an SDRAM buffer via
DMA. A descriptor is built and en-queued to the queue of the target TDM link.
Otherwise, if the link is in the active state and a user cell is available in the
transmit soft queue for the link, the descriptor for the user cell is removed from
the soft queue and en-queued to the queue of the target TDM link.

Otherwise, afiller cell is en-queued to the queue of the target TDM link.

Updates link and group state for link and group on which the cell was just sent.
Switches to the next context.

Loops and waits for the next tick.

7.5.3 Data Structures
The IMA component uses the following data structures to maintain state and translate

data.

Page 29/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

7.5.3.1 ImaLinkState

The IMA link state structure saves state information for each of the available ATM TDM
links. The structure has the following format:

Byte Offset 0 1 2 3
0 Linkld flags rxState txState
4 feState frameSync frameOffset | rxFrameSegqNum
8 txFrameSegNum | numicpValid numlcpErrors numlcplnvalid

e linkld — the link ID number
o flags — a bitmask defined as follows:
o b7-5: unused

b4: link ID valid — the received link ID is valid

b3: RX failure — a receive failure has occurred

b2: RX fault — a receive fault has occurred

bl: Tx fault — a transmit fault has occurred

bO0: inhibit — the link is being inhibited

rxState — value of the RX link state machine

txState — value of the Tx link state machine

feState — values of the far end link state machine and defects

frameSync — value of the IMA frame synchronization state machine

frameOffset — offset within the IMA frame at which the ICP cell should appear

rxFrameSegNum — the expected received frame sequence number

txFrameSegNum — the frame sequence number to be transmitted

numlicpValid — number of consecutive frames with valid ICP cells used in frame

synchronization

e numlcpErrors — number of consecutive frames with ICP error cells used in frame
synchronization

e numlicplnvalid — number of consecutive frames with invalid ICP cells used in frame
synchronization

O 00O

o)

7.5.3.2 ImaGroupState

The IMA group state structure saves state information for each of the IMA groups. The
structure has the following format:

Byte Offset 0 | 1 | 2 | 3
0-11 icpCell
12 linkIdAlloc
16-47 linkldToLinkMap
48 frameLen state feState
52 change rxchangenum txChangeNum numLinks
56 suffLinks flags rxOamLabel rximald

The explanation of fields are as given below:
e icpCell —the ICP cell to be sent by the Tx thread
e linkldAlloc — a bitmap indicating which link IDs are in use

Page 30/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

linkldToLinkMap[32] — a mapping from link ID to link state storage structure
framelLen — length of IMA frame (32, 64, 128, or 256)
state — group state machine state
feState — far end group state machine state
change — flag indicating next ICP cell transmitted will have a change in it
rxChangeNum — received status and control sequence number
txChangedNum — next status and control sequence number to transmit in ICP cell
numLinks — number of active links
suffLinks — number of active links needed to leave insufficient links state
flags — a bitmap as follows:

o b7-1: unused

o bO0: inhibit — the group is being inhibited
e rxOamLabel — the received OAM label in the ICP cell
rximald — the received IMA ID in the ICP cell

7.5.3.3 ImaParams

The IMA parameters structure stores information that controls behavior of the IMA unit.
The host or other management agent may set these parameters. The structure has the
following format:

Byte Offset 0 1 2 3

0 alpha beta gamma pad

e Alpha — the number of consecutive invalid ICP cells that must be received before
frame synchronization is lost

e Beta — the number of consecutive errored ICP cells that must be received before
frame synchronization is lost

e Gamma — the number of consecutive valid ICP cells that must be received before
frame synchronization is declared

7.5.3.4 ImaPortToGroupMap

The IMA port to group map is an array of bytes MAX_TDM_CHANNELS (1024 per CP
cluster) long. The index into the array is the port number and the value of the array
elements is the group to which the port belongs. If the port does not belong to any group,
the value is IMA_INVALID_GROUP.

7.5.3.5 ImaPortToLinkMap

The IMA port to link map is an array of bytes MAX_TDM_CHANNELS long. The index
into the array is the port number and the value of the array elements is the link state
index associated with the port. This index is used to index the IMA link state structure
array.

7.5.3.6 Merge space

This information need not be provided because SDPs are not going to be used in IMA
CP.

Page 31/146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

7.5.3.7 Extract Space

This information need not be provided because SDPs are not going to be used in IMA
CP.

7.5.3.8 Descriptor information
Not available

7.5.3.9 Ring Bus Slots
None

7.5.4 Issues/Enhancements

The IMA component is placed in two CPs. This is because of the DMEM size required
for IMA component.

7.6 TDM Tx (CP 2 and CP 6)
CP2 and CP6 implement the TDM Tx components for the MSA application.

7.6.1 TxSDP

The TxSDP moves data from the RC to the Mt-21 chip. The functions provided by each
of its component processors are described below.

7.6.1.1 TxByte

The TxByte processor performs the following functions as part of the TDM interface:
e Reads 4 bytes of chunk header information from merge space and transmits the
chunk header.
e Sets the chunk length counter.
e If channel type is HDLC, reads the payload bytes from DMEM and transmits

them.

e Transmits the padding bytes (zero) in the last until chunk length counter reaches
zero

e For ATM SOM chunks, reads ATM cell header from merge space adds HEC and
transmits.

For ATM OAM cells, generates CRC-10.

For transparent chunks, read the payload bytes from DMEM and transmits them.
Set the merge9 with the last byte.

Switches the scope for CPRC.

7.6.2 RC (CP2 and CP6)

The TDM Tx RC performs higher level processing of chunks. The functions provided by
each of its components are described below:

76.2.1 Initialization
The TDM Tx component initializes the data structures and registers used by RC.
Specifically, it does the following:

o Initializes statistics and chunk segmentation control structures

Page 32/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

HCL TECHNOLOGIES | E

MSA Application Note

7.6.2.2

Initializes TXxSDP control space and Tx DMA control blocks

Chunk Transmit

The output thread handles outgoing cells or datagrams. Specifically, it does the
following:

Check channels in a round robin manner for credits available

(chFlowChunksAvail).

Get state information for current channel i.e. get the pointer chTxCCBPtr which
points to TDM Tx channel control block in DMEM. This control block will contain
the segmentation state information.

If chFlowChunksAvail is true, check whether this channel is in the process of
segmenting the PDU into chunks i.e. transmitting the chunks of a PDU. If it is
so, the next chunk of PDU will be transmitted.

If no segmentation is in progress, the incoming descriptor will be de-queued
from its queue. Note that the descriptor would have been en-queued by

TDM Recirculation (CP3 - for FR or PPP encapsulation)

FR module (CP11 - for FR switching)

ATM segmentation (CP8)

AAL1 Tx(CP14)

AAL1 Rx(CP15)

0O O0O0O0O

After de-queuing, the segmentation state will be updated with the values
fetched from descriptor. Segmentation state values to be updated are: Buffer
Handle, Buffer offset, length and port buffer type taken from incoming
descriptor. Offset will be filled as zero

PortBufferType will be checked to determine the incoming module i.e. from
which module it has come (BT_ATM or BT_TRANSPARENT or others) so that
it will segment the PDU accordingly.

If portBufferType is BT_TRANSPARENT, it is a transparent chunk from AAL1
Rx CP. It fills the merge space with chanld_chanType, chunkLength.

If portBufferType is BT_ATM, it is an ATM cell and hence will be switched. If
portBufferType is other than BT_ATM, the frame needs to be segmented into
number of chunks based on the channel length in chTxCCBPtr.

For segmenting into chunks, chunk length (1 - 64 bytes) will be calculated
based on offset in ChTxCCBPtr (for first chunk, the offset will be 0). Also if
chunk length is less than 64 bytes, it will set the EOM flag stating that it is the
last chunk.

The offset in chTxCCBPtr will be incremented by chunk length for the next
chunk.

It waits for the scope to be available from SDP.

It fills the merge space with chanld_chanType, chunkLength and userind.

For ATM, fills cell header also into the merge space.

It then waits for payload transfer of previous chunk to complete.

It initiates the payload transfer from SDRAM to DMEM for that chunk.

For EOM chunk, it frees the buffer associated with previous chunk and resets
the state information (in chTxCCBPtr) for the new PDU.

Page 33/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

7.6.3 Data Structures

7.6.3.1 Merge space

The RC writes information about datagrams into merge space. The data structure of
merge header looks like following.
typedef volatile struct {

intl6u chanld_chanType;

int8u userChunkLength;

int8u userind;

union {

struct {

CellHeader atmHeader;
int8u atmPayload[48];
}atm;

struct {
int8u padi;
thdic;

struct {
int32u header;
int8u headerLen;
}pppRecirc;
}proto;
int8u pad[8];
} TdmMerge;

The explanations for the above-mentioned fields will be as follows:
e chanld_chanType — a bitmap defined as follows:
o bl5 :unused.
o bl4-4:chanld - specifies the input channel ID
o b3-1 :chanType - specifies the channel Type
(ATM/HDLC/Transparent)
o b0 > unused.

userChunkLength — chunk length (1-64 bytes)

userind — specifies the user chunk indicator (SOM/COM/EOM)
atmHeader — ATM Cell header

atmPayload — 48 bytes of ATM cells.

7.6.3.2 TDM Tx Control Block

The state maintained (in DMEM) for segmentation on each outgoing channel is stored in
the following data structure:

| Byte Offset | 0 | 1 | 2 | 3

Page 34/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

0 chBufHandle
4 chBufOffset | chLength
8 ChFlowChunksAvail | Pad

typedef struct {

BsBufHandle chBufHandle;

int16u chBufOffset;

intl6u chLength;

int8u chFlowChunksAuvaiil;
} TdmTxCCB,;

The explanations for the above-mentioned fields will be as follows:

e ChBufHandle : specifies the Buffer handle that has to be transmitted.
ChBufOffset : specifies the offset of the chunk in the buffer.

chLength: specifies the chunk length.

ChFlowChunksAuvail : specifies the counts of credits available to each channel.
Pad: unused.

7.6.3.3 Descriptor Structure

The descriptor structure for TDM Tx is same as for TDM Rx. The structure is defined in
section 7.4.3.3

7.6.4 TDM Statistics

The statistics structure for TDM Tx is same as for TDM Rx. The structure is defined in
section 7.4.4

7.7 TDM Recirculation (CP3)

CP3 is used to recirculate PPP and FR frames destined for the TDM Tx (CP2/CP6) for
transmission. Its purpose is to add the PPP header or FR header in the descriptor to the
PPP/FR frame before transmission.

7.7.1 SDP

The SDP adds the PPP or FR header to the frame. The functions provided by each of its
component processors are described below. Only RxByte and TxByte are used for this
purpose.

7.7.1.1 TxByte

The TxByte processor performs the following functions:
e Reads channel Id from merge space and transmits as first byte of the chunk.
e Read the Buftype from merge space. It will also differentiate between PPP and
FR. If Buftype is not BT_IP_FR or BT_MPLS_FR, it will be the PPP frame.

