
1 Introduction
The Successive Approximation Register (SAR) Analog
Digital Converter (ADC) supports run-time hardware built in
self test to verify the operation of the ADC. The ADC self test
feature supports the testing of power supply integrity and
structural component integrity, e.g. capacitors, switches, and
comparators etc. The goal of this feature is to catch and flag
any run-time catastrophic errors leading to ADC functional
failure. The ADC self test includes two different self tests:

• Supply self test: Also referred to as algorithm S it is
used to verify the bandgap, supply (VDD_HV_ADV)
and reference (VDD_HV_ADR) voltages

• Capacitive self test: Also referred to as algorithm C it is
used to to check for opens or shorts in the capacitive
array

This document details supplemental information required to
operate the ADC self test feature. Two use case samples are
also given to help users understand how to program the ADC
self test feature.

2 ADC Self test feature
description

Freescale Semiconductor Document Number: AN5015

Application Note Rev 0, 09/2014

MPC574xP ADC Self Test
by: Arun Kumar, Sanjoy Dey, and Jamaal Fraser

© 2014 Freescale Semiconductor, Inc.

Contents

1 Introduction..1

2 ADC Self test feature description............. 1

3 ADC Self test parameters.................... 3

4 Considerations for software based
comparison.. 4

5 Sample code............................... 6

For safety devices used in very critical applications it is important to check at regular intervals that the ADC is functioning
correctly. For this purpose the self testing feature has been incorporated inside the ADC. The self tests use analog watchdogs
to verify the results of the self test conversions. The upper and lower thresholds of these watchdogs are saved in the UTest
flash area. Before running the self test the user must copy these values from the UTest flash to the Self Test Analog
Watchdog Registers (ADC_STAWxR) or directly program their own values into the ADC_STAWxR registers. The ADC
also have watchdog timers that can be used to monitor the sequence of the self test algorithm and ensure that it completes
within a safe time period.

Two types of self testing algorithms have been implemented inside the ADC:
• Supply self test (algorithm S): It includes the conversion of the internal bandgap voltage, ADC supply voltage, and

ADC reference voltage. It includes a sequence of three test conversions (steps S0-S2) that should be executed
sequentially.

• Capacitive self test (algorithm C): It includes a sequence of 12 test conversions (steps) which set the capacitive
elements comprising the sampling DAC capacitors.

The ADC implements the following functions in order accomplish self testing:
• An additional test channel dedicated for self tests
• Signals to schedule self test algorithms using configuration registers
• Monitors the converted data using analog watchdog registers and flags the error at the output port of the ADC (for the

Fault Collection and Control Unit (FCCU)) in case any of the algorithms fail

See Figure 1 below.

Figure 1. ADC block diagram with self test feature

ADC Self test feature description

MPC574xP ADC Self Test, Rev 0, 09/2014

2 Freescale Semiconductor, Inc.

https://www.nxp.com/products/processors-and-microcontrollers/power-architecture/mpc5xxx-microcontrollers/ultra-reliable-mpc57xx-mcus/ultra-reliable-mpc574xp-mcu-for-automotive-industrial-safety-applications:MPC574xP?utm_medium=AN-2021

3 ADC Self test parameters
The ADC uses two types of parameter settings to define the ADC self test operation:

• Sample phase duration settings programmed into the INPSAMP_S (algorithm S) and INPSAMP_C (algorithm C) bit
fields of the Self-Test Configuration Register (ADC_STCR1).

• Upper threshold (THRH) and lower threshold (THRL) values for the analog watchdogs programmed into the
ADC_STAWxR registers.

Sample phase duration settings define the amount of time required during the ADC sample phase. As noted above each
algorithm (C and S) has a dedicated register field to define the sample phase duration. The recommended settings are shown
in Table 1 below.

Table 1. Sample Phase Settings

Register field Recommended Setting

ADC_STCR1[INPSAMP_C] 0x18

ADC_STCR1[INPSAMP_S] 0x501

1. Recommended setting is for a longer sample time due to slow sample capacitor settling time at low temperature for S0
algorithm. This is not the register default.

The threshold values used by the analog watchdogs are stored in UTest flash and retrieved by the user application at
configuration time and loaded into ADC_STAWxR registers. Table 2 below defines the UTest flash mapping to the
corresponding ADC_STAWxR.

