
1 Introduction
A traditional method of providing in-circuit programming of
an Electronic Control Module (ECM) is based on the
Universal Asynchronous Receiver / Transmitter (UART), or
an MCU-specific interface. Using this approach requires
dedicated hardware on each ECM.

The benefits of utilizing Controller Area Network (CAN) as
an in-circuit programming method can be easily understood.
For systems already using CAN connections, no additional
hardware is required, and connection to any node allows
communication to all other nodes via CAN. This concept
offers benefits throughout the product life span, from the
development phase through to in-field upgrades, servicing,
and diagnostic capabilities. During development and testing,
any module connected to the network can be reprogrammed
in-circuit, saving time and effort as well as minimizing the
dependencies between product assembly and software
development. In-field system upgrades, servicing, and
diagnostic reports can be easily achieved using CAN.

For a system that has nodes with identical firmware, it can be
more efficient to upgrade these nodes in a single pass like in
gang-programmer fashion. But when the system has unique
nodes with different firmware, just a single connection to
program the device is considered. In an active network, it is
recommended to shut down all other nodes in order to avoid
priority issues with these nodes or low-programming
performance.

Freescale Semiconductor Document Number: AN4511

Application Note Rev. 0, 4/2012

CAN Bootloader in the MCF51JM
by: Xu Weiping and Alejandro Lozano

Automotive and Industrial Solutions Group

© 2012 Freescale Semiconductor, Inc.

Contents

1 Introduction..1

2 Functional description...2

2.1 Functional description of target......................3

2.2 Functional description of USB-to-
CAN bridge..6

2.3 File image parser..9

2.4 Flash protection and vector
redirection..9

2.5 Memory map..9

3 Developing new applications with CAN
bootloader support..10

3.1 Modifying the LCF......................................10

4 Using the bootloader...11

5 Conclusions...16

This application note explains a simple bootloader implementation using CAN. It also provides a low-level driver (MSCAN
driver) that can be used in CAN applications.

2 Functional description
This section describes the architecture of the CAN bootloader and the software flow of each implemented device. Figure 1
shows the architecture of the entire system.

Figure 1. System architecture

This application note includes a graphic user interface (GUI) supported in Windows XP that can used to choose the S19 file.
This file contains the object code that will be downloaded in the internal flash memory. The GUI parses the S19 and sends
commands, data and address to the USB-to-CAN bridge. The bridge checks whether all the data sent by the GUI is valid and
sends the data to be loaded into the target.

The PC communicates with the bridge via virtual COM port (USB CDC class). The baud rate is 115,200 bit/s, 1 stop bit and
no parity bit using big-endian for data containing multiple bytes. Every time the PC sends one packet to the bridge, it sends
an ACK back indicating the receive status. The data that the PC sends looks like the packet below:

Figure 2. Packet format

The following two tables depict the description of several data packet fields and the PC commands.

Table 1. Packet format description
Packet Field Description

Header 0x55,0x55,0x55,0x55

Command The command code defines the action to be executed by the
bridge.

Data length The number of bytes in the Data field.

Table continues on the next page...

Functional description

CAN Bootloader in the MCF51JM, Rev. 0, 4/2012

2 Freescale Semiconductor, Inc.

Table 1. Packet format description (continued)

Packet Field Description

Data This can be either the command parameters or the formatted
data sent in response to a command. The size of the data
varies depending on the command.

Checksum Checksum of data in the Data Length Field and Data Field

End 0xAA,0xAA,0xAA,0xAA

Table 2. PC command summary

Command Description Data

0x01 Mass Erase Target None

0x02 Sector Erase Target Data[0–3]: Starting address of the
sector

0x03 Blank Check Target None

0x04 Program Target Data[0–3]: Starting address; Data[4]–
Data[n < 36]: code

0x05 Verify Target None

0x06 Read Target Data[0–3]: Starting address; Data[4–7]:
Byte length (Byte length <= 64)

0x07 Unsecure Target Data[0–7]: Backdoor key

2.1 Functional description of target
The general architecture of the target is shown in the figure below.

Functional description

CAN Bootloader in the MCF51JM, Rev. 0, 4/2012

Freescale Semiconductor, Inc. 3

Figure 3. Target architecture

1. After reset, the bootloader executes and checks whether the application should start or the bootloader should keep on
running. In Bootloader mode, the target executes and sends response back to the bridge.

2. Depending on the command sent by the bridge, the target executes the needed procedure like unsecure target, download
the object code, or mass erase. If the bridge does not send any command, the target just executes an idle function. The
target communicates with the bridge at 250 kbit/s.