Page 35/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

For PPP,
o Reads the PPP header length from merge space, then reads that many
bytes from the header field in merge space and transmits these.
For FR,
o Reads the first two bytes of FR header (that contains DLCI values) from
merge space and transmits these.
o For bufferType BT_IP_FR, transmits out the control byte (0x00) and
NLPID (Oxcc) byte.
o For bufferType BT_MPLS FR, construct the LLC SNAP header
encapsulation bytes and transmit these bytes.
Reads remaining payload from DMEM until data9 is observed.
Switches scope.

7.7.1.2 RxByte

The RxByte processor performs the following functions:
e Receives bytes from the TxByte processor.
o The first byte of the chunk contains the channel Id. This is written to extract
space and header ready is indicated in the rxStatus register.
e All bytes are written to DMEM.
o When data9 is received, switches scope.

7.7.2 RC

The RC manages the TDM recirculation. All CPs that want to transmit PPP/FR frames,
en-queue their packets to the TDM recirculation CP3 so that the PPP/FR header is
added to the frame before transmission.

7.7.2.1 Initialization

The initialization component initializes the data structures and registers used by the RC.
Specifically, it does the following:
o Initializes statistics and chunk control structures.
o Initialize SDP control space, Tx/Rx DMA control blocks. Indicate TDM RxSDP
to run the recirculation portion of the code.

7.7.2.2 RxCPRC
The receive component handles incoming packets from the SDP. Specifically, it does the
following:

e Waits for indication of header processing completion.

o Creates descriptor with buffer handle and length.

e En-queues packets based upon the channel Id indicated in extract space.

o Allocates buffer, sets up DMA block and gives scope back to SDP.

Page 36/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

7.7.2.3 TxCPRC
The transmit component services its TDM Recirculation egress queue (all PPP or FR
traffic which needs a header inserted in the frame gets en-queued here). This CP then
passes chunks to the SDP. Specifically, it does the following:
o De-queues the packet descriptor from its TDM Recirculation egress queue. This
descriptor would have been en-queued by IP or MPLS channel processors.
e Waits for scope to be available from SDP.
Gets channel Id (input port) and buffer type from the descriptor. Buffer type may be
one of the following.
o BT_IP_FR: if the FR frame originates from IP module
o BT_MPLS_FR: if the FR frame originates from MPLS module
o Otherwise it is the PPP frame originating from IP/MPLS module
e Determines protocol type based on buffer type.

PPP processing:
For the buffer type BT_IP_PPP and BT_MPLS_PPP,
o Determines the 4-byte PPP header including protocol, and calculates the
header length.
e Fills the channel Id, BufType, PPP header and header length into the merge
space.

FR processing:
For the buffer type BT_IP_FR and BT_MPLS FR

o Fill the channel Id, BufType and FR header information (2-bytes containing DLCI)
from descriptor into the merge space.

e Sets up DMA engine with buffer handle from descriptor.

o Initiates payload transfer from SDRAM to DMEM and gives scope to the SDP.

o Frees buffer from previous transmit in this scope.

7.7.3 Data Structures

7.7.3.1 Merge space
The merge space structure is defined below.

For FR
Byte Offset 0 | 1 2 3
0 chanld_chanType userChunkLength | userind
4 BufType Fr header
12 Fr header Pad
16 Pad
20 Pad

The explanations for the above-mentioned fields will be as follows
e chanld_chanType - a bitmap defined as follows:

Page 37/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

MSA Application Note

HCL TECHNOLOGIES

o bl5 :unused.
o bl4-4:chanld — specifies the input channel ID
o b3-1 :chanType - specifies the channel Type

(ATM/HDLC/Transparent)
o b0 > unused.

Pad: unused

For PPP

UserChunkLength: specifies the length of the user chunk.

Userlnd: specifies the user chunk indicator (BOM/COM/EOM)
BufType: specifies the type of the buffer.
FR header: specifies the DLCI value and the congestion control information.

Byte Offset

0

| 1

2

3

0

chanld_chanType

userChunkLength

userind

4 BufType

PPP header

12 PPP header | PPPheaderlLen |

Pad

16

Pad

20

Pad

The explanations for the above-mentioned fields will be as follows

e chanld_chanType — a bitmap defined as follows:

o bils
o bld-4:
o b3-1

o b0

Pad: unused

: unused.

chanld — specifies the input channel ID

7.7.3.2 Extract space
The extract space structure is defined below.

: chanType - specifies the channel Type

(ATM/HDLC/Transparent)

: unused.

UserChunkLength: specifies the length of the user chunk.
Userlnd: specifies the user chunk indicator (BOM/COM/EOM)
BufType: specifies the type of the buffer.
PPP header: specifies the PPP header information.
PPP headerLen: specifies the length of the PPP header.

Byte Offset

0

| 1

2 |

0

chanld

Pad

The explanations for the above-mentioned fields will be as follows
e Chanld: specifies the channel ID.

e Pad: unused.

For More Information On This Product,
Go to: www.freescale.com

Page 38/ 146

g o

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

7.7.3.3 Descriptor

The descriptor structure is same as for TDM Rx. The structure is defined in section
7.4.3.3.

7.8 IPv4 (CP 7)
CP 7 implements the IPv4 (Layer 3 forwarding) component for the MSA application.

IP routing is the process of forwarding IP frames at layer 3 based upon the IP
Destination Address (IP DA). An advantage of IP routing is that it can be used between
dissimilar network media types. This application covers IP routing over ATM or Frame
Relay or PPP/MLPPP.
Assumptions and notes for use:
o |IP header options will not be recognized.
e |P Fragmentation and reassembly not supported
e Lookup is launched on the IP DA.
e Application generates two types of ICMP messages, which are based on the
events that happen in the data path:
o ICMP Time exceeded
o ICMP destination unreachable
The IP address is provided to the XP via the appData parameters in the shared HCA
(Host Communication Area) structure. The XP passes this address to the CP in the
initialization descriptor. The CP uses this as the IP source address for all NP generated
ICMP messages.

7.8.1 SDP

The SDP is configured for byte level re-circulation. The SDP re-circulates the IP packet
to remove HDLC/PPP/FR encapsulation if present and validates the IP header. It also
launches the IP destination address lookup to retrieve forwarding parameters for the
datagram.

7.8.1.1 TxByte

The TxByte processor performs the following functions:
e Receives IP datagram from BMU through DMEM.
e Based on the Buffer Type, the following operations are done:
o BT_HDLC/BT_PPP/BT_FR: strips the respective headers and does IP
parsing
o BT_IP: Parses the IP header
e Sends control information about the datagram to RxByte processor, including the
buffer handle, buffer type, and input port.
Sends the IP datagram to RxByte processor.
e Sends an end of packet byte which indicates errors if non-zero.
Switches scope and waits for more data to be available in DMEM.

The RC writes information about datagrams needing re-circulation into merge space for
TxByte processor to use in its processing. The data structure is defined in section
7.8.3.1. TxByte processor is not configurable through control space.

Page 39/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

7.8.1.2 RxByte

The RxByte processor performs the following functions:

e Waits for a receive scope to become available.

e Receives control information from TxByte processor and places it in extract
space.

o Validates the IP header including version and header length and IP checksum
and TTL field.

o If the header is valid, launches a lookup of the IP destination address

e If the header is not valid, places an error code in the header status field of extract
space and does not launch a lookup.

e If no error, TTL verification and TTL decrement operations are done and
checksum modification is done and updated accordingly

e Streams the remaining payload to DMEM and writes the payload status field of
extract space.

e Switches scope and waits for another to become available.

The RxByte processor writes information about recirculated datagrams into extract
space for the RC to use in its processing. The data structure is defined in section
7.8.3.2. RxByte is not configurable through control space.

7.8.2 RC

The IP forwarding component uses two threads to perform its task, namely, an input
thread and an output thread. The initialization code starts the two threads. Each of these
is described next.

7.8.2.1 Initialization

The IP component does the following things during its initialization:
Creates the input and output threads.

Initializes the IP route lookup launched by the SDP.
Initializes both scopes by giving the SDP ownership.

Starts the SDP in byte loop back mode.

Jumps to the first thread.

7.8.2.2 Input Thread

The input thread handles incoming datagrams. Specifically, it does the following:
Monitors its queue.

De-queues an IP descriptor.

Increments a statistics counter

Waits for a transmit scope to be available from the SDP.

Fills in merge space with data from the descriptor including buffer handle and
input port.

Waits for the previous DMA transfer to complete.

Begins the DMA transfer for the current buffer being processed.

e Switch context to the next thread.

Page 40/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

HCL TECHNOLOGIES | E

MSA Application Note

7.8.2.3

Loops to the beginning to wait for another descriptor.

Output Thread

The output thread handles outgoing datagrams. Specifically, it does the following:

Waits for a scope to become available from the SDP.
Begins the DMA transfer from DMEM to the SDRAM buffer indicated in extract
space.
Checks for header errors, and if one has occurred, drops the packet and
increments iplnHdrErrors counter. If the error is because of TTL expiry, ICMP
time expired message is sent to the source.
Waits for the IP route lookup to complete and if the lookup fails, drops the packet
and increments ipOutNoRoutes counter. Send ICMP destination unreachable
message to the source.
If the lookup response indicates that the packet is to be MPLS switched, then

o Fills in the information from the IP route lookup

o Destination queue = MPLS_QUEUE
Else

o Launches a lookup of the port indicated in the IP route lookup response.

o Waits for the port lookup to complete, and if the port is invalid, drops the

packets and increments ipOutinvalidPortError counter.

o Fills in a descriptor using information from the IP route and port lookups.
Waits for the payload transfer to complete.
Check for any payload error, if so drops the packet and increments
ipOutPayloadError counter.
Sends the descriptor to the appropriate destination determined by the lookups.
If QoS enabled then sends the descriptor to QoS queue based on the port table
entry.
Increments ipForwDatagrams counter
Switches context to the next thread.
Loops to the beginning to wait for another scope to be available.

7.8.3 Data Structures

7.8.3.1

Merge space

The RC writes information about datagrams needing recirculation into merge space for
TxByte processor to use in its processing. The data structure has the following format:

Byte Offset 0 | 1 | 2 | 3

0 bufHandle

4 port_bufType | pad

bufHandle — handle of the buffer being recirculated
port_bufType — a bitmask defined as follows:
o b15-5: port — the input port on which this datagram was received

Page 41/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

o b4-0: bufType — the type of buffer being recirculated (could be one of
BT_IPv4, BT_FR ,BT_PPP)
e pad — unused

7.8.3.2 Extract Space

RxByte writes information about re-circulated datagrams into extract space for the RC to
use in its processing. Entire IP header is moved into the extract space. The first 8 bytes
of the data structure has the following format:

Byte Offset 0 | 1 | 2 | 3
0 bufHandle
4 port_bufType | headerError | payloadError

¢ bufHandle — handle of the buffer being recirculated
o port_bufType — a bitmask defined as follows:
o bl15-5: port — the input port on which this datagram was received
o b4-0: bufType — the type of buffer being recirculated (could be BT _IPv4)

The format of the next part of extract space

Byte Offset 0 1 2 | 3

8 vers hlen tos len

12 id flags_fragOffset

16 ttl | protocol cks

20 srcaddr

24 destaddr

28-44 pad

vers_hlen — header version and length
tos — type of service

len — IP total length

id — identification field
frags_fragOffset — fragmentation flags and offset
ttl — time to live

protocol — IP protocol

cks — IP header checksum

srcaddr — IP source address

destaddr — IP destination address

Pad — unused

7.8.3.3 Queue Descriptor information

One queue is allocated for IP module to communicate with other CPs and XPRC. The
Queue descriptor structure is as follows:

| Byte Offset | 0 | 1 | 2 | 3

Page 42/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

HCL TECHNOLOGIES | E

MSA Application Note

0 BufHandle

4 Length | Port_bufType
8 appData

12 appData

The explanation of each field is as follows:
bufHandle — handle to the buffer this descriptor describes
length — length of data in the buffer
port_bufType — a bit field structure as follows:
b15-5: port — ingress port or egress port depending on descriptor type
b4-0: bufType — the type of buffer
appData — application specific data as defined below:
Application specific data, it is a union of
o int8u byte[8];
intl6u hword[4];
int32u word[2];

AtmDescData
FrDescData

SegDescData
TdmDescData

atm;

frameRe;

Seq,
tdm;

MIPppDescData mlPpp;
MplsDescData mpls

0O 0OO0OO0OO0OO0OO0OO

The appData field can have different interpretations depending on the outgoing interface
type.

