

AN496/D

Order this document as
AN496/D

 1995. All trademarks are recognised.

9/95

Using MC683xx M-bus software to communicate
between processor systems

James Gilbert,
Applications Group, High-Performance Products,
Freescale Semiconductor, Inc. East Kilbride, Scotland.

Introduction

M-bus is an I2C-compatible bus interface used in the 683xx family. It is a serial interface comprising two open-drain,
bidirectional signals, namely serial clock (SCL) and serial data (SDA). Multiple devices can be connected directly to these
open-drain lines, and indeed this is good reason for the widespread adoption of the bus as an efficient IC communication
method in end-systems.

A typical scenario would consist of a processor with an M-bus master controlling the data flow between several slaves, such
as LCDs, real-time clocks, keypads, A/D converters and memories. Moreover, a built-in bus collision mechanism supports
multiple M-bus masters as well as multiple slaves. The M-bus module of the 683xx is flexible enough to operate as either an
M-bus master or a slave.

This application note demonstrates control software for M-bus communication between two identical MC68307 systems,
one configured with an M-bus master and the other an M-bus slave. Only a short piece of initialisation code needs to be
changed to make the MC68307 code applicable to other 683xx devices with M-bus.

Overview of M-bus Software Transfer Mechanism

For full details of M-bus features, and a complete specification of the M-bus module, refer to the MC68307 User Manual.
For the sake of clarity, a brief overview of the software control mechanism is provided here.

The M-bus communication is on a byte-wide basis. The components of the hardware transfer protocol are a START
condition, 8 data bits, an acknowledge bit and a STOP condition. Before starting a communication, an M-bus master should
carry out a software check to ensure the bus is free, and therefore all other M-bus transfers are complete. Thereafter, the bus
master initiates a transfer by software writing a START condition onto the bus. This is an indicator to all connected M-bus
devices that this master is taking charge of the bus, and that the address of the targeted slave is to follow. For the 683xx M-
bus master, writing the targeted slave address to the data register initiates the 8-bit transfer (MSB first).

If a system has two or more M-bus masters which poll the bus free and start a transfer at the same time, then the collision
detection arbitration, throughout the transfer of the slave address transfer and subsequent data bytes, decides which device
gets charge of the bus. If the 683xx M-bus loses arbitration in this way, it stops driving data onto the bus, to prevent data
corruption. Furthermore, it switches automatically into slave mode pre-empting the alternate master addressing it as a slave.
If interrupts are enabled, an interrupt is generated on the completion of that byte, and a status bit indicates arbitration lost as
the interrupt source.

The first data byte transmitted by the M-bus master is always the targeted slave address, with the least significant bit
determining whether the slave remains ready to receive or transmit subsequent bytes. The addressed slave can then
acknowledge the received byte, or not, depending upon the software protocol and acknowledge capability of the slave
devices used. Each acknowledge is like a 9th data bit, asserted by the receiver as a handshake to successfully transmitted
data.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

n
c

..
.

rxzb30
ForwardLine

rxzb30
copywithline

rxzb30
copywithline

2

A block transfer comprising a series of data bytes (and acknowledges, if used) follows as commanded by the software
protocol. The bus remains busy throughout the block, precluding all other masters from starting transfers. At the end
of the block, the bus master relinquishes the bus by software placing a STOP condition onto the bus.

Ultimately, the M-bus master is responsible for starting and stopping transfers, but the number of bytes transferred
can be dictated by either the master or slave depending upon the desired software protocol. For example, a slave may
acknowledge all bytes received until it saturates, at which point the master STOPs the block transfer. Alternatively,
the slave receiver may acknowledge received bytes until the master transmitter dictates there are no more bytes to
send. Indeed, both master and slave can be charged with controlling the transfer block. For instance, the software
protocol may transfer a byte count as part of the communication, or use a fixed number of transfer bytes every time.

For the best choice in software control, transfers can adopt either a status polling method, or interrupts at the end of
each byte. The interrupt option is most commonly used to minimise the time the processor is tied up with the transfers
(overhead). If enabled, the interrupts are generated on the completion of each 9 bits (8 data bits plus an acknowledge).