There are 9 supported commands. The following table lists the description of bootloader commands and the specific actions
for each command.

Table 3. Target command summary
Command Host sent message Target response message Action

UNSEC CAN ID 0x011 + 64-bit
backdoor key

CAN ID 0x001 + 64-bit
backdoor key

The target should unsecure
by using the security code, if
the flash is secured and
backdoor key is enabled.
When unsecured
successfully, sends the
response message.

SET_ADDR CAN ID 0x012 + 32-bit start
address + 32-bit number of

bytes

CAN ID 0x002 + 32-bit start
address + 32-bit number of

bytes

Starting address is stored for
programming flash. Data size
is stored for programming
flash.

LOAD_DATA CAN ID 0x013 + 8–64 bits of
raw binary data

CAN ID 0x003 + 8–64 bits of
raw binary data

The data containing 1–8
bytes will be programmed to
flash from the start address
received from the
SET_ADDR command.

Table continues on the next page...

Functional description

CAN Bootloader in the MCF51JM, Rev. 0, 4/2012

4 Freescale Semiconductor, Inc.

Table 3. Target command summary (continued)

Command Host sent message Target response message Action

MASS_ERASE CAN ID 0x014 without data CAN ID 0x004 without data The target mass erases its
flash. When finished erasing,
sends the response
message.

SECTOR_ERASE CAN ID 0x015 + 32-bit
address

CAN ID 0x005 + 32-bit
address

The target erases the flash
sector including the address.
When finished erasing, sends
the response message.

BURST_PROG CAN ID 0x016 without data CAN ID 0x006 without data The target programs the flash
using the address and data
from the SET_ADDR and
LOAD_DATA commands.
When finished programming,
sends the response
message.

BYTE_PROG CAN ID 0x017 + 32-bit
address + 8-bit data

CAN ID 0x007 + 32-bit
address + 8 bit data

The target programs one byte
of the flash at the address
and the data. When finished
programming, send the
response message.

BLANK_CHECK CAN ID 0x018 without data. CAN ID 0x008 with blank
check result

The target verifies all flash
memory bytes mass erased
and returns the result: 0xF0-
Flash is not blank, 0xFF-
Flash is blank.

READ_TARGET CAN ID 0x019+ 32-bit
address + 32-bit byte length

CAN ID 0x009 + 8-byte data The target should return its
flash data from the specific
address.

The flowchart shown in Figure 4 shows the flow of the target program, with just a few commands.

Functional description

CAN Bootloader in the MCF51JM, Rev. 0, 4/2012

Freescale Semiconductor, Inc. 5

Figure 4. Target flow chart

Functional description

CAN Bootloader in the MCF51JM, Rev. 0, 4/2012

6 Freescale Semiconductor, Inc.

2.2 Functional description of USB-to-CAN bridge
This section describes the USB-to-CAN bridge architecture and firmware design.

The USB-to-CAN bridge is implemented by the MCF51JM MCU, which includes a USB module and an MSCAN module. A
DEMOJM board or EVB51JM board can be implemented as the bridge.

Figure 5 shows the architecture of the USB-to-CAN bridge. The bridge communicates with the PC GUI via virtual COM port
based on the USB interface. It receives commands from the USB host by calling USB CDC driver, and then, interprets and
manages the commands. It also transmits the CAN messages received from the CAN network by calling the MSCAN driver,
and then bridges the message to the host via USB by calling the USB CDC driver.

Figure 5. USB-to-CAN architecture

2.2.1 USB CDC driver
Freescale USB stack is used in the USB-to-CAN Bridge. The Freescale USB stack contains the low-level driver code,
commonly used class drivers, and some basic applications. The USB-to-CAN bridge uses CDC class for data
communication. When the bridge is plugged into PC, a driver needs to be installed. After successfully installing the driver,
one virtual COM port must be detected in hardware manager of the Windows operating system.

2.2.2 MSCAN driver
Freescale MSCAN driver for ColdFire V1 is used in the USB-to-CAN Bridge. The driver is optimized for a single on-chip
MSCAN. The driver emulates the 'full-CAN' model, with a message buffer per CAN identifier. The number of message
buffers is configurable, allowing full control over RAM requirements.