The ATM appData field has the following format:

Byte Offset 0 | 1 | 2 |

0 cellHeader

4 Vclndex | egressQueue

The explanation of each field is as follows:
o cellHeader — the cell header (VPI/VCI) to apply at the egress
e vcindex — the index associated with egress VPI/VCI
o egressQueue — the egress queue, necessary as the cell passes through several
processing blocks

The TDM appData field has the following format:

Byte Offset 0 1 2 | 3

0 McClass Flags Egress Queue

The explanation of each field is as follows:
e mcClass — MC class for ML-PPP’s use
o egressQueue — the egress queue, necessary as the packet passes through
several processing blocks

The MPLS appData field has the following format:

Page 43/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

Byte Offset 0 | 1 2 | 3
0 LabelSwap LabelPush
4 HopCount | InlfType_action EgressQueue
8 AppHdrData
12 Vc Index | Pad

The explanation of each field is as follows:

LabelSwap - Label to be swapped

LabelPush — Label to be added

InlfType_action- MPLS action to be performed

HopCount - count to be decremented in TTL of the shim header

Egress queue — Queue assigned to the egress interface

AppHdrData — ATM Cell header in case of egress ATM interface and FR header
if it is a FR interface.

Vcindex — ATM VC index of the ATM interface if its an AAL-5

e Pad - unused

The FrameRelay appData field has the following format:

Byte Offset 0 | 1 | 2 | 3

0 FrHeader

4 EgressQueue | pad

The explanation of each field is as follows:
e FrHeader — DLCI value
e EgressQueue — Final Queue
e Pad - unused

7.8.3.4 Counters

IP module has these counters for statistics purpose; it's stored in XPRC’s shared
DMEM.

S.No Counter Purpose

1. iplnReceives Total number packets received in IP module

2. IpInHdrErrors The number of input datagrams discarded due to errors
in their IP headers.

3. IpForwDatagrams Number of input datagrams forwarded

4. IpOutPayloadError Number packets discarded due to payload errors

5 IpOutinvalidPortError | Number of packets discarded because it route entry
mapped to egress port which is invalid (or temporarily
made as inaccessible)

6. IpOutNoRoutes Number of IP datagrams discarded because no route
could be found to transmit them to their destination

7.8.3.5 Ring Bus Slots

IPv4 uses these slots:
e IPv4 route request slot 0

Page 44/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

e [Pv4 route response 0
e Port request slot 2
e Port response slot 2

7.9 Segmentation (CP 8)

CP 8 implements AAL5 segmentation module. This CP gets message descriptors with
bufType set to IPv4/MPLS.

7.9.1 SDP

The SDP is configured for byte level re-circulation. It streams the IP packet and
accumulates CRC. For AALS cells, it adds the necessary pad bytes to make the SDU
length a multiple of 48 and creates the trailer. It then delivers fixed size chunks of the
SDU to the CPRC. On the first chunk for an SDU, the SDP launches a port table lookup,
whose results are used by the CPRC to determine the destination queue. The SDP does
not interleave segmentations — it completely segments one SDU and delivers it to the
CPRC before proceeding to the next SDU. The SDP accumulates payload CRC for all IP
packets.

7.9.1.1 TxByte

The TxByte processor performs the following operations on every packet:

e Reads the segType, pduSize and UUI from the merge space. Sends them to
RxByte processor.

o Read all the merge space fields following it. Send them to RxByte processor.
Initialize a counter with the negative of payload size.

e Start sending the payload bytes, incrementing the counter for each byte sent out.
Accumulate CRC for each transmitted byte. Stop when the counter hits Oxff.

o Initialize a counter with the number of pad bytes.

e Start transmitting zeroes, incrementing this counter for every zero byte
transmitted. Accumulate the CRC on each zero byte. Stop when the counter hits
Oxff.

e The trailer should be sent for AAL-5 SDU. Send the UUI, CPI and payload length,
accumulating the CRC on all of them. Now send the four bytes of the CRC. This
completes the AALS trailer.

e Release the transmit scope and wait for data available from the RC.

TxByte gets the payload information from merge space as defined in section 7.9.3.1.
TxByte is not configurable through control space.

7.9.1.2 RxByte

The RxByte processor performs the following sequence of operations:

o Receive the segType, pduSize and uui from the TxByte and copy them to the
extract space.

o Clear the lastCell flag.

e Receive the atmEgressQueue and destQueue from the TxByte and write them to
the extract space.
Receive the egress port from the TxByte and launch a port table lookup.

o Initialize a counter Counterl with the negative of pduSize(0Oxc1).

Page 45/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

HCL TECHNOLOGIES | E

MSA Application Note

Stream out payload bytes to the Rx stage area. Increment Counterl for every
byte transmitted. When Counterl hits 0xff, hand the current scope over to the
CPRC. If the data-9 bit is seen at any time in the payload, go to the next step.
Wait for the next scope to become available and go back to the previous step.

At the end of the payload, data the TxByte sets the Data-9 bit. When this bit is
seen, set the last cell flag to true. Copy the current value of Counterl to the
numBytesLastPdu field and hand the current scope over to the CPRC.

The packet segmentation is complete at this point, wait for more data to be
available from TxByte

The RxByte processor writes information about incoming cells into extract space for the
RC to use in its processing. The data structure is described in section 7.9.3.2. RxByte is
not configurable through control space

7.9.2

RC

The segmentation RC component uses two threads to perform its task, namely, an input
thread and an output thread. The initialization code starts the two threads. Each of these
is described next.

79.21

Initialization

The initialization phase in the segmentation CP does the following:

7.9.2.2

Initializes buffer pools.

Creates contexts for the input and output threads

Initializes ring bus Tx message registers used by RxByte for launching port
lookup.

Setup DMA engines and initializes the SDP scopes.

Enables the SDPs

Input Thread

The input thread handles incoming datagrams. Specifically, it does the following:

7.9.2.3

De-queue message descriptors from the input queue

Reads the length of the IP packet to be segmented.

Determines the pad size

Calculate the number of cells that would be generated for this SDU.

Calculates the necessary pad bytes that should be added at the end of the
packet to make its size a multiple of 48 bytes.

Allocates a Tx scope

Writes the IP packet buffer handle, egress port and egress queue from the IP
packet descriptor and the pad length to the merge space. Free the Tx scope,
thus starting the SDP processing on this packet.

Output Thread

The output thread handles outgoing datagrams. This logical function gets ATM cells from
the SDP and en-queues them to the appropriate destination queue. Specifically, it

carries
[]

out the following sequence of operations:
Allocate an Rx scope and read the extract space.

Page 46/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

HCL TECHNOLOGIES | E

MSA Application Note

7.9.3

7.9.3.1

Check the Rx scope to see if the ‘new_sdu’ flag is set. If set, then the SDP would
have launched a port table lookup. Read the egress queue from the extract
space.
Wait for the port table lookup results.
o If QoS is enabled for the port, the destination queue is the QoS queue
from the port table lookup.
o If QoS is not enabled the destination queue is same as the egress queue
from the table lookup.
Create a message descriptor with bufType set to BT_ATM. Set the buffer handle
to that of the cell delivered by the SDP and en-queue it to the destination queue.

Data Structures

Merge space

The RC writes information about outgoing packets to merge space for TxByte to use in
its processing. The data structure has the following format:

Byte Offset

0 1

2

3

0

SegType

PduSize

Uui

Cpi

4

PayloadLength

PadLength

pad

8

CellH

eader

12

EgressPort

AtmEgressQueue

16

DestQueue

Pad

typedef struct {

int8u
int8u
int8u uui;

int8u cpi;

intl6u payloadLength;
int8u padLength;

int8u pad,

CellHeader cellHdr;
intl6u egressPort;
intl6u atmEgressQueue;
intl6u destQueue;

segType;
pdusSize;

} SegMergeSpace;

segType - indicates whether the packet is to be segmented for AAL5
(SEG_AAL5)

pduSize — specifies the size of chunks into which the packet is to be segmented
(always 48 for AALS)

uui — specifies the user-to-user information

cpi — reserved, set to zero

payloadLength — size of the IP packet

padLength — number of zero bytes that need to be added to the payload

pad — Reserved

Page 47/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

HCL TECHNOLOGIES | E

MSA Application Note

7.9.3.2

cellHdr — specifies the egress cell header to be used for AALS

egressPort — the destination port number

atmEgressQueue — specifies the final queue that should be used to reach the
ATM port

destQueue — specifies the immediate destination queue from the segmentation
CP

Extract Space

RxByte writes information about re-circulated datagrams into extract space for the RC to
use in its processing. The data structure has the following format:

Byte Offset 0 1 2 3
0 SegType PduSize Uui pad
4 atmCellHdr
8 egressPort AtmEgressQueue
12 destQueue LastCell | NumBytesLastPdu
typedef struct
{
int8u segType;
int8u pduSize;
intBu uui;
int8u pad,;

int32u atmCellHdr;
intl6u egressPort;
intl6u atmEgressQueue;
intl6u destQueue;

int8u lastCell;

int8u numBytesLastPdu;

} SegExtractSpace;

7.9.3.3

segType — indicates whether the delivered chunk is an ATM AAL-5 cell payload
pduSize — specifies the size of the ATM cell (always 48 for ATM AAL-5 cells)
pad —zero for ATM cells

uui — specifies the user-to-user information that arrived with the packet being
segmented

atmCellheader — specifies the egress cell header to be used for AAL-5.
EgressPort — the destination port number.

atmEgressQueue — final queue number to be used to reach the egress port
destQueue — specifies the queue number on which the cell packet should be
transmitted

lastCell — specifies the end of an SDU

numBytesLast — the size of the last ATM PDU

Descriptor information

The following is the data structure of the descriptor:

| Byte Offset | 0 | 1 | 2 3

Page 48/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

0 bufHandle
4 Length | port_bufType
8 appData

typedef struct {

BsBufHandle bufHandle;
intl6u length;
intléu port_bufType; /* 15:5 - port, 4:0 - bufType */

union {
int8u byte[8];
intl6u hword[4];
int32u word[2];

AtmDescData atm;
FrDescData frameRe;
SegDescData seg;
TdmDescData tdm;
MIPppDescData mIPpp;
MplsDescData mpls;
} appData;
} DescriptorMsg;

bufHandle — reassembly buffer handle

length — chunk length

port_bufType — input port and buffer type of the next module
appData - Application specific data.