Table 2. Sample Values for ADC Self-Test Thresholds

Flash
Address

Value in
Flash

Registers Step THRH THRL THRH
(signed)

THRL
(signed)

0x004000D0 0xF75AF4DF STAW0R S0_3.3V 0x75A 0x4DF 1882 1247

0x004000D4 0xF4D0F2DB STAW0R S0_5.0V 0x4D0 0x2DB 1232 731

0x004000D8 0xF003F002 STAW1AR S1(INT) 0x3 0x2 3 2

0x004000DC 0xF3D9F1E3 STAW1BR S1(FRAC) 0x3D9 0x1E3 985 483

0x004000E0 0xFFFFFFF9 STAW2R S2 --- 0xFF9 --- 4089

0x004000E4 0xF010FFF0 STAW4R C0 0x010 0xFF0 16 -16

0x004000E8 0xF010FFF0 STAW5R C1-C11 0x010 0xFF0 16 -16

The recommended analog watchdog threshold values are set according to the expected and tested results with a clean
environment (noise introduction from external environment minimized) for ADC operation. In a more noisy set up running
the self test with these analog watchdog values may cause failures. To overcome the failures the user can relax the threshold
values if the needs of the application can tolerate the existing noise level. The more the threshold values are relaxed the more
the magnitude of true error that can pass. For example, looking at the values for the ADC_STAW4R and ADC_STAW5R
registers, THRH of 0x010 (16d) and THRL of 0xFF0 (-16d), means the algorithm C will fail for an error of magnitude
greater than (16/8 =2) 2LSB@12b. This is the recommended value for a clean environment. Similarly, THRH of 0x020 (32d)
and THRL of 0xFE0 (-32d) means the algorithm C will fail for an error of a magnitude greater than 4LSB@12b. So to pass
the self test in a noisy environment where the application can live with the noise level the thresholds can be relaxed from
+/-16 to +/-32 or as needed. However, it is preferable that the environment is cleaned up to match the expectation for better
operation instead of threshold relaxation. Relaxing the thresholds too much (more than +/-32) can lead to a false pass and is
not recommended for safety applications. Relaxation of the self test thresholds due to noise does not directly relate to normal

ADC Self test parameters

MPC574xP ADC Self Test, Rev 0, 09/2014

Freescale Semiconductor, Inc. 3

use conversions and it is not possible to tell what the noise impact to those measurements is with respect to the threshold
relaxation. The noise is application specific and not under control/judgment of the device. In this scenario not passing with
the default threshold values are caused by external noise and not by the constituent capacitors. Limits are relaxed knowing
that there is noise in the system that rides on top of the actual capacitor error and the magnitude of the noise component is so
high that limits need to be relaxed as a result. So in reality whenever tests are run environment noise will be there and if there
is any true shift of the capacitor error noise it will be added to this environment noise and should result in a violation of the
relaxed threshold limits. The self test is designed to catch and flag run-time and catastrophic errors. It is not able to and not
meant to test for specification limits.

4 Considerations for software based comparison
It is possible to implement software methods comparing the ADC self test converted results in Self Test Data registers
(ADC_STDR1/2) to the high threshold (THRH) and low threshold (THRL) values that are stored in UTest flash or
programmed into ADC_STAWxR registers.

Software based comparison methods allow the users to average two or more ADC converted data results which can reduce
the effects of system, ground, and/or power supply noise.

• Algorithm S step 0 (S0), algorithm S step 2 (S2) and all algorithm C steps (Cn) can be simply averaged using the
results present in STDR1.TCDATA after every conversion.

• For algorithm S step 1 (S1) both the integer data (STDR2.IDATA) and fractional data (STDR2.FDATA) are available
for each conversion so the user software must account for both of them.

There are two possible ways to account for S1 integer and fractional parts:
1. A logical comparison of IDATA and FDATA results against THRH and THRL
2. Calculated voltage comparison

These two methods are detailed in the following sections.

4.1 S1 Algorithm: Logical comparison

The user software can implement a logical step-by-step comparison of IDATA and FDATA results against THRH and
THRL. Since the S1 results are represented by both an integer part (IDATA) and a fractional part (FDATA) it is necessary to
consider a flow chart based approach to compare the S1 results against THRH and THRL.

Figure 2 below illustrates the logical requirements for comparing IDATA and FDATA results to THRH and THRL.

Considerations for software based comparison

MPC574xP ADC Self Test, Rev 0, 09/2014

4 Freescale Semiconductor, Inc.

Figure 2. Flow chart showing IDATA and FDATA comparison checking against THRH
and THRL values

4.2 S1 Algorithm: Calculated comparison

The user software can convert algorithm S step 1 results and corresponding threshold values to voltages and then compare the
voltage results.