The main driver features are:
• Optimized for a single MSCAN module
• Up to 255 message objects (Standard and Extended Identifiers)
• Up to 32 message buffers
• Advanced priority-based management of queued message objects

Functional description

CAN Bootloader in the MCF51JM, Rev. 0, 4/2012

Freescale Semiconductor, Inc. 7

• Auto-reply to received Remote Transmission Request Frames
• Auto-receive of data frames in response to Remote Transmission Request Frames
• Sleep and Wakeup functions
• Abort transmission function

The MSCAN driver routines perform the following functions:
• Initialization of the MSCAN module
• Transmission of CAN messages, with a local priority-based queue
• Store received CAN messages in appropriate message buffers
• Functions to configure, load, read, and obtain the status of message buffers
• MSCAN control functions (CAN_Reset, CAN_Sleep, CAN_Wakeup, CAN_CheckStatus)

To be applied in various cases, the predefined bit rate is 250 KB/s, so that such MCUs with long distance bus are possible to
be programmed as well. Higher speed can be achieved by modifying the MSCAN configuration file, msCANcfg.h. The
related macros are listed below.

/**
* Define S08 msCAN module clock source: BUSCLK or MCGERCLK
* Permitted values: BUSCLK: Bus clock is used as clock source
* MCGERCLK: Oscillator clock is used as clock source
**/
#define CLKSRC_CAN MCGERCLK
/**
* Define clock prescaler for msCAN module: permitted values 1 to 64
* msCAN module clock = CLKSRC_CAN / PRESCALER_CAN
**/
#define PRESCALER_CAN 6
/**
* Define msCAN module bit timing
*
* Permitted values: PROP_SEG_CAN: 1 to 8 time quanta
* PHASE_SEG1_CAN: 1 to 8 time quanta
* PHASE_SEG2_CAN: 2, or PHASE_SEG1_CAN if greater
* Bit time = (1 + PROP_SEG_CAN + PHASE_SEG1_CAN + PHASE_SEG2_CAN) * time quanta
**/
#define PROP_SEG_CAN 1
#define PHASE_SEG1_CAN 4
#define PHASE_SEG2_CAN 2

NOTE
The configuration for the MSCAN module is the same for both target and bridge.

2.2.3 Bridge application
As shown in Figure 6, the application implements the communication management between USB CDC driver and MSCAN
driver, which includes two main tasks:

• Virtual COM task, which manages the virtual COM serial communication.
• USB2CAN task, which includes a USB command parser

The parser parses the USB command and then calls MSCAN driver to send the corresponding CAN frame to the target. Also,
it receives the response of the target and calls back to the virtual COM task.

Functional description

CAN Bootloader in the MCF51JM, Rev. 0, 4/2012

8 Freescale Semiconductor, Inc.

Figure 6. USB-to-CAN application

2.3 File image parser
The GUI includes a firmware image parser to allow firmware image files to be sent unaltered to the target. Because the parser
is in the GUI this decreases the size of bootloader code in the target, leaving more free memory space for the application.

After a file has been transferred to the GUI, it assumes the file is a firmware image file and starts parsing it with the first line
of the S19 file that stores a part of the firmware image. If the storage is successful, it continues parsing the next part of the
image until the whole image is parsed. At the end, the GUI sends the command to program and load the data to the target.

2.4 Flash protection and vector redirection
The bootloader must always be protected from erasing itself or getting corrupted. With flash protection enabled, the worst-
case scenario during a botched firmware update is that the application is erased or corrupted, but the bootloader is still intact.
The bootloader can then run again and reload the new application.

For this specific case, only 8 KB of memory will be protected. The NVPROT register which is a nonvolatile space of
memory must be written with:

const unsigned char NVPROT_INIT @0x0000040D = 0xFD;

Sometimes it is necessary to secure the flash and enable backdoor key, which be achieved with the following code line:

const unsigned char NVOPT_F @0x0000040F = 0x83;

This secures the device and the below code line contains the key to unsecure the target.

const unsigned char BackdoorKey[8] @0x00000400 = "12345678";

Because the first locations are protected, the vectors are also protected. Therefore, vector redirection has to be performed for
the application to use its own vectors. The VBR can be used to relocate the exception vector table from its default position in
the flash memory (address 0x(00)00_0000) to the base of the RAM (address 0x(00)80_0000).

2.5 Memory map
The memory map of the target will be like the below one.

Functional description

CAN Bootloader in the MCF51JM, Rev. 0, 4/2012

Freescale Semiconductor, Inc. 9

Figure 7. Memory map

3 Developing new applications with CAN bootloader support
To create new applications that can be used with the CAN bootloader, two things must be performed:

• Modify the linker command file .lcf
• Redirect the interrupt vectors

3.1 Modifying the LCF
Normally an application is placed at the beginning of the flash but when the bootloader is used, an application is placed at the
beginning of the flash after the bootloader. Therefore, .lcf of the application must be changed.