The AppData in the segmentation CP is of following format:

typedef struct SegDescData_s {
CellHeader cellHeader,;
int8u flags_cpsPdulLen; /* 7:6 flags; 5:0 cpsPdulLen */
int8u pad;
intléu egressQueue;
} SegDescData,;

Byte Offset 0 | 1 | 2 | 3
0 CellHeader
4 Flags cpsPduLen | pad | egressQueue

7934 Ring Bus Slots

The segmentation CP launches a lookup into Port Table. It uses following slots:
e Request Slot: 0
e Response Slot: 0

7.9.4 Issues/Enhancements
None

Page 49/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

7.10 Reassembly (CP 9)

AALS5 re-assembly module is implemented in CP 9. An incoming message descriptor can
have different buffer types distinguishing between various packet types. A buffer type of
BT_ATM indicates that it is an ATM cell descriptor and needs to be processed for AAL5
reassembly, while buffer types of BT_MPLS FR, BT_MPLS PPP and BT_MPLS_ATM
indicate that this is the last ATM cell of the MPLS packet and the reassembled MPLS
packet and the information contained in the descriptor has to be passed to the MPLS
processing.

7.10.1 SDP

The SDP for reassembly is configured for byte level loop back. It performs payload CRC
and initiates the DMA transaction to append the current cell packet at the end of the
SDU. On the non-last cell packet, the SDP initiates a CRC table update using the XOR
command in the non-last mode. The TLU CRC table is indexed by vcindex. On the last
cell for a SDU, the XOR command is used CRC Rx last mode to verify the accumulated
CRC. The results come back on the ring bus and are examined by the CPRC.
Specifically, functions performed by each of the components of the SDP are described
below:

7.10.1.1 TxByte

The TxByte processor performs the following functions:

e Wait for Tx scope from the CPRC
Initialize the CRC accumulator.

e Forward 12 bytes that may contain MPLS related information if the SDU is an
MPLS packet. The RxByte of this CP takes care to collect 12 bytes prior to
collecting any other bytes.

e Forward the rasType, eom_offset, vcCidindex, numalignedBytes and
numUnalignedByteCount to RxByte. The rasType indicates whether it is AALS or
AAL5 MPLS. The VcCidlndex holds vcindex value for AAL5. The eom field holds
the eom flag indicating whether this is the last cell of the packet.
NumUnalignedBytes will always be zero for AALS.

o Initialize a counter Counterl (with Oxcl) to the value of numAlignedBytes. For
AALS, this parameter is always 48. Initialize another counter Counter2 (with
value 0xc2) numBytesPartialPayload.

e Start sending partial payload bytes from merge space, incrementing the
Counter2 for every byte. When this counter hits Oxff, all unaligned bytes would
have been sent. Accumulate the partial CRC every byte transmitted.

o Now start sending the payload bytes, incrementing Counterl for every byte and
accumulate the CRC. Stop accumulating CRC when the counter hits Oxff.

e Send the remaining payload bytes. These are the unaligned bytes and will be
recirculated for the next packet. Hence CRC should not be computed on these
bytes.

o After sending all payload bytes, the partial CRC accumulated thus far is sent.

e At this point TxByte is done with processing the cell. It gives up the scope to the
CPRC and waits for the next cell/packet.

Page 50/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

The RC writes information about cells to be reassembled into merge space for TxByte to
use in its processing. The data structure is described in section 7.10.3.1. The TxByte
processor is not configurable through control space.

7.10.1.2 RxByte

The RxByte processor performs the following functions:

o Wait for extract scope from CPRC.

Streams in 12 bytes, which may contain information relevant to MPLS packet
processing

e Stream the rasType, eom, vcCidindex, pduLength and numUnalignedByteCount
to the extract space. pduLength is the aligned byte count received from the
TxByte.

e Make the scope available for CPRC, by setting L1_DONE flag.

e Start streaming payload into the Rx staging area. The CPRC will setup the DMA
to transfer it into SDRAM to the correct offset. Use a counter to determine when
the payload ends.

e Copy the last six bytes of the payload into the extract space structures for uui,
cpi, length and CRC. In case this is the last cell, the CPRC will need this
information for forwarding this packet to the IP CPRC. This information should
also go to the staging area.

e After the payload ends, the next six bytes are the accumulated CRC. Initiate a
TLU XOR command using this CRC.

Mark the scope status flags as L2_DONE, thus giving the trailer to the CPRC.

e Wait for another scope to be available from the CPRC.

RxByte writes information about PDUs being reassembled into extract space for the RC
to use in its processing. The data structure is described in section 7.10.3.2. The RxByte
processor is not configurable through control space.

7.10.2 RC

The reassembly RC component uses two threads to perform its task, namely, an input
thread and an output thread. The initialization code starts the two threads. Each of these
is described next.

7.10.2.1 Initialization

The initialization phase in the segmentation CP does the following:

Initializes buffer pools.

Creates contexts for the input and output threads

Initializes ring bus Tx message registers used by RxByte for RAS CRC Table.
Setup DMA engines and initializes the SDP scopes.

Enables the SDPs

7.10.2.2 Input Thread

The input thread handles incoming datagrams. Specifically, it does the following:
e De-queues input ATM cell descriptors

Page 51/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

o Checks the buffer type of the incoming AAL-5 SDU. The Buffer Type can hold
following values:
o BT_ATM: - It indicates the packet is an AAL-5 PDU. It fills the merge
space with information required by RxByte to reassemble the ATM cells
at output thread.

o BT_MPLS_ATM: - It indicates the AAL-5 PDU is to be MPLS switched
and the egress interface in an ATM interface.

o BT_MPLS_PPP: - It indicates the AAL-5 PDU is to be MPLS switched
and the egress interface in a PPP interface.

o BT_MPLS_FR: - It indicates the AAL-5 PDU is to be MPLS switched and
the egress interface in an FR interface.

e For AAL-5 SDUs which are to be MPLS switched, there is an additional 12 bytes
of information which needs to be sent across the MPLS processing module after
the cells are reassembled. These 12 bytes of information is as follows:

o LabelSwap (2-Bytes)

LabelPush (2-Bytes)

Egress Port buffer type (2-Bytes)

Hop count and MPLS action (2-Bytes)

Egress cell header if the egress interface is an ATM interface (4-

Bytes).These bytes are streamed out by TxSDP before ant other

information.

e Starts the DMA of the packet and releases the scope for merge space.

0O 00O

7.10.2.3 Output Thread

The output thread handles the outgoing reassembled AAL-5 SDUs. Specifically, it
performs following activities:

e Maintains a rasList structure to track re-assembly state per VC. An array of 1024
RasList structures is maintained in DMEM. This array is indexed by the vcindex
from the ATM VC table for the input cell’s VPI and VCI. The vcindex for AALS
VCCs is hence restricted to the range [0, 1023]. Each element of this array is
initialized with a valid buffer handle and offset set to zero.

e After it receives a cell for AAL-5 reassembly, it locates its state entry in the
rasList array, using the cell’'s vcindex. The buffer handle in this specifies the
SDRAM buffer at the end of which this cell needs to be appended. The offset
specifies the length of AAL-5 SDU reassembled so far. This new cell needs to be
written at the ‘offset’ location within the SDRAM buffer.

o Reads the extract space and updates the offset in the corresponding rasList
array entry.

o If the EOM Flag is set in the extract space, the current SDU has completed.
When this flag is set, the output thread performs the following operations:

o Reads the rasType if it indicates an MPLS switched SDU.

Page 52/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

HCL TECHNOLOGIES | E

MSA Application Note

©)

(e}

7.10.3

7.10.3.1

If the RAS type is RAS_MPLS_ATM, then it fills in the descriptor the 12-bytes
of information for MPLS processing module.

Wait for CRC results from TLU: - The SDP accumulates CRC for each SDU
in a TLU table, using the XOR command in CRC mode. On the last cell, the
SDP issues the XOR command with CRC Rx last option. Upon getting this
command, the TLU first accumulates the CRC in the command and then
checks to see if the accumulated CRC indicates CRC success. It returns a
ring bus success response on CRC success and a ring bus error otherwise.

If the response is a success, an IP message descriptor is created for the
SDU. It then waits for the SDP to deliver the aal5 trailer. The trailer contains
SDU length, the aal5 UUI and the CRC. It fills the length field in the IP
message descriptor using the length field from the trailer and dispatches the
message descriptor to the IP CPRC. It then sets the offset field in the rasList
entry to zero and allocates a new buffer for the next SDU on this VCC.

If the response indicates a CRC failure, it means that the AAL5 SDU suffered
errors in transit and should be discarded. The offset is set to zero so that the
next SDU on this VC can reuse the current SDRAM buffer.

The descriptor in case of valid SDUs is then queued to the appropriate
gueue. For MPLS Switched SDUs, it queues it to MPLS CP, else to the IP
module.

The maximum permitted SDU size is restricted to 2048 bytes in MSA
application. If the offset field in the rasList entry exceeds 2048, the SDU is to
be discarded. For an SDU that exceeds 2048 bytes, subsequent ATM cells
are appended in the last 48 bytes of its buffer — when the output thread finds
the offset to exceed 2048, it always copies the current cell into the last 48
bytes. When the last cell for this SDU arrives, the cell is copied into the last
48 bytes and the offset is then set to zero. This effectively discards the SDU
and makes the buffer available for the next SDU.

Frees the scope to RxXSDP

Data Structures

Merge space

The RC writes information about outgoing packets to merge space for TxByte to use in
its processing. The data structure has the following format:

Byte Offset 0 1 2 | 3

0 rasType Eom_offset vcCidlndex

4 NumAlignedBytes | NumUnalignedBytes NumBytes pduLen

PartialPayload

8 PartialPayload

12 PartialPayload

16 PartialPayload

20 PartialPayload

Page 53/ 146

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

HCL TECHNOLOGIES | E

MSA Application Note

24 AppData

28 AppData

32 AppHdrData
typedef struct{

int8u rasType;

int8u eom_offset;

intléu vcCidIindex;

int8u numAlignedBytes;

int8u numUnAlignedBytes;

int8u numBytesPartialPayload;

int8u pduLen;

int8u partialPayload[16]; /* Partial Payload */
intl6u data[4];

int32u appHdrdata;

} RasMergeSpace;;

rasType — 0x00 for AAL5 and 0x01 for MPLS Switched AAL-5

eom — 0x00 if this is not the last cell and 0x80 if it is the last cell of a SDU
vcCidindex — the VC Index

numAligned — the number of bytes in the data stream that should be transferred
to SDRAM

numUnAligned — the number of bytes in the data stream that will be transferred
to the extract space

numBytesPartial — the number of unaligned bytes from the previous ATM cells
pduLen — the size of the ATM PDU

partialPayload[16] — the unaligned bytes from previous ATM PDU

AppData — application specific data for MPLS switched AAL-5 SDU

AppHdrData — the egress cell header.