The steps involved in this method are as follows:
1. Calculate the high threshold voltage:

2. Calculate the low threshold voltage:

3. Calculate the S1 voltage:

4. Compare results from step 3 to step 1 and 2. Algorithm S step 1 passes if:

Considerations for software based comparison

MPC574xP ADC Self Test, Rev 0, 09/2014

Freescale Semiconductor, Inc. 5

5 Sample code
The following sample code shows a typical use case for setting both the analog watchdogs which monitor various capacitors
(open / short) and power supplies (in range / out of range) and the ADC watchdog timers (ADC conversions finished within
watchdog time).

There are two examples functions provided.
• Operating algorithm S in one-shot mode with analog watchdogs enabled.
• Operating algorithm S+C in scan mode with analog watchdogs and watchdog timers enabled.

uint8_t ADC_self_test_one_shot(volatile struct ADC_tag *ADC)
{
 // ADC Configuration
 ADC->MCR.B.ADCLKSEL = 1; // ADC clock = ipg_clk
 ADC->MCR.B.MODE = 0; // One Shot Mode
 ADC->MCR.B.PWDN = 0; // Exit from power down state
 ADC->MCR.B.OWREN = 1; // Enable overwrite

 // IMR (Interrupt Mask register)
 ADC->IMR.R = 0x0; // Disable all interrupts

 // CTR0/1 Need to be set for 1us @ 80 MHz. Leave sampling at default
 ADC->CTR0.R = 0x0000002C; // = 44
 ADC->CTR1.R = 0x0000002C; // = 44, TSENSOR = 0

 // NCMR: Enable normal sampling for for Channel 10 (Band Gap)
 ADC->NCMR0.R = 0x00000400;

 // Set up for Self Test
 ADC->STSR1.B.ST_EOC = 0x1; // Clear End of Conversion flag
 ADC->STCR1.R = 0x18005000; // Self test Sampling Settings
 ADC->STCR3.B.ALG = 0x0; // Self test Algorithm S
 ADC->STCR2.R = 0x00000080; // Enable Self test
 ADC->STBRR.R = 0x00000000; // BR=0 WDT=0.1ms
 ADC->STAW0R.R = 0x0fff0fff & (*(uint32_t *)0x004000D0); // S step0
 ADC->STAW1AR.R = 0x0fff0fff & (*(uint32_t *)0x004000D8); // S step1
 ADC->STAW1BR.R = 0x0fff0fff & (*(uint32_t *)0x004000DC); // S step1
 ADC->STAW2R.R = 0x00000fff & (*(uint32_t *)0x004000E0); // S step2
 ADC->STAW4R.R = 0x0fff0fff & (*(uint32_t *)0x004000E4); // C step 0
 ADC->STAW5R.R = 0x0fff0fff & (*(uint32_t *)0x004000E8); // C step 1 to 11

 ADC->STAW0R.B.AWDE = 1; // S analog WDT enable
 ADC->STAW1AR.B.AWDE = 1; // S analog WDT enable
 ADC->STAW2R.B.AWDE = 1; // S analog WDT enable

 // Initiate conversion and Step 0
 ADC->STCR3.B.MSTEP = 0; // MSTEP = 0
 ADC->MCR.B.NSTART = 1; // Start the ADC trigger
 while(ADC->STSR1.B.ST_EOC == 0); // Wait for end of conversion flag
 ADC->STSR1.B.ST_EOC = 0x1; // Clear end of conversion flag

 if(ADC->STSR1.R != 0) // Check for any errors
 return(ERROR);

 if(!ADC->CDR[10].B.VALID) // Verify Band Gap sample is valid
 return(ERROR);

 if(!ADC->STDR1.B.VALID) // Verify Self Test sample is valid
 return(ERROR);

 // Initiate conversion and Step 1
 ADC->STCR3.B.MSTEP = 1; // MSTEP = 1
 ADC->MCR.B.NSTART = 1; // Start the ADC trigger
 while(ADC->STSR1.B.ST_EOC == 0); // Wait for end of conversion flag

Sample code

MPC574xP ADC Self Test, Rev 0, 09/2014

6 Freescale Semiconductor, Inc.

 ADC->STSR1.B.ST_EOC = 0x1; // Clear end of conversion flag

 if(ADC->STSR1.R != 0) // Check for any errors
 return(ERROR);

 if(!ADC->CDR[10].B.VALID) // Verify Band Gap sample is valid
 return(ERROR);

 if(!ADC->STDR2.B.VALID) // Verify Self Test sample is valid
 return(ERROR);