M-bus Master Mode Operation

Using interrupts to transmit data to the addressed slave is straightforward. During the M-bus initialisation, the 683xx
M-bus sets up master transmitter mode, sets the M-bus frequency, enables interrupts, provides an interrupt handler
and STARTs the block transfer. The targeted slave address (with lsb = 1 for slave receiver mode) is transmitted by
writing to the M-bus data register. On each subsequent end-of-byte interrupt, further data bytes are transmitted by
writing data to the M-bus data register until the block is complete. On the interrupt at the end of the last byte the
software STOPs the transfer.

For receiving from the addressed slave, the initialisation is exactly the same. Remember that even if receiving, the
first operation is to transmit the targeted slave address (except this time lsb = '0'). In the interrupt handler at the end of
the slave address transmit byte, the transmit mode is changed to receive. Then, to initiate the first byte receive
operation, the 683xx M-bus master software carries out a dummy read of the data register. No sensible data is read at
this point, but it is the action of this read which starts the data receive. At the end of each received byte, the interrupt
generated is used to read the data register again for valid data, and to start the next byte receive. This continues until
the master receiver STOPs the block transfer.

The receiver is always responsible for the generation of acknowledges. The 683xx M-bus receiver can be
programmed to generate acknowledges automatically for each byte received if desired. Most slave transmitters take
an acknowledge from the master receiver to mean that further bytes are desired. In fact, for some slave transmitters, it
is necessary for the master receiver to acknowledge all received bytes (except the last one), to indicate that more data
byte transmits are required. This is not a requirement of the 683xx M-bus slave.

M-bus Slave Mode Operation

Many of the principles discussed for the master operation also hold true for the slave 683xx M-bus. The main
differences are that the M-bus is no longer controlling the transfer (STARTing and STOPping) or the provider of the
M-bus clock, but is instead following what the master dictates.

For slave operation, again initialise the M-bus frequency, M-bus slave address, interrupt handler and interrupt enable.
As the first transfer is always the receipt of the slave address, slave receive mode should always be programmed
initially. All target slave addresses which are transmitted by the master (first byte after START) are then checked
against the programmed 683xx M-bus slave address for a match. When they match, an interrupt is generated (if
enabled), and a status bit indicates the cause as M-bus addressed-as-slave (MAAS).

On entering the corresponding interrupt handler, the software read/write status indicator is read to determine whether
the slave is to receive or transmit subsequent bytes, and the transmit/receive mode set accordingly. If in transmit
mode, the first data byte transmit is initiated by writing to the data register. If in receive mode, the first receive byte is

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN496/D

3

initiated by a dummy read of the data register. There is no sensible data read at this point, but having started the
receive process, data register reads in subsequent end-of-byte interrupts read valid data and initiate the next byte
receive. Again, the software protocol determines the use of acknowledges.

For a fuller description of the M-bus software and hardware features, see the MC68307 users’ manual.

Description of Set-up

The hardware consists of two identical MC68307 systems connected together via the M-bus as shown in Figure 1.
Both are master-mode processor systems, each with the MC68307 processor core executing instructions prefetched
from ROM. This is not to be confused with the master and slave operation of the M-bus modules within each
processor.

Figure 1

Hardware Setup

Each MC68307 system has 128kB EPROM and 128kB SRAM and runs a debug monitor. A complete description of
the system hardware is provided in AN490/D, “Multiple Bus Interfaces using the MC68307”.

Using the monitor's download facility, an M-bus control program is downloaded into the SRAM of each board. The
code allows one system to control its M-bus module as a master, while the other implements an M-bus slave.
Together, the two software programs allow the MC68307 M-bus master to write data to the M-bus slave and later
read it back for verification.

Software Flow

The MC68307 master M-bus controls the number of blocks transferred via START and STOP conditions. In this
example, there are only two communication blocks, one transmitting data to the slave (master transmit block), and
one receiving data back from the slave for verification (master receive block). The master/slave responsibilities
during the master transmit block are outlined in Figure 2a and for the master receive block in Figure 3a.

On these diagrams, note that for a given transfer byte, the end-of-byte interrupts on the master and slave occur at
around the same time. The built-in M-bus transfer mechanism means it does not matter in which order they are
serviced. The master and slave interrupt service order used in the flowcharts of Figures 2a and 3a is purely for
demonstration purposes. The interrupt handlers are shown such that the data flow is always from transmitter to
receiver. It should be understood that the master and slave interrupt handlers are happening at the same time, as are
the transmit and receive of a particular byte.