7.10.3.2 Extract Space

RxByte writes information about recirculated datagrams into extract space for the RC to
use in its processing. The data structure has the following format:

Byte Offset 0 1 2 | 3
0 rasType Eom_offset vcCidlndex
4 PdulLength NumUnalignedBytes pad
8 Uui Cpi PayloadLength
12 CRC
16 PartialPayload
20 PartialPayload
24 PartialPayload
28 PartialPayload | pad
32 AppData
36 AppData

Page 54/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

HCL TECHNOLOGIES | E

MSA Application Note

40 | AppHdrData

typedef struct {

int8u rasType;

int8u eom_offset;

intléu vcCidIindex;

int8u pduLength;

int8u numUnAlignedBytes;

int8u reserved[2];

int8u uui;

int8u cpi;

intl6u payloadLength;

int32u Crc;

int8u partialPayload[15];

intléu descData[4];
int32u appHdrData;

} RasExtractSpace;

rasType — 0x00 for AAL5 and 0x01 for MPLS Switched AAL-5

eom — 0x00 if this is not the last cell and 0x80 if it is the last cell of a SDU
vcCidlndex — VC index

pduLength — the size of the ATM PDU

numuUnAligned — the number of unaligned bytes in the extract space
pad — unused

uui — user-to-user indication from the AALS trailer

cpi — reserved

payloadLength — size of the reassembled AAL5S

crc — CRC-32 from the AALS trailer

partialPayload[15] — the unaligned bytes from current ATM PDU
AppData — application specific data for MPLS switched AAL-5 SDU
AppHdrData — the egress cell header

7.10.3.3 RasList

The RasList structure is used to track re-assembly state per VC. It is an array of 1024
structures with the following format:

Byte Offset 0 | 1 | 2 | 3
0 BufHandle
4 Offset
e bufHandle — the handle of the buffer in which cells are being reassembled
e Offset — the offset in the reassembly buffer at which the next cell should be

placed

Page 55/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

7.10.3.4 Descriptor information
The following is the data structure of the descriptor, which is en-queued or de-queued:

Byte Offset 0 | 1 | 2 | 3
0 bufHandle
4 Length | port_bufType
8 appData
12 appData
typedef struct {

BsBufHandle bufHandle;

intl6u length;

intléu port_bufType; /* 15:5 - port, 4:0 - bufType */

union {
int8u byte[8];
intl6u hword[4];
int32u word[2];
AtmDescData atm;
FrDescData frameRe;
SegDescData seg;
TdmDescData tdm;
MIPppDescData mlPpp;
MplsDescData mpls;

} appData;

} DescriptorMsg;

bufHandle — reassembly buffer handle

length — chunk length

port_bufType — input port and buffer type of the next module
appData - Application specific data.

7.10.3.5 Ring Bus Slots

The reassembly CP launches a TLU XOR command into RAS CRC table. It uses
following slots for the purpose:

o Request Slot 0

e Response Slot 2
7.10.4 Issues/Enhancements
None

7.11 IP QoS Classifier (CP 10)

CP10 implements the IP QoS Classifier component that provides classification for quality
of service (as specified in RFC 2474,RFC 2475, RFC 1633, RFC 2211 and RFC 2212)
that will be configured in Q-3 TMC. The QoS implemented are DiffServ and IntServ in Q-
3. This component does not use the SDP. It uses a single CPRC to perform QoS
classification for DiffServ and IntServ at all ingress queues in the system. The IP QoS
Classifier CPRC has an input QMU queue for every egress IP port. This component

Page 56 / 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

uses multiple fields from the IP and TCP/UDP headers to determine the traffic category
(i.e., the flow for an IP packet) and sends it to Q-3 that will apply the appropriate marking
and shaping strategy on it. Currently, the design supports IPv4 only.

7.11.1 XP Initialization
XP initialization is mentioned in section 7.1.1.

7.11.2 Host Configurations

Host is responsible to perform the Q-3 TMC configurations as shown in figure 6. It
configures the following parameters in the Q-3 map.
e Since total number of channels to be supported are 2K. Each channel consists of
4 traffic queues for both DiffServ and IntServ QoS treatment. i.e. the four queues
per channel will either be used by DiffServ or IntServ based on PHB in flow table.
For DiffServ it will support 2 AF queues, 1 EF queue and 1 Best effort queue per
channel. Whereas for IntServ it will support 2 guaranteed service traffic queues
and 2 controlled load service traffic queues. These traffic queues are configured
in flow table using PHB field. So total number of traffic queues to be supported =
2K *4 = 8K (for either DiffServ or IntServ)
o One Level2 scheduler (each having 4 inputs) will be configured for each channel.
So it will need 2K level2 schedulers for normal path. Discard path will also need one
scheduler. So Total number of level2 schedulers = 2K+1
e Each Levell scheduler will consist of 1K inputs. But total number of incoming
inputs will be 2K. So total number of levell schedulers = 2K/1K = 2
e At the top level, it is mandatory to have one levelO scheduler in Q-3 hierarchy.
e Total number of VOPs to be created will be 128 for normal path and one for
discard path. VOPs are created for every T1/E1 interface. VOPs are also created for
inter CP communication.

The IP QoS related Q-3 configuration steps are given here. The Q-3 configurations for
other C-3e components are given in section 7.21.2. The configuration steps starting from
top to bottom in Q-3 hierarchy (i.e. from level O scheduler to traffic queues) are
described as follows.
e Initializes the Q-3 TMC using gsTmclnitialize ().
o Creates one level0 RR scheduler with 3 input legs using gsTmcSchedCreate ().
o Creates the discard path as follows:
o Creates one level2 RR scheduler with one input leg using
gsTmcSchedCreate ().
o Creates the discard queue using gsTmcTrafficQueueCreate () and associates
it with the level2 scheduler created as above.
o Creates the VOP as 0 for discard path using gsTmcVopCreate() and
associates it with first leg of levelO scheduler.
o Creates parent buffer pool and buffer pool associated with it using
gsTmcBufferPoolCreate(). These buffer pools will be used by traffic queues.
e Creates the 2-levell WFQ schedulers each having 1024 (1K) input legs. These
schedulers will feed the level0 RR scheduler. The maximum number of levell
schedulers (having 1K inputs) to be supported is 18 in new Q-5.

Page 57/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

HCL TECHNOLOGIES | E

MSA Application Note

Creates the 2K-level2 WFQ schedulers each having 4 input legs that will receive
the input descriptor from four traffic queues via four scheduler queues. Each
scheduler queue is mapped with one traffic queue. This mapping is not shown in
the figure 3.0. For DiffServ treatment, the input descriptor may originate from AF
traffic queue or EF traffic queue or best effort traffic queue that will be configured
in flow table. For IntServ treatment it may originate from either guaranteed
service traffic queues or control load service queues configured for it in flow
table. These schedulers will feed the levell WFQ scheduler. The max number of
level2 schedulers to be supported is 18K.

The following traffic parameters will be configured in each level2 scheduler for
each traffic flow.

o For DiffServ treatment

YVVVY VYV

CBS: Committed Burst Size

EBS; Excess Burst Size

Increment; The number of tokens added into token buckets at
every tick

Tc; Current token bucket size for committed bursts

Te; Current token bucket size for excess bursts

CIR; Committed Information Rate

LastUpdateTime; Last time when traffic was seen on this flow

o For IntServ treatment (Guaranteed service parameters)

YVVVYVYVVY

Token Bucket Rate (r)
Token Bucket size (b)
Peak data rate (p)
Min Policed Unit (m)
Max Policed Unit (M)
Rate (R)

SlackTerm (S)

o For IntServ treatment (Controlled load service parameters)

VVYVYVYYVY

Token Bucket Rate (r)
Token Bucket size (b)
Peak data rate (p)
Min Policed Unit (m)
Max Policed Unit (M)

Creates two discard blocks using gsTmcDiscardCreate() and associates these
with the discard queue as created in above step. These discard blocks are as
follows:

o Discard blockl
» Type: Single token bucket (qsDiscTypeSingBucket)
» Discard parameters: 1b1Limit and 1blincrement

o Discard block2

>
>

Type: RED (gsDiscTypeRED).
Discard parameters: probabilityMax

Page 58/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

e Creates 8K traffic queues that will pass the traffic to the Q-3 hierarchy and
associates these queues with buffer as allocated above. It also associates the
gueues with the discard blocks. One channel will have 4 traffic queues. Max number
of traffic queues to be supported in new Q-5 is 128K.

e The 128 different VOPs for normal path have been created in section 7.21.2. It
configures among these 128 VOPs with each of the 2K traffic paths.

e Enables the Q-3 configuration map using gsTmcEnqueueEnable().

o Communicates with XP to indicate that Q-3 configuration is done.

Page 59/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

MSA Application Note

HCL TECHNOLOGIES | E

RR

N

e

QMU

RR

ST

Discard queue

|

¥ XX

LL

LevelO
scheduler
(3 inputs)

2 Levell
schedulers
(Each having
1k inputs)

‘ 128 different
VOPs

(For each CP

, XP and FP)

2K Level2
schedulers

1]

| 8K TQs
(4 TQs per
port)

DiffServ QoS
-2 AF queues
-1 EF queues
-1BE queues

Token Bucket
Discard Block

Egress

RED Discard
Block

Ingress

IntServ QoS

- Guaranteed
load queues

- Controlled
load queues

IP QoS
Classification

\i‘ IP QoS queue

Figure 6- Q-3 configuration map for IP DiffServ and IntServ

Page 60/ 146

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

7.11.3 RC

7.11.3.1 Initialization

The IP QoS Classifier component does the following things during its initialization:
Creates the input and output threads.

Initializes the flow table lookup.

Communicates with XP to indicate that it has enabled.

Jumps to the ingress thread.

7.11.3.2 Ingress Thread

IP packet descriptor is de-queued from IP QoS queue. Packets coming to the IP QoS
CPRC already have the complete IP header. The first 64 bytes of the packet contain all
the protocol headers. They are DMA transferred into DMEM buffer using
bsBufferRead(). The specific header fields that should be used to determine the traffic
category (that is, the flow) for the IP packet are specified in a Multi Field (MF) mask.
They are as shown in Figure 7.

Biig: 0 1 ? 3 1 5 6 !

I—I—b Unusad

I Llse egress pan number

% Lse proloool Bald

B Use source TCPIUDP porl

I Use source P address

I Usa dest TCRUDOR parl

I Usa dest IP address

Figure 7- DiffServ Multi field bitmask

The header fields specified by the MF mask are concatenated to form up to a 14-byte
TLU lookup key. An exact match table (IP flow table) is maintained in TLU table, to
match these keys to a flow id and a DiffServ PHB.

Ingress performs the following functions:
o Dequeues the IP packet descriptor from IP QoS queue.
e Gets the port and QoS queue from the incoming descriptor enqueued by IP
component. This QoS queue denotes the Q-3 base traffic queue. IP component
would have got the QoS queue by performing port lookup and sent it into IP QoS
classifier component.
e Forms the 14-byte TLU lookup key based on the 5-tuple fields in the IP packet
header.
e Launches flow table lookup.

Page 61/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

o Repeats the above steps for all packets that are present in IP QoS Queue.