 // Initiate conversion and Step 2
 ADC->STCR3.B.MSTEP = 2; // MSTEP = 2
 ADC->MCR.B.NSTART = 1; // Start the ADC trigger
 while(ADC->STSR1.B.ST_EOC == 0); // Wait for end of conversion flag
 ADC->STSR1.B.ST_EOC = 0x1; // Clear end of conversion flag

 if(ADC->STSR1.R != 0) // Check for any errors
 return(ERROR);

 if(!ADC->CDR[10].B.VALID) // Verify Band Gap sample is valid
 return(ERROR);

 if(!ADC->STDR1.B.VALID) // Verify Self Test sample is valid
 return(ERROR);

 ADC->STCR2.B.EN = 0; // Disable Self Test
 ADC->MCR.B.PWDN = 1; // Enter power down state

 return(PASS);
}

uint8_t ADC_self_test_scan(volatile struct ADC_tag *ADC)
{
 int i;

 // ADC Configuration
 ADC->MCR.B.ADCLKSEL = 1; // ADC clock = ipg_clk
 ADC->MCR.B.MODE = 1; // Scan mode
 ADC->MCR.B.PWDN = 0; // Exit from power down state
 ADC->MCR.B.OWREN = 1; // Enable overwrite

 // IMR (Interrupt Mask register)
 ADC->IMR.R = 0x0; // Disable all interrupts

 // CTR0/1 Need to be set for 1us @ 80 MHz. Leave sampling at default
 ADC->CTR0.R = 0x0000002C; // = 44
 ADC->CTR1.R = 0x0000002C; // = 44, TSENSOR = 0

 // NCMR: Enable normal sampling for for Channel 10 (Band Gap)
 ADC->NCMR0.R = 0x00000400;

 // Set up for Self Test
 ADC->STCR1.R = 0x18005000; // Self test Sampling Settings
 ADC->STCR3.R = 0x00000300; // S+C for SCAN, MSTEP = 0.
 ADC->STCR2.R = 0x00000080; // Enable Self Test
 ADC->STBRR.R = 0x00000000; // BR=0 WDT=0.1ms
 ADC->STAW0R.R = 0x0fff0fff & (*(uint32_t *)0x004000D0); // S step0
 ADC->STAW1AR.R = 0x0fff0fff & (*(uint32_t *)0x004000D8); // S step1
 ADC->STAW1BR.R = 0x0fff0fff & (*(uint32_t *)0x004000DC); // S step1
 ADC->STAW2R.R = 0x00000fff & (*(uint32_t *)0x004000E0); // S step2
 ADC->STAW4R.R = 0x0fff0fff & (*(uint32_t *)0x004000E4); // C step 0
 //ADC->STAW5R.R = 0x0fff0fff & (*(uint32_t *)0x004000E8); // C step 1 to 11
 ADC->STAW5R.R = 0x00200FE0; // C step 1 to 11
 // Change to +/-32 per note

 ADC->STAW0R.B.AWDE = 1; // S analog WDT enable
 ADC->STAW1AR.B.AWDE = 1; // S analog WDT enable
 ADC->STAW2R.B.AWDE = 1; // S analog WDT enable
 ADC->STAW4R.B.AWDE = 1; // C analog WDT enable

Sample code

MPC574xP ADC Self Test, Rev 0, 09/2014

Freescale Semiconductor, Inc. 7

 ADC->MCR.B.NSTART = 1; // Start the ADC trigger

 // wait loop for desired period
 for(i=0 ; i <180000 ;i++);

 ADC->STAW0R.B.AWDE = 0; // S analog WDT disable
 ADC->STAW1AR.B.AWDE = 0; // S analog WDT disable
 ADC->STAW2R.B.AWDE = 0; // S analog WDT disable
 ADC->STAW4R.B.AWDE = 0; // C analog WDT disable

 ADC->MCR.B.NSTART = 0; // Stop the ADC trigger
 ADC->STCR2.B.EN = 0; // Disable Self test

 if(ADC->STSR1.R != 0x00800000) // Check for any errors
 return(ERROR);
 else
 return(PASS);
}

The users might find it beneficial to add software for storing ADC self-test conversions to SRAM for troubleshooting
purposes.

Sample code

MPC574xP ADC Self Test, Rev 0, 09/2014

8 Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.

Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and Qorivva are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. SafeAssure and
SafeAssure logo are trademarks of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective
owners. The Power Architecture and Power.org word marks and the
Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© 2014 Freescale Semiconductor, Inc.

Document Number AN5015
Revision 0, 09/2014

http://www.freescale.com
http://www.freescale.com/support
http://freescale.com/SalesTermsandConditions

	Introduction
	ADC Self test feature description
	ADC Self test parameters
	Considerations for software based comparison
	S1 Algorithm: Logical comparison
	S1 Algorithm: Calculated comparison

	Sample code