Transfer Blocks

The master M-bus controls the number of data bytes within each transmit/receive block. Observe Figures 2b and 3b,
which give a summary of the activity on the M-bus during the master transmit and master receive blocks respectively.

When the master is transmitting data (master transmit block), the slave acknowledges all bytes received, and the
master decides when the transfer is completed by setting a STOP condition; see Figure 2b. When the master is

68307
System

SCL
SDA

Master
MBus

68307
System

SCL
SDA

Slave
MBus

5V

2.2k2.2k

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

4

receiving data (master receive block), it decides when the transfer is complete by stopping acknowledges on the last
received byte, (thereby stopping the slave transmitting) and setting a STOP condition; see Figure 3b.

Software Implementation

The software used is shown in Software listing 1 and 2. Only the method of enabling the M-bus and interrupts at the
start of the software listings is specific to the MC68307. Thereafter, the code is generic for any 683xx device with an
M-bus module.

The 683xx M-bus slave software should always be set running before the master software, such that the prospective
slave is initialised as a receiver before the master transmits the slave address.

The software uses interrupts to control the byte transfers within each block. The M-bus master starts the transfer by
transmitting the slave address. Thereafter interrupts are generated on both the master and slave M-bus to control the
test. The M-bus hardware protocol does not care which order the interrupts are serviced by the master (transmitter or
receiver) or slave (transmitter or receiver) at the end of each byte. Consider that the master is in charge of generating
the SCL clocks to shift data out the transmitter and into the receiver, when a transmit/receive is initiated by writing/
reading the M-bus data register respectively. However, the clocks do not start until the slave has released the clock
line on the bus by making its corresponding read/write of its M-bus data register. Therefore, both 683xx M-bus
master and slave interrupts have to initiate the next data transfer.

The slave frequency can be programmed as greater or less than that of the master. M-bus implements a clock
synchronisation mechanism such that the clock with the shortest high time and longest low time dictates the open-
drain clock. For example, if the programmed slave M-bus clock frequency is less than the master, the slave can
stretch the clock as necessary.

The number of transfer and receive blocks, and the number of data bytes within each block can be altered in the
master software.The slave software remains the same throughout. If the user desires detailed crosschecks on the
software flow, interrupt counts (for number of bytes transferred) or a flag passing mechanisms could be implemented.
For simplicity this is not used in the example software.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN496/D

5

Figure 2a

Master/Slave Responsibilities for the Master Transmit Block

Figure 2b

Summary of M-bus Activity for the Master Transmit Block

M-bus Master Transmitter ActivityM-bus Slave Receiver Activity

-Interrupt at end of address Tx
 -Verify Acknowledge
 -Remain in Tx mode
 -Write 1st data byte (AA) to
 MBDR to initiate Tx

-Interrupt at end of 1st data byte Tx
 -Verify Acknowledge
 -Write 2nd data byte (55) to
 MBDR to initiate Tx

-Interrupt at end of 2nd data byte Tx
 -Verify Acknowledge
 - STOP block transfer

-Set slave Rx mode -Set master Tx mode
-START block transfer
-Write slave address to MBDR to
initiate address Tx (66)
(slave is to Rx data, so lsb = 0)

-Tx slave address-Rx slave address
-Auto-Acknowledge address
-Interrupt on Slave address match
 -Set Tx/Rx mode to Rx
 -Dummy read of MBDR, ready
 Rx 1st data byte

-Tx data-Rx data
-Auto-Acknowledge data
-Interrupt at end of 1st data byte Rx
 -Read 1st byte of valid data from
 MBDR (AA), and ready for next Rx

-Tx data-Rx data
-Auto-Acknowledge data
-Interrupt at end of 2nd data byte Rx
 -Read 2nd byte of valid data from
 MBDR (55), and ready for next Rx

Master Activity

M-bus

Slave Activity

Start 66 Ack AA Ack 55 Ack Stop

Start
Block

Tx Slave
Address

(Slave to Rx)

Rx Slave
Address

Ack

Tx 1st data
byte

AckAckRx 1st data
byte

Tx 2nd data
byte

Rx 2nd data
byte

Stop
Block

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

6

Figure 3a

Master/Slave Responsibilities for the Master Receive Block

Figure 3b

Summary of M-bus Activity for the Master Receive Block

-Set master Tx mode
-START block t ransfer
-Write slave address to MBDR to
in itiate address Tx (67)
(s lave to Rx so lsb = 1)