The following code snippet demonstrates an example of an original lcf file for the MCF51JM.

Developing new applications with CAN bootloader support

CAN Bootloader in the MCF51JM, Rev. 0, 4/2012

10 Freescale Semiconductor, Inc.

MEMORY {
code (RX) : ORIGIN = 0x00000410, LENGTH = 0x0001FBF0
userram (RWX) : ORIGIN = 0x00800000, LENGTH = 0x00004000
}

To make the application compatible with the CAN bootloader the .lcf must be modified like the code given below:

MEMORY {
code (RX) : ORIGIN = 0x00002410, LENGTH = 0x0001BBF0
userram (RWX) : ORIGIN = 0x008001BC, LENGTH = 0x00003E44
}

It needs to save space for the 8 KB of memory for the bootloader and space for the 110 interrupt vectors in RAM.

For vector reallocation, a new vector table must be created and hardcoded to the first flash address of the application. After
this, in the application code, the VBR must be changed to 0x80_0000 and the vectors in flash must be copied to RAM.

Create the new vector table.

#define IMAGE_ADDR ((uint_32_ptr)0x02000)
void (* const RAM_vector[])()@(int)&IMAGE_ADDR[0]= {
(pFun)&__SP_INIT, // vector_0 INITSP
(pFun)&_startup, // vector_1 INITPC
(pFun)&dummy_ISR, // vector_2 Vaccerr
(pFun)&dummy_ISR, // vector_3 Vadderr
(pFun)&dummy_ISR, // vector_4 Viinstr
……
(pFun)&dummy_ISR, // vector_64 Virq
(pFun)&dummy_ISR, // vector_65 Vlvd
(pFun)&dummy_ISR, // vector_66 Vlol
(pFun)&dummy_ISR, // vector_67 Vspi1
(pFun)&dummy_ISR, // vector_68 Vspi2
(pFun)&dummy_ISR, // vector_69 Vusb
……
(pFun)&dummy_ISR, // vector_104 VL7swi
(pFun)&dummy_ISR, // vector_105 VL6swi
(pFun)&dummy_ISR, // vector_106 VL5swi
(pFun)&dummy_ISR, // vector_107 VL4swi
(pFun)&dummy_ISR, // vector_108 VL3swi
(pFun)&dummy_ISR, // vector_109 VL2swi
(pFun)&dummy_ISR, // vector_110 VL1swi
};

Move the vector base address.

// Move vector table to start of RAM, 0x800000
asm (move.l #0x00800000,d0);
asm (movec d0,vbr);

Copy the interrupt vectors to RAM.

// Copy stored application interrupt vectors
// to re-directed vector table in RAM
pdst=(uint_32_ptr)0x00800000;
psrc=(uint_32_ptr)&RAM_vector;
for (i=0;i<111;i++,pdst++,psrc++)
{
*pdst=*psrc;
}

4 Using the bootloader
This section explains how to use the bootloader. The included CodeWarrior projects are the USB-to-CAN bridge and the
target. Two DEMOJM boards and a PC are required.

Using the bootloader

CAN Bootloader in the MCF51JM, Rev. 0, 4/2012

Freescale Semiconductor, Inc. 11

NOTE
Please see DEMOJMUM: DEMOJM User Manual, on http://www.freescale.com for
more details on board documentation to get started and learn how to program the boards
with CodeWarrior.

1. The USB-to-CAN bridge must be set up for the USB device operation.
2. Load the USB-to-CAN firmware to one of the MCF51JM boards.
3. Load the target or bootloader firmware to the other MCF51JM board.
4. Reset both the boards. The USB-to-CAN bridge must be recognized as a COM virtual. Choose the driver .inf file that is

included in the example software attached with this application note.
5. Open the GUI that is included with the example.
6. After modifying the .lcf files and redirecting the interrupts (See Developing new applications with CAN bootloader

support), choose the generated S19 file with the Open S-rec button.

NOTE
The maximum S-rec length must be less than 32. This is due to the size of the USB
endpoint of the USB-to-CAN bridge. Change the S-rec length in the linker
properties under the Output folder of the ColdFire Linker.

Figure 8. Modifying the S-record length

Using the bootloader

CAN Bootloader in the MCF51JM, Rev. 0, 4/2012

12 Freescale Semiconductor, Inc.

http://www.freescale.com

	Introduction
	Functional description