7.11.3.3 Egress Thread

After launching a flow table lookup, the context switches from ingress thread to egress
thread, which waits for the results of the flow table lookup. It performs the following
functions.
e Waits for the flow table lookup to be completed.
e Gets the PHB and traffic queue offset based on lookup result. Flow table gives
the appropriate traffic queue offset corresponding to the QoS treatment. The QoS
treatment will be configured as DiffServ or IntServ in the flow table. In the case of
DiffServ, it will denote the AF or EF or BE. Whereas in the case of IntServ it will
denote guaranteed service or control load service.
Determines the destination traffic queue as follows:
Destination traffic queue = QoS queue + traffic queue offset
QoS queue will be determined from incoming IP descriptor in Ingress function.
For AF and EF, it determines the appropriate DS code point, updates it in IP
header (stored in SDRAM) using a bsBufferwWrite() function and adjusts the IP
checksum accordingly.
e Enqueues the packet descriptor into destination traffic queue using
gsEnqueueExt().

7.11.4 Q-3 Functionality

IP QoS classifier component en-queues the packet into Q-3 traffic queue to apply
various QoS parameters (DiffServ or IntServ). IP component performs the port table
lookup to get the base traffic queue corresponding to the port and sends this queue
information to IP QoS classifier component if QoS treatment is needed. IP QoS classifier
then determines the destination traffic queue based on the offset in flow table and finally
enqueues the descriptor into Q-3 traffic queue. Q-3 TMC provides marking/dropping,
policing and traffic shaping for the packet based on configured traffic parameters. Q-3
TMC will enqueue the conformant packets into QMU queue via VOPs. Non-conformant
packets will either be discarded using discard path or marked as low priority. Traffic
parameters and scheduling in Q-3 is described in host configuration section 7.11.2.

7.11.5 Data Structures

7.11.5.1 Descriptor information
IP descriptor will be used as given in section 7.8.3.3.

7.11.6 Flow Table
Each entry of the flow table has the following format:
Byte Offset 0 | 1 | 2 3
0 destlp
4 srclp

Page 62/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

8 destPort srcPort
12 protocol | egressPort maskBits | phb
16 flowld gueueOffset
20 pad |
The description of each field is as follows:
Destlp: destination IP address of the packet
Srclp: Source IP address of the packet
DestPort: TCP/UDP destination port of the packet
SrcPort: TCP/UDP source port of the packet
protocol: protocol (TCP/UDP) in the packet
egressPort: output port
maskBits: number of significant bits in the key
phb: per hob forwarding behavior to apply. It will denote DiffServ (AF/EF/BE)
or IntServ (Guaranteed service/Control load service).
flowld: Flow Id that defines packet flow

gueueOffset: Traffic queue offset

7.11.7 Issues/Enhancements

e Since total number of channels to be supported is 2048 so egressPort field will
require 11 bits but egressPort field in flow table lookup key is of size 1-byte because
of key size limitation (max 14 byte).

7.12 FR processing —switching (CP11)

The frame relay processing for the application is distributed into two CPs (CP11 and
CP3). CP11 will perform the FR switching and CP3 will perform the FR encapsulation.
All the packets, which belong to FR, will be queued to CP11 and it decides whether the
packet needs the MPLS, IP or FR processing. The packets that originate from MPLS or
IP module, which have to pass through FR interface, need FR header insertion, which
will be carried out by CP3.

CP11 is used to re-circulate the FR frames destined for TDM Tx for transmission. Its

main functions are:

e Launch lookup based on the DLCI value from the descriptor.

e Based on the response, en-queue the packets to the appropriate queue (IP or
MPLS) if needed.

o Perform the FR switching by properly modifying the FR header with the outgoing
DLCI value.

e Properly en-queue the modified buffer to the EgressQueue.

7.12.1 SDP

The SDP is configured for byte-level re-circulation. The SDP adds the FR header to the
frame. The functions provided by each of its component processors are described
below.

Page 63/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

7.12.1.1 RxByte

The RxByte processor fills the extract space based on the descriptor information sent by
the TxByte processor and streams the modified payload to the output thread (receive
side) of the RC .The RxByte processor performs the following functions as part of the FR
recirculation:

e Waits for a receive scope to be available.

e Receives the bytes from the TxByte processor.

e The first two bytes of the payload contain the egress_queue. This is written to
the extract space. The next two bytes contain the outgoing port information
and buffer type information. This will also be written to the extract space.

e The packet length is indicated in the next two bytes. This is written to the
extract space and header ready is indicated in the rxStatus register.

e Stream the remaining payload to DMEM.

o When data9 (i.e., ninth bit is set in the incoming payload) is received switches
scope.

7.12.1.2 TxByte

The TxByte processor modifies the FR header based on the information given by the
input thread (transmit side) of RC and transmits the remaining payload data to RxByte
processor. TxByte processor performs the following functions as part of the FR re-
circulation:

o Reads the payload from DMEM until Data9 is observed.
Reads the outgoing DLCI value from the merge space and modify the existing value
in the packet with the new value.

e Set the congestion control information fields in the FR header to zero.

e Transmit the egress_queue, port buftype and length of the packet before the
payload data so that the RxByte receives it and places in the extract space.

e Sends the FR payload data to RxByte.

e Switches scope and waits for next packet to be available.

7.12.2 RC

The RC manages the FR re-circulation. All CPs that want to transmit FR frames, en-
gueue their packets to the FR re-circulation CP so that the FR header is modified in the
frame before transmission.

7.12.2.1 Initialization

The initialization component initializes the data structures and registers used by the RC.
The following activities are done during the initialization:

e Initializes the buffer pools.
e Creates input and output threads.
o Initializes the FR table lookup slots.

Page 64/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

7.12.2.2 Input Thread

The Input thread services all the FR traffic which needs the FR header modification in
the frame is queued here. This passes the frame to SDP.

o De-queues the descriptor information.

e Launch a lookup based on the DLCI value from the descriptor. If the lookup fails,
silently drop the packet.

e While waiting for the response, process the next packet from the queue.

e Based on the egress_port (from the lookup response), en-queue the packet to IP or
MPLS queue.

o Depending on whether the packet goes to IP or MPLS build the descriptor with the
appropriate fields.

e For MPLS the fields that need to be filled in the descriptor are: port_buftype,
LabelsSwap, LabelPush, EgressQueue, HopCount, InlfType_action

e For IP only port_buftype is filled in the descriptor.

e |f the packet is FR switched, fill the merge space with outgoing DLCI value (from the
lookup response) and header information.

o Initiates payload transfer from SDRAM to DMEM and switches context to the next
thread.

e Loops to the beginning to wait for another descriptor.

7.12.2.3 Output Thread

The output thread handles the incoming packets from the RxByte processor.

e Waits for the header processing completion on the RxByte processor indicated by
L1Done in the rxStatus register.

o Allocates new buffer and initiates the payload transfer from DMEM to the SDRAM.

o Creates the descriptor with buffer handle, buffer length and port_bufType
information.
Enqueue the descriptor to the appropriate destination based on the egress_queue.

e Switches context to the next thread.

e Loops to the beginning to wait for another scope to be available.

7.12.3 Data Structures

The merge space and Extract space structures used in the FR processing are explained
below:

7.12.3.1 Merge space

The RC writes information needed for FR encapsulation and descriptor fields to be used
by Rx CPRC, into merge space. TxByte processor does FR encapsulation and sends
the descriptor fields to RxByte. The data structure has the following format:

Byte Offset 0 1 2 3

0 FrHeader

4 port_bufType | Length

Page 65/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

8 | EgressQueue | Pad |

The explanations for the above-mentioned fields will be as follows

e FrHeader: The outgoing DLCI value.

EgressQueue: specifies the final queue.

port_buftype — Outgoing interface information and the buffer type
Length — Length of the packet.

Pad: unused.

7.12.3.2 Extract Space

RxByte processor writes descriptor information into extract space for the RC to use in its
processing. The data structure has the following format:

Byte Offset 0 | 1 2 | 3
0 EgressQueue Pad
4 port buftype Length

The explanations for the above-mentioned fields will be as follows
o EgressQueue: specifies the final queue.

e port_buftype: Outgoing interface information and the buffer type
e Length: Length of the packet.

e Pad: unused.

7.12.3.3 Descriptor information for FR

The TDM RX module will fill the FR descriptor information to be used by the FR re-
circulation module for processing. The format of the descriptor will be as follows:

Byte Offset 0 | 1 | 2 | 3
0 BufHandle
4 Length | PortBufType
8 FrHeader

The explanations for the above-mentioned fields will be as follows
o BufHandle: Handle of the buffer being re-circulated.
e Length: specifies the length of the buffer.
o Port_bufType: a bitmask is defined as follows:

o b15-5: port — the output port on which this datagram to be transmitted.
o b4-0: bufType — the type of buffer being re-circulated and the egress port type
(could be BT_IPV4, BT_MPLS_FR,BT_FR)
e FrHeader: specifies the DLCI value and the congestion control Information.

7.12.3.4 Ring Bus Slots
FR uses these slots

e FR Request slot 1
e FR Response slots 2,3

Page 66/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

7.12.4 Issues/Enhancements

e At present the congestion control information in the FR header is not processed.

o The two bytes address format of DLCI (10-bit) is supported now.

e FR module can be Extended to support three (16-bit DLCI) and four bytes (23-bit
DLCI) address format of DLCI.

7.13 MPLS (CP12)

CP12 implements the MPLS component for the MSA application. This component
performs MPLS lookup and operation (MPLS actions performed for label encapsulation
or label switching). The MPLS operation is done based on the MPLS entry information
(labelSwap, labelPush, MPLS action, hopCount) maintained in the different TLU tables.

The tables mentioned below maps the input frame/packet type (PPP / ATM / FR / IP) to
the TLU table in which MPLS entry is maintained.

Input frame TLU table CP from which Notes
/packet type lookup
launched

PPP MPLS Table MPLS CP This table is also used for POP action
(This is (which needs additional label lookup
defined in the based on the next label in the stack)
section in the case of MPLS packet over ATM
7.18.8) and FR

ATM ATM VC table | TDM CP

FR FR Table FR CP

IP IPv4 Routing | IP CP This table handle MPLS ingress
table packets

The top label of the MPLS packet maps to VPI/VCI for ATM cell and DLCI for FR frame.
Hence, the lookup response of ATM VC table and FR table is the MPLS entry
information.

7.13.1 SDP

The SDP is configured for byte level re-circulation. The SDP re-circulates the packet to
remove PPP/FR header, sends descriptor information to be used by Rx CPRC and to
perform MPLS operation.

7.13.1.1 TxByte

The TxByte processor, removes the PPP/FR header, sends descriptor information to
RxByte and performs MPLS operation.

Page 67/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

HCL TECHNOLOGIES | E

MSA Application Note

As MPLS operation involves addition and removal of shim header fields (LabelSwap,
LabelPush, BOS, ttl) to the packet, TxSDP is the appropriate place chosen to perform
this functionality.

The TxCPRC writes information about the MPLS data needed for MPLS operation and
the descriptor information (to be queued to the respective module based on the egress
port type) into merge space. The data structure is defined in section 7.13.3.1. TxByte is
not configurable through control space.