M-bus Master Receiver Act ivityM-bus Slave Tranmit ter Activity

-Auto-Acknowledge data
-Inter rupt at end of 1st data byte Rx
 -Read of MBDR ready to Rx 2nd
 data byte (55)

-No Acknowledge
-Inter rupt at end of 2nd byte Rx
 - STOP block t ransfer

-Tx s lave address-Rx s lave address
-Auto-Acknowledge address
-In ter rupt on Slave address match
 -Set Tx/Rx mode to Tx
 -Write 1st data byte (AA) to
 MBDR ready to Tx

-Tx data

-Inter rupt at end of address Tx
 -Ver ify Acknowledge
 -Set Tx/Rx mode to Rx
 -Dummy read of MBDR to ini tiate
 Rx of 1st data byte (AA)

 -Rx data

 -Rx data

-Tx data

-Inter rupt at end of 2nd data byte Tx
 -No Acknowledge, so end Tx
 -Switch to s lave Rx mode ready
 for next s lave address

-Set s lave Rx mode

-In ter rupt at end of 1st data byte Tx
 -Ver ify Acknowledge
 -Write 2nd data byte (AA) to
 MBDR to ini tiate Tx

Master Activity

M-bus

Slave Activity

Start 67 Ack AA Ack 55 No Ack Stop

Start
Block

Tx Slave
Address

(Slave to Tx)

Rx Slave
Address

Ack

Rx 1st data
byte

No
Ack

Ack

Tx 1st data
byte

Rx 2nd data
byte

Tx 2nd data
byte

Stop
Block

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN496/D

7

Software Listing 1 - M-bus Master Software

**
* FREESCALE 68307 IMBP TEST BOARD - MBUS *
==
* *
* MODULE: MBM_INT.SRC DATE: 8/4/94 *
* *
* Developed by : Freescale *
* HI-END Applications *
* East Kilbride. *
* *
* NOTES: *
* Master MBUS Routine using interrupts for a Master/Slave Test *
* *
* The number of bytes transmitted and received is completely *
* controlled by the master. (i.e. When the slave is receiving data, *
* it acknowledges all the time, and the master dictates the number of*
* bytes to transfer. When the slave is transmitting, the master *
* receiver acknowledges dictate whether the slave is to send further *
* bytes or not.) *
* *
* The Master: *
* 1) Writes out the slave chip address, and 2 slave data bytes. *
* 2) Writes out the slave chip address, and reads 2 slave data bytes.*
* 3) Verifies the data read back against that originally sent. *
* *
*==
* EXTERNAL REFERENCE DECLARATIONS
*==
 XREF SCR System Control Reg
 XREF PBCNT Port B Control Reg
 XREF PIVR Peripheral Interrupt Vector Reg
 XREF PICR Peripheral Interrupt Control Reg
 XREF MADR MBUS Address Reg
 XREF MFDR MBUS Freq Divider Reg
 XREF MBCR MBUS Control Reg
 XREF MBSR MBUS Status Reg
 XREF MBDR MBUS Data Reg

*==
* Constants
*==
UVECBASE EQU $100 User Vector Base
MBUSVEC EQU UVECBASE+($D*4) MBUS vector location
MBUSHAN EQU $15000 MBUS Interrupt Handler location

S307_AD EQU $66 Slave 68307 MBus Address
DRXCNT EQU $3 Data RECEIVE COUNT (2 + 1 Dummy)
ATXCNT EQU $1 Address TRANSMIT COUNT
DTXCNT EQU $2 Data TRANSMIT COUNT

*==
* Main Program
*==
 ORG $10000 RANDOM LOCATION FOR ASSEMBLY
 AND.L #$FFFFFEFF,SCR Clear SCR bit 8, MBUS CLock Active
 MOVE.B #$40,PIVR Vector = #$40, Vector @ address $100
 OR.W #$000D,PICR MBUS Interrupt level = 5
 MOVE.L #MBUSHAN,MBUSVEC Set up MBUS Interrupt Handler
 OR.W #$0003,PBCNT Enable MBUS Lines
 BSR INIT_MBM Initialise MBus as master

* WRITE TO SLAVE 68307 MBus
* Write Chip Address, and Two bytes of data
START BSR MBBUSY Poll the MBUS, wait till bus free

 MOVE.B #0,V_DRXCNT Data RECEIVE COUNT
 MOVE.B #ATXCNT,V_ATXCNT Address TRANSMIT COUNT
 MOVE.B #DTXCNT,V_DTXCNT Data TRANSMIT COUNT
 MOVE.B #1,V_WRITE Set Write to slave var = TRUE
 MOVE.B #S307_AD,V_CHIPAD Slave 68307 Mbus receiver Address
 MOVE.L #S307_DATA,A0 Pointer to stored data for transfer

 BSR WRITE1 Send out the Chip Address

* READ FROM SLAVE 68307 MBus
* Write Chip Address, and READ Two bytes of data

 BSR MBBUSY Poll the MBUS, wait till bus free

 MOVE.B #DRXCNT,V_DRXCNT Data RECEIVE COUNT
 MOVE.B #ATXCNT,V_ATXCNT Address TRANSMIT COUNT
 MOVE.B #0,V_DTXCNT Data TRANSMIT COUNT
 MOVE.B #0,V_WRITE Set Write to slave var = FALSE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

8

 MOVE.B #S307_AD,D6 Alter chip address lsb for
 OR.B #$01,D6 slave transmit and
 MOVE.B D6,V_CHIPAD write to chip address variable
 MOVE.L #S307_DATA,A0 Pointer to data for memory 1

 BSR WRITE1 Send out the Chip Address

* Test Complete
 BSR MBBUSY Poll the MBUS, wait till bus free
FOREVER BRA FOREVER Test complete & passed, loop forever

* MBUS SETUP/INITIALISATION

INIT_MBM MOVE.W #$2700,SR DISABLE INTERRUPTS BY SETTING TO LEVEL 7
 MOVE.B #0,MBSR CLEAR INTERRUPT PEND, ARBITRATION LOST
 MOVE.B #$0C,MFDR SET FREQUENCY
 MOVE.B #$00,MBCR DISABLE AND RESET MBUS
 MOVE.B #$80,MBCR ENABLE MBUS
 RTS
* NOTE - By not writing MADR, the 68307 MBUS slave address = 0

* Poll the MBUS BUSY

MBBUSY BTST #5,MBSR TEST MBB BIT,
 BNE MBBUSY AND WAIT UNTIL IT IS CLEAR
 RTS

* GENERATION FIRST BYTE OF DATA TRANSFER

WRITE1 BTST #5,MBSR TEST MBB BIT,
 BNE WRITE1 AND WAIT UNTIL IT IS CLEAR
TXSTART
 BSET #4,MBCR SET TRANSMIT MODE
 BSET #5,MBCR SET MASTER MODE (GENERATE START)
 BSET #6,MBCR Enable MBUS Interrupts
 MOVE.B (V_CHIPAD),MBDR TRANSMIT THE SLAVE CHIP ADDRESS
 MOVE.W #$2000,SR ENABLE INTERRUPTS BY SETTING TO LEVEL 0

MBFREE BTST #5,MBSR TEST MBB BIT,
 BEQ MBFREE If bus is still free, wait until busy
 RTS

* POST BYTE TRANSMISSION/RECEPTION SOFTWARE RESPONSE

 ORG MBUSHAN Start of Interrupt Handler
ISR BCLR #1,MBSR CLEAR THE MIF FLAG
 MOVE.L D0,-(A7) PUSH D0 REGISTER TO STACK
 MOVE.L D1,-(A7) PUSH D1 REGISTER TO STACK
 MOVE.L #0,D0 Clear general data reg
 MOVE.L #0,D1 Clear general data reg

 BTST #5,MBCR CHECK THE MSTA FLAG
 BEQ SLAVE BRANCH IF SLAVE MODE

 BTST #4,MBCR CHECK THE MODE FLAG
 BEQ MASTRX BRANCH IF RECEIVE MODE

* Master TRANSMIT caused Interrupt

MASTX BTST #0,MBSR CHECK ACK FROM RECEIVER,
 BNE ENDMASTX IF NO ACK, END TRANSMISSION

TXADDR MOVE.B V_ATXCNT,D1 CHECK Address TX COUNT
 BEQ TXDATA If address already Complete go to data
 SUBQ.B #1,V_ATXCNT Decrement Address Tx Count