The detailed flow of Transmit Byte processing is described below:

e Wait for Transmit scope from the CPRC.

e Removes FR/PPP header(if any) based on the header length value set from
Transmit CPRC.

¢ Sends the following descriptor information in merge space to the RxByte,

o rxAlgorithm
o Port_bufType (15:5 — egress port, 4:0 — egress bufType)
o Packet header (CellHeader for ATM or DLCI for FR) and egressQueue.

e MPLS Operation is done based on the MPLS command, whose functionality is
described below:

o

@)

Get the MPLS command and TTL value from the merge space and save the
same to the temporary registers.

Check for POP command. If the command is POP, Get the number of labels to
be removed. Remove the shim header and repeat the removal of header until the
count reaches the number of labels to be removed. Jump to check for
SWAP_PUSH command.

Check for SWAP_PUSH command. If the command is SWAP_PUSH, Perform
the PUSH operation followed by a SWAP. For a PUSH operation, Construct
MPLS header using ‘labelPush’ from merge space, the BOS bit with zero as the
value and the stored TTL value. Finally, Jump to SWAP operation. Else, Jump to
check for SWAP command.

Check for SWAP command. If the command is SWAP, Send the ‘labelSwap’
from merge space, the old BOS bit and the stored TTL value. Save the old BOS
bit and Jump to check for the presence of shim header(s). Else, Jump to check
for PUSH_PUSH command.

Check for PUSH_PUSH command. If the command is PUSH_PUSH, Perform, a
PUSH operation and do a next PUSH by jumping to PUSH operation. Send the
‘labelPush ‘from merge space, the BOS bit with zero value and the stored ttl
value else, Jump to check for PUSH command.

Check for PUSH command. If the command is PUSH, Send the label to be
pushed from merge space, the BOS bit (set only for the packets received from
IPv4 module) and the stored TTL value. Jump to check for the presence of shim
header(s). Else, Jump to check for the presence of shim header(s).

Check for the presence of shim header based on the BOS bit saved during the
MPLS operation. If BOS bit is not set, (i.e. presence of one or more shim header)
Stream the shim header until the last shim header is reached. Update the TTL
from merge space for all shim header(s). Else, Jump to check for POP_IPv4
command.

Page 68/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

o Check for POP_IPv4 command based on the Tx ALG value set to
BT_MPLS_IPv4.If POP_IPv4, update the ttl and IP checksum from the merge
space to the IP header else jump to stream the remaining payload.

e Stream the payload until the Data9 set in the last byte.

Sends an end of packet byte with Merge9 set.

e Switches scope and waits for next packet.

7.13.1.2 RxByte

The RxByte processor, extracts the descriptor information and performs NULL Label
encapsulation for MPLS packet over ATM / FR.

The RxByte processor writes information about the descriptor into extract space for the
RxCPRC to use in its processing. The data structure is defined in section 7.13.3.2.
RxByte is not configurable through control space.

The detailed flow of RxByte processing is described below:

e \Waits for a receive scope to become available.

e Receives descriptor information from TxByte and places it in extract space.

o If RxAlgorithm is set to MPLS_NULL_LABEL, the top label is passed with the NULL
label (only for MPLS packet over ATM/FR)
Streams the remaining bytes to DMEM

e Switches scope and waits for another to become available.

7.13.2 RC

The MPLS component uses two threads to perform its task, namely, an input thread and
an output thread. The initialization code starts the two threads. Each of these is
described in the following sections.

7.13.2.1 Initialization
The MPLS component does the following things during its initialization:

Initializes the buffer pools.

o Allocate the buffers for the receive path. There are two data scopes for handling
inbound packets. Allocate a buffer for each data scope and setup the registers for
receiving data.

o Allocate the buffers for the transmit path, which are never used. This is used to

simplify the logic of freeing buffers in the input thread.

Creates the input and output threads

Initializes the MPLS Table lookup to be launched from TxCPRC.

Initializes both scopes by giving the SDP ownership.

Enable the SDP.

Jumps to the first thread.

Page 69/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

7.13.2.2 Input Thread

The Input thread fills the merge space with the MPLS forwarding information for MPLS
operation and the descriptor fields to be passed to RXCPRC for further processing. The
merge space information is obtained from the MPLS entry maintained in different TLU
tables. (Refer section 7.18.8)

The detailed flow of Input thread processing is described below:

o Wait for a descriptor to be present in its queue then de-queues it. The descriptor is
filled by any of the following CP components:

o TDM CP for MPLS over ATM packets.

o TDM CP for MPLS over PPP packets.

o FR CP for MPLS over FR packets.

o IP CP for IP packets entering MPLS domain.
Note: For all cases except PPP packets and POP operations, the descriptor holds the
necessary information to fill the merge space.

Read the first 64 bytes of SDRAM buffer to get the Label Stack.
Adjust the buffer offset pointing to the start of Label stack.

Get the input port type. (ATM /FR/PPP/IPv4) from the descriptor.

If the input port type is ATM/FR/IPv4, perform the following functions:

o Get the TTL from the incoming packet (If the input port type is ATM/FR, TTL is
extracted from the shim header and is extracted from IP header if the input port
type is Ipv4).

Decrement the TTL value with the descriptor field ‘hopCount’

Save the updated TTL value and port_buftype.

Get the MPLS action and check for POP command.

If POP command and Label stack is with more than one MPLS label, then set a
flag to perform additional label lookup. For all other cases, save the MPLS
information (labelSwap, labelPush, cmds, ttl, port_bufType) to be copied in
merge space.

O 0O 0O

e If the input port type is PPP or POP command (which needs additional lookup)
perform the following.

o Launch the lookup with the MPLS label in the shim Header.

o Wait for the MPLS lookup to complete and if the lookup fails, drop the packet.

o Save some of the merge space information (port_bufType, TTL) from the
lookup response.

o For POP action, repeat the MPLS Label lookup. The number of POP
operations to be performed is stored in the 3 least significant bits of the cmds
field of merge space. In addition, more than one MPLS operation like POP
and SWAP, POP and PUSH are also stored in cmds field. (Refer merge
space structure for more details)

o Based on the MPLS action, save the remaining merge space information
(cmds-MPLS command, labelSwap, labelPush).

Page 70/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

o If the egress-port type is ATM /FR, fill the egressQueue and the header information
(Cell Header for ATM and DLCI for FR).

o Fill the txAlgorithm with egressBufType

o Fill the rxAlgorithm with MPLS_NULL_LABEL for MPLS packet destined to ATM /FR
interface.

e For the MPLS command ‘POP_IPv4_LOOKUP’, form the IP checksum adjusted for

the new TTL value.

Fill the headerLen with the negation of packet header length.

Waits for a transmit scope to be available from the SDP.

Fills in merge space from the saved merge space.

Waits for the previous DMA transfer to complete.

Begins the DMA transfer for the current buffer being processed.

Switch context to the next thread.

Loops to the beginning to wait for another descriptor.

7.13.2.3 Output Thread

The output thread handles sending the descriptor to the appropriate modules based on
the egress port type (ATM /FR /PPP/IPv4).

The detailed flow of Output thread processing is described below:

Waits for a scope to become available from the SDP.

Fills in a descriptor using information from the extract space.

Waits for the payload transfer to complete.

Allocates new buffer and initiates payload transfer from DMEM to the SDRAM.
Sends the descriptor to the appropriate destination based on the egress port
type.

Switches context to the next thread.

e Loops to the beginning to wait for another scope to be available

7.13.3 Data Structures

7.13.3.1 Merge space

The RC writes information needed for MPLS operation and descriptor fields to be used
by Rx CPRC, into merge space. TxByte processor does MPLS operation and sends the
descriptor fields to RxByte processor. The data structure has the following format:

Byte Offset 0 1 2 3
0 Pad txAlgorithm cmds ttl
4 Label Push
8 Label Swap
12 headerLen | rxAlgorithm | port_bufType
16 appData
20 appData

e Pad-— unused

For More Information On This Product,
Go to: www.freescale.com

Page 71/ 146

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

e TxAlgorithm — holds the egressbuftype based on which TxByte identifies the
MPLS action ‘POP_IPV4_LOOKUP’ and the necessary action is carried out (i.e.
updation of ttl and IP checksum in IP header is performed).

e cmds — MPLS command used by TxByte Processor for MPLS operation. Input
thread sets these values based on the MPLS actions (For, POP_IPv4_LOOKUP
action the POP command is set). The 3 least significant bits are used by POP
command to store the number of labels to be removed. Possible enumerated
values are shown below:

typedef enum {
MPLS_CMD_NONE = 0x00,
MPLS_CMD_ADD = 0x10,
MPLS_CMD_PUSH_PUSH = 0x08,
MPLS_CMD_SWAP = 0x20,
MPLS_CMD_SWAP_PUSH = 0x40,
MPLS_CMD_POP = 0x80

} MplsCommands;

e ttl —time to live
o labelPush —label to be added.
o |abeSwap — Label to be swapped.

The above fields are used for MPLS operation in TxByte processor.

o headerLen — Length of the header (for PPP and FR) bytes to be removed. It
holds the negative value of the header length.

The descriptor fields sent to RxByte processor are mentioned below:

e rxAlgorithm — NULL label is sent for MPLS packet over ATM and FR, if this
field is set to 0x10 by MPLS Tx CPRC.

e port_bufType — a bitmask defined as follows:
o b15-5: port — the output port on which this datagram to be transmitted.
o b4-0: bufType — the type of buffer being re-circulated (could be

BT_MPLS_PPP, BT_MPLS_ATM, BT_MPLS_FR, BT_MPLS_IPv4)
o appData — application specific data as defined below

The appData field has meaning specific to the processing block to which it has been en-
gueued. There are several formats for the appData field.

The segmentation appData field for ATM has the format: specified in the Section 7.4.3.3

The appData field for FR has the following format:

Byte Offset 0 | 1 | 2 | 3

0 frHeader

4 egressQueue | pad

Page 72/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

o frHeader — DLCI value
e egressQueue — Queue for the egress interface
e pad -unused

7.13.3.2 Extract Space

RxByte processor writes descriptor information into extract space for the RC to use in its
processing. The data structure has the following format:

Byte Offset 0 | 1 2 | 3
0 pad port_bufType
4 AppData
8 AppData

e pad — unused
e port_bufType — a bitmask defined as follows:
o bl15-5: port — the output port on which this datagram to be transmitted.
o b4-0: bufType — the type of buffer being recirculated (could be
BT_MPLS_PPP, BT_MPLS_ATM, BT_MPLS_FR, BT_MPLS_IPv4)
e appData — application specific data as defined below

The appData field has meaning specific to the processing block to which it has been
engueued. There are several formats for the appData field.

The segmentation appData field for ATM has the format specified in the section 7.9.3.3
The FrDescData appData field for FR has the format: specified in the section 7.13.3.1

7.13.3.3 Descriptor information
MPLS Descriptor is filled by the following CP components.

TDM CP for MPLS over ATM packets.
FR CP for MPLS over FR packets.
TDM CP for MPLS over PPP packets.
IP CP for IP ingress packet.

Note: For all cases except PPP packets and POP operations, the descriptor holds the
necessary information to perform MPLS operation.