TXDATA MOVE.B V_WRITE,D1 Check if writing or reading slave
 BEQ SETMASTRX If reading set to Master receive

 MOVE.B V_DTXCNT,D1 CHECK Data TX COUNT
 BEQ ENDMASTX IF NO MORE DATA THEN STOP BIT
 SUBQ.B #1,V_DTXCNT Reduce Tx Count
 MOVE.B (A0)+,MBDR Transmit next byte
 BRA END EXIT

ENDMASTX BCLR #5,MBCR GENERATE STOP CONDITION
 BRA END EXIT

SETMASTRX BCLR #3,MBCR Enable TXAK
 BCLR #4,MBCR Set master Receive Mode
 BSET #5,MBCR SET MASTER MODE (GENERATE START)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN496/D

9

* Master RECEIVE

MASTRX SUBQ.B #1,V_DRXCNT Decrement receive count
 MOVE.B V_DRXCNT,D1
 CMP.B #DRXCNT-1,D1 First byte read Check
 BNE NOTFIRST If not first, read and compare as usual
 MOVE.B MBDR,D0 If first, DUMMY read only to start Rx
 BRA END

NOTFIRST CMP.B #0,D1
 BEQ ENMASR LAST BYTE TO BE READ CHECK
 SUBQ.B #1,D1 LAST SECOND BYTE TO BE READ CHECK
 BNE NXMAR NOT LAST ONE OR LAST SECOND,SO BRANCH

LAMAR BSET #3,MBCR LAST SECOND, DISABLE ACK TRANSMITTING
 BRA NXMAR

ENMASR BCLR #5,MBCR LAST ONE, GENERATE STOP SIGNAL

NXMAR MOVE.B MBDR,D0 READ DATA
 CMP.B (A0)+,D0 COMPARE WITH WRITTEN DATA
 BEQ END If data as expected o.k.

READERR BRA READERR Else ERROR loop forever.

END MOVE.L (A7)+,D1 POP D1 REGISTER FROM STACK
 MOVE.L (A7)+,D0 POP D0 REGISTER FROM STACK
 RTE

SLAVE NOP
 BRA SLAVE SLAVE OPERATION NOT IMPLEMENTED

* Buffers and Variables

V_WRITE DC.B $1 Slave write = True
V_CHIPAD DC.B S307_AD Chip Address variable = Slave 307 Add
V_DRXCNT DC.B DRXCNT Set up variables - Data Receive Count
V_ATXCNT DC.B ATXCNT - Addr Transmit Count
V_DTXCNT DC.B DTXCNT - Data Transmit Count
S307_DATA DC.B $AA,$55 Chip 1 Data

 END

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

10

Software Listing 2 - M-bus Slave Software

**

* FREESCALE 68307 IMBP TEST BOARD - MBUS *
==
* *
* MODULE: MBS_INT.SRC DATE: 8/4/94 *
* *
* Developed by : Freescale *
* HI-END Applications *
* East Kilbride. *
* *
* NOTES: *
* Slave MBUS Routine using interrupts for a Master/Slave Test *
* *
* The number of bytes transmitted and received is completely *
* controlled by the master. (i.e. When the slave is receiving data, *
* it acknowledges all the time, and the master dictates the number of*
* bytes to transfer. When the slave is transmitting, the master *
* receiver acknowledges dictate whether the slave is to send further *
* bytes or not.) *
* *
* The Slave: *
* 1) Recognises its slave chip address, and receives 2 data bytes. *
* 2) Recognises its slave chip address, and transmits the 2 bytes. *
* *
*==
* EXTERNAL REFERENCE DECLARATIONS
*==
 XREF SCR System Control Reg
 XREF PBCNT Port B Control Reg
 XREF PIVR Peripheral Interrupt Vector Reg
 XREF PICR Peripheral Interrupt Control Reg
 XREF MADR MBUS Address Reg
 XREF MFDR MBUS Freq Divider Reg
 XREF MBCR MBUS Control Reg
 XREF MBSR MBUS Status Reg
 XREF MBDR MBUS Data Reg

*==
* Constants
*==
UVECBASE EQU $100 User Vector Base
MBUSVEC EQU UVECBASE+($D*4) MBUS vector location
MBUSHAN EQU $15000 MBUS Interrupt Handler location