Byte Offset 0 | 1 2 | 3
0 labelSwap labelPush
4 hopCount | inlfType action egressQueue
8 appHdrData
12 vclndex | Pad
16 Pad
20 Pad
24 Pad

Page 73/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

labelPush — Label to be added.

labeSwap — Label to be swapped.

hopCount — value to be decremented to the ttl.
inlfType_action // 0-3 MPLS action 4-7 inlfType

The enumerated values for MPLS action is provided in Section 7.13.3.1. The
enumerated values for input interface type are shown below.
typedef enum {

MPLS_PPP=0x10,

MPLS_ATM=0x20,

MPLS_FR=0x30,

MPLS_IPv4=0x40

} portType;

e egressQueue — egress queue of the packet.

e appHdrData - header information (Cell Header for ATM and DLCI for FR).
e vcindex — ndex used by AAL-5 SARs to index their tables.

e Pad -Unused.

7.13.3.4 Ring Bus Slots
MPLS uses these slots:

MPLS request slot 0
MPLS response slot 0,1

7.14 MLPPP (CP 13)

CP13 implements ML-PPP for the application. This component segments datagrams into
fragments for transport over ML-PPP bundles and provides multiple classes of service.
The component also reassembles ML-PPP fragments and forwards them to the next
processing block. This CP uses the ML-PPP remainder table discussed in section 7.18.2

7.141 SDP

The SDP is configured for byte re-circulation and provides byte level processing of ML
PPP fragments including header parsing and generation. RxBit, RxSync, and TxBit are
not used.

7.14.1.1 RxByte

The RxByte processor receives ML-PPP fragments from the TxByte processor and

handles them differently depending on whether segmentation or reassembly is needed.

In the reassembly direction, the RxByte processor does the following:

e Waits for and receives the reassembly operation code byte and puts it in extract
space.

e Receives control information (port, index, fragType, length) and puts it in extract
space.
For SOM fragments, also receives the bufType and puts it in extract space.

o Indicates header processing is done.

Page 74/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

HCL TECHNOLOGIES | E

MSA Application Note

For EOM fragments, streams all payload bytes to DMEM, switches scope, and waits
for next operation code.

For non-EOM fragments, streams ‘length’ bytes of payload to DMEM.

Streams any remaining payload bytes to the ring bus Tx message register.

When data9 is received, fills in count of remaining bytes in ring bus Tx message
register and initiate TLU write command to send the remainder bytes to the ML-PPP
remainder table.

Switches scope and waits for next operation code.

In the segmentation direction, RxByte processor does the following:

Waits for and receives the segmentation operation code and puts it in extract.
Receives the port number and puts it in extract.

Indicates header processing is done.

Receives the ML-PPP encapsulated fragment.

Writes the payload to DMEM.

When data9 is received, switches scope and waits for the next operation code.

The RxByte processor communicates with the RC through extract space. Extract space
is described in section 7.14.3.1. The RxByte processor is not configurable through its
control space.

7.14.1.2 TxByte

The TxByte processor transmits ML-PPP fragments to the RxByte processor. In the
reassembly direction, the TxByte processor does the following:

Waits for scope to be available

Send the reassembly operation code to RxByte processor.

Sends control information to RxByte including port, index, and fragType from merge
space.

Removes any HDLC, PPP, or ML-PPP encapsulation from the fragment.

For SOM fragments, parses the reassembled PPP protocol field and maps it to the
buffer type.

Calculates the length of the fragment including for non-SOM fragments, but not
including discarded framing bytes.

Sends the length, and if necessary send bufType to RxByte processor

Sends any remainder bytes from merge space to RxByte processor.

Streams the payload from DMEM to RxByte processor.

Transmits data9 with a dummy byte to indicate end of packet.

Switches scope and waits for scope to be available again.

In the segmentation direction, TxByte processor does the following:

Waits for scope to be available

Sends the segmentation operation code to RxByte processor.

Sends the port to RxByte processor.

Sends the HDLC/PPP/ML-PPP header from merge space to RxByte processor.
Reads payload from DMEM and sends the number of bytes specified in merge space
to RxByte processor.

Page 75/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

¢ Transmits data9 with a dummy byte to indicate end of packet
e Switches scope and waits for scope to be available again.

The TxByte processor communicates with the RC through merge space. Merge space is
described in section 7.14.3.2. The TxByte processor is not configurable through its
control space.

7.14.2 RC

The RC manages the en-queuing and de-queuing of ML-PPP fragments and IP
datagrams. It also maintains state information necessary for segmentation and
reassembly. In addition, the RC schedules packets for segmentation.

7.14.2.1 Initialization

The initialization component initializes the data structures and registers used by the RC.
Specifically, it does the following:

¢ Initializes the buffer pools.

Creates the contexts for the input, output, and scheduler threads.

Initializes the ring bus Tx message registers used by RxByte processor.

Sets up the DMA engines and initializes the SDP scopes.

Enables the SDPs.

7.14.2.2 Input Thread

The input thread monitors the input queues and processes received descriptors

differently depending on whether segmentation or reassembly is required. In both cases,

the input thread does the following:

e Waits for queue status to indicate its queue is non-empty.

o De-queues the ML-PPP packet descriptor from the QMU queue.

e Maps the TDM port number from the descriptor to a ML-PPP bundle via the port to
ML-PPP bundle map data structure. This structure is described in section 7.14.3.3

For segmentation, the input thread de-queues IP or NCP packets and en-queues
descriptors to the soft scheduler. Specifically, it does the following:
e En-queues descriptor to MC queue based on bundle and class from descriptor. The
MC queues are soft queues as described in Section 12.2
o Adds the MC gueue to the active queue list for the bundle.
Adds the bundle to the active queue list.

For reassembly, the input thread de-queues ML-PPP fragments, possibly encapsulated
in HDLC or PPP and sends them to the SDP for re-circulation. Specifically, it does the
following:

o Retrieves the reassembly state information from DMEM, based on ML-PPP bundle
and MC class.

o If the sequence number is not in order, then it places the descriptor in a linked list.

e |f the sequence number is expected,

Page 76 / 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

HCL TECHNOLOGIES | E

MSA Application Note

o For non-SOM fragments, launch lookup into ML-PPP remainder table to get
remainder bytes.

Waits for scope to be available from the SDP.

Writes reassembly state information and a subset of the ML-PPP header to
merge space.

Writes the remainder bytes and length to merge space, if necessary.

Waits for the previous payload transfer to complete.

Initiates payload transfer from SDRAM to DMEM.

Updates reassembly state in DMEM.

If linked list has an expected sequence number in it, repeat procedure for that
fragment.

O O

O 0O O OO

7.14.2.3 Scheduler Thread

The scheduler thread services the MC queues for each bundle. It de-queues descriptors
and sends buffers to the SDP for segmentation. Specifically, it does the following:

Gets the next active bundle from the active bundle list.

Gets the next active class from the active queue list for bundle.

Uses DRR to determine from which class to send a fragment.

Retrieves segmentation state for the bundle and class from DMEM.

If no segmentation in progress, de-queues from the class queue of the ML queue
table.

Waits for scope to be available from the SDP

Increments sequence number for this bundle and class.

Determines which link of the bundle should receive the fragment.

Fills in merge space with ML header.

Waits for previous payload transfer to complete and frees buffer if it was an EOM.
Initiates payload transfer from SDRAM to DMEM.

Updates segmentation state in DMEM.

7.14.2.4 Output Thread

The output thread waits for a receive scope to be available for the SDP and then
processes the ML-PPP fragment differently depending on the operation code in extract
space. For segmentation, the output thread receives ML-PPP fragments from the SDP
and en-queues them to their destination queue. Specifically, it does the following:

Waits for scope to be available from the SDP

Initializes a payload transfer from DMEM to SDRAM.

Waits for the payload transfer to complete.

Returns the scope to the SDP

Builds a descriptor and en-queues it to the destination queue based on the port field
in extract space.

The descriptor format is specified in section 7.4.3.3.

Allocates a new buffer for the next time.

For reassembly, the output thread receives ML-PPP fragments from the SDP and
coordinates their transfer to the correct location in SDRAM. When reassembly is

Page 77/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

o HCL TECHNOLOGIES |i-if= K
MSA Application Note

complete, the thread en-queues a descriptor to a destination queue based on the
protocol of the reassembled frame. Specifically the thread does the following:

e Waits for scope to be available from the SDP

Updates reassembly state information

Initializes payload transfer with buffer and offset specified in extract space.

Waits for the payload transfer to complete.

Returns the scope to the SDP.

For EOM fragments, builds a descriptor and en-queues it to the destination queue
based on the buffer type in extract space.

o Allocates a new buffer, if necessary, for next time.

Because the RX DMA engine and supported hardware is optimized to transfer 64B
chunks of data, sometimes it is necessary to initiate two payload transfers. The first will
be from a non-64B aligned offset and used the WrCB to transfer payload bytes from
DMEM to SDRAM, once this is complete; the normal transfer using the Rx control block
is initiated.

7.14.3 Data Structures

7.14.3.1 Extract Space

When reassembling, RxByte processor writes information about the fragments into
extract space for the RC to use in its processing. The data structure has the following
format:

Byte Offset 0 1 2 3
0 opCode Port Index fragType
4 length bufType pad

opCode - indicates reassembly

port — port on which fragment was received

index — concatenation of ML bundle and MC class

fragType — type of fragment indicated in ML header (SOM, EOM, COM, FOM)

length — number of payload bytes to write to DMEM (only valid for non-EOM

fragments)

e bufType — the buffer type of the reassembled PPP frame (only valid for SOM
fragments)

e pad - unused

When segmenting, RxByte processor writes information about fragments to extract
space for the RC to use in its processing. The data structure has the following format:

Byte Offset 0 1 2 | 3

0 opCode port pad

e o0pCode - indicates segmentation
e port — port on which the fragment was received

7.14.3.2 Merge Space

When reassembling, the RC writes information about ML-PPP fragments to merge
space for TxByte processor to use in its processing. The data structure has the following
format:

Page 78/ 146
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

MSA Application Note

HCL TECHNOLOGIES | E

Byte Offset 0 1 2 3
0 opcode port index fragType
4 length shortseq pad
12 Remainder [0..3]
16 Remainder [4..7]
20 Remainder [8..11]
24 remainder[12..14] | pad

opCode — indicates reassembly

port — port on which fragment was received

index — concatenation of ML bundle and MC class

fragType — type of fragment indicated in ML header (SOM, EOM, COM, FOM)
length — number of payload bytes in the fragment

shortSeq — boolean indicating if this fragment uses short sequence numbers
pad — unused

remainder[15] — remainder bytes to be sent before payload

remainderLen — number of remainder byte present in merge space

When reassembling, the RC writes information about ML-PPP fragments to merge
space for TxByte processor to use in its processing. The data structure has the following
format:

Byte Offset 0 1 2 | 3
0 opCode port length
4 headerLen header[0..1]
8 header[2..5]
12 header[6..9]

opCode - indicates segmentation

port — port on which packet was received

length — negated length of payload bytes to send in fragment
headerLen — negated length of the header to prepend to fragment
header[10] — header to prepend to fragment

7.14.3.3 MIPppPortBundleMap

This data structure is an array of bytes. The length of the array is