S307_AD EQU $66 Slave 68307 MBus Address

*==
* Main Program
*==
 ORG $10000 RANDOM LOCATION FOR ASSEMBLY
 AND.L #$FFFFFEFF,SCR Clear SCR bit 8, MBUS CLock Active
 MOVE.B #$40,PIVR Vector = #$40, Vector @ address $100
 OR.W #$000D,PICR MBUS Interrupt level = 5
 MOVE.L #MBUSHAN,MBUSVEC Set up MBUS Interrupt Handler
 OR.W #$0003,PBCNT Enable MBUS Lines
 BSR INIT_MBS Initialise MBus as slave

FINISH BRA FINISH Loop forever

* MBUS SETUP/INITIALISATION

INIT_MBS MOVE.W #$2700,SR DISABLE INTERRUPTS BY SETTING TO LEVEL 7
 MOVE.B #0,MBSR CLEAR INTERRUPT PEND, ARBITRATION LOST
 MOVE.B #$10,MFDR Set FREQUENCY
 MOVE.B #S307_AD,MADR Set MBUS slave address
 MOVE.B #$00,MBCR DISABLE AND RESET MBUS
 OR.B #$C0,MBCR ENABLE MBUS, Ints, TXAK
 MOVE.W #$2300,SR Enable INTS BY SETTING TO LEVEL 3
 RTS

* Poll the MBUS BUSY

MBBUSY BTST #5,MBSR TEST MBB BIT,
 BNE MBBUSY AND WAIT UNTIL IT IS CLEAR
 RTS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN496/D

11

* POST BYTE TRANSMISSION/RECEPTION SOFTWARE RESPONSE

 ORG MBUSHAN Start of Interrupt Handler
ISR BCLR #1,MBSR CLEAR THE MIF FLAG
 MOVE.L D0,-(A7) PUSH D0 REGISTER TO STACK
 MOVE.L D1,-(A7) PUSH D1 REGISTER TO STACK
 MOVE.L #0,D0 Clear general data reg
 MOVE.L #0,D1 Clear general data reg
* Interrupt Counter
 ADDQ.L #1,D3 (Not used, simply monitor)

 BTST #5,MBCR CHECK THE MSTA FLAG
 BEQ SLAVE BRANCH IF SLAVE MODE

MASTER BRA MASTER Master not implemented, so error

SLAVE MOVE.B MBSR,D6 Read MBSR
 BTST.B #6,D6 Is it slave address byte?
 BEQ SLAVE_DATA If not, then data

* Addressed as SLAVE

SLAVE_ADD BTST #2,D6 Read SRW to verify slave Tx or Rx
 BEQ INIT_SRX If Rx, initialise SLAVE receive count

INIT_STX OR.B #$10,MBCR Set transmit mode
 MOVE.L #DATABUF,A0 Pointer to data storage buffer
 MOVE.B (A0)+,MBDR First data byte transmit
 BRA END_SLAVE

INIT_SRX AND.B #$E7,MBCR Set receive mode and TXAK
 MOVE.L #DATABUF,A0 Pointer to data storage buffer
 MOVE.B MBDR,D0 Start receive via Dummy byte read
 BRA END_SLAVE

* Slave Data

SLAVE_DATA BTST #4,MBCR Read Tx or Rx mode
 BEQ SRX_DATA

* Post Slave data Transmit Control

STX_DATA BTST #0,MBSR CHECK ACK FROM RECEIVER,
 BEQ NXT_TX IF ACK, THEN TX NEXT DATA BYTE

 AND.B #$EF,MBCR TX complete so swap to Rx
 MOVE.B MBDR,D0 Dummy read to free bus (SCL)
 BRA END_SLAVE Finish and await Master

NXT_TX MOVE.B (A0)+,MBDR Tx next data byte
 BRA END_SLAVE EXIT

* Post Slave data Receive Control

SRX_DATA MOVE.B MBDR,D0 READ DATA
 MOVE.B D0,(A0)+ Store data in next data buffer location

END_SLAVE MOVE.L (A7)+,D1 POP D1 REGISTER FROM STACK
 MOVE.L (A7)+,D0 POP D0 REGISTER FROM STACK
 RTE

* Buffers and Variables

DATABUF DS.B 0 Slave data buffer between Rx and Tx

 END

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

