
1 Introduction
This application note describes how to use interrupts modules
in Decoupled Parallel mode (DPM) on the MPC5675K
microcontroller unit (MCU), which is targeted for the Chassis
and Safety market. The MPC5675K has two independent
interrupt controller modules (INTC) in DPM, one for each
core. One of the sections of this application note provides an
example project which shows interrupt handling from analog-
to-digital converters (ADCs). There are two different ways in
which the software can handle interrupts in DPM. One of the
ways is using different ADCs for each core (independent
interrupts) and the second one uses the same interrupt from
one ADC by both the cores (shared interrupt). The application
uses an interrupt software vector mode, and is developed in
GreenHills compiler.

The key words for this application note are DPM, Lock Step
mode (LSM), and interrupts.

2 Interrupts

Freescale Semiconductor Document Number: AN4495

Application Note Rev. 0, 3/2012

Interrupts in Decoupled Parallel
Mode for MPC5675K
Configuration and Usage

by: Tomas Kulig
Automotive and Industrial Solutions Group

© 2012 Freescale Semiconductor, Inc.

Contents

1 Introduction..1

2 Interrupts..1

2.1 Definition of interrupts..................................1

2.2 DPM versus LSM...2

2.3 Software versus Hardware Vector
mode..3

2.4 Interrupts—Description of sequence
during handling of ISR...................................3

3 Description of using files and important
settings...5

3.1 Different interrupts..6

3.2 Shared interrupts..7

4 References...8

2.1 Definition of interrupts
The interrupts signalize an event, or refer to some changes in the peripherals such as the end of conversation from ADC, and
direct memory access (DMA) transfer completed. The main advantage of the interrupt service routine (ISR) is the
independence on core. For example, consider a situation where the user wants the ADC to start as soon as the DMA transfer
is completed. In this case, the core does not have to continuously check the state of DMA transfer but it is enough to enable
interrupt request from DMA transfer completed and if it occurs, the ISR which starts ADC, will begin. The sequence of
interrupt service for external interrupts which is always executed, is shown in Figure 1. Both the cores have the same sources
of interrupts with some peripherals being shared by both the cores and some being used individually for each core. External
interrupts are those which are not generated inside the core, but enter the core from external sources, which in this case, are
peripherals. There are 35 core interrupts and each has its own interrupt handler. Only IVOR4 handler is used for external
interrupts while all the other handlers are used only for internal events as described in the table below.

Table 1. Core interrupt

IVORn Interrupt type

None System reset (not an interrupt)

0 Critical input

1 Machine check

2 Data storage

3 Instruction storage

4 External input

5 Alignment

6 Program

7 Floating-point unavailable

8 System call

9 APU unavailable (not used by this core)

10 Decrementer

11 Fixed-interval timer

12 Watchdog timer

13 Data TLB error

14 Instruction TLB error

15 Debug

16-31 Reserved

32 SPE unavailable

33 SPE data exception

34 SPE round exception

2.2 DPM versus LSM
The MPC5675K MCU supports the following two modes:

Interrupts

Interrupts in Decoupled Parallel Mode for MPC5675K, Rev. 0, 3/2012

2 Freescale Semiconductor, Inc.

• LSM: This mode is used for safety applications where both the cores run with the same code and their outputs are
compared.

• DPM: In this mode, the cores run separately with independent code.

The performance of DPM mode is 60% more than that of the LSM mode. Some peripherals such as ADCs, Enhanced Direct
Memory Access 0 (EDMA0), EDMA1, and so on, are shared by both the cores whereas some peripherals like INTC, and
System Timer Module (STM) are dedicated for Core0 or Core1.

2.3 Software versus Hardware Vector mode
ISRs or handlers can be either software or hardware depending on their implementation in the microcontroller. The basic
difference is in the method of operation. Hardware interrupts have their own dedicated prolog and epilog. These interrupts are
meant for actions/functions which must be started in a very short time after the interrupt occurs. For example, consider a
declaration variable named COUNTER. As soon as the interrupts occur, the value of variable COUNTER increases. For the
Hardware Vector mode, the code will include following steps:

• Clear the flag,
• Increase the value of variable COUNTER,
• Return back from ISR into the application with value of priority of this application.

The main feature of the Hardware Vector mode is the faster reaction for interrupt request, because the handling code, which
has only few instructions is saved and executed on the address given by following formula:

16 * (number of interrupt request) + Interrupt Vector Prefix Register (IVPR)

The constant 16 suggests that the space between two interrupt offset addresses is 16 bytes.

Software Vector mode has common prolog and epilog (see Definition of interrupts) for all interrupts. Each interrupt request
has its own ISR. The list of ISR addresses is stored in the interrupt vector table. Each interrupt request can have different
ISRs, but it is possible to use the same ISR for more than one interrupt request.

Each interrupt request has variable priorities set by the Priority Select Registers (PSRx). There are 16 levels of priorities from
the lowest priority 0, to the highest priority 15.

2.4 Interrupts—Description of sequence during handling of ISR
INTC records incoming interrupt events (number 1 in Figure 1) and arbitrates which incoming interrupts are serviced first
and which are waiting. Those that have higher priority than the current running application or interrupt will be executed.
Other interrupts are masked and will have to wait for handling until their priority is the highest. The servicing of interrupt
will begin by code execution on IVOR4 handler address (number 2 in Figure 1), which serves the external interrupt for
handling.

IVOR Handler 4 has two main parts. The first one is prolog (number 3 in Figure 1) and second one is epilog, but their
functionality is inverted.

• Prolog creates space on stack to create backup for the work registers, loads address of interrupt vector table and the
ISR, depending on interrupt request, and saves the returning address of function (number 4 in Figure 1). Interrupt
vectors for all available interrupts are saved in the interrupt vector table. This table contains pointers to interrupt service
functions. IVOR4 Handler goes to address of the ISR (number 5 in Figure 1). ISR for the interrupt request is executed
(number 6 in Figure 1).

• Epilog restores the work registers and space on stack. The epilog is executed after interrupt service function is finished
(number 7 in Figure 1). The last step is returning to the main function from which the ISR was called.

The description given above is executed for each core independently if the interrupt request is not from the same peripheral
event, that is, the cores are running in parallel. The procedure of processing the shared interrupt request by both the cores is
shown in Figure 1. The servicing is identical as if different interrupts are used for each of the cores. It is possible because
each core has its own INTC module which is working independently. The interrupt request enters the INTC modules of both

Interrupts

Interrupts in Decoupled Parallel Mode for MPC5675K, Rev. 0, 3/2012

Freescale Semiconductor, Inc. 3

the cores at the same time. If the service routines have the same length, their handling will run for the same time because both
the cores have the same system clock. Clearing of interrupt flag is very important at the start of service routine, otherwise, the
interrupt handler would run over and over again. It is necessary to clear the interrupt flag by the core which has shorter
interrupt handling, otherwise, the shorter ISR would be executed few times during the execution of the longer ISR. Therefore,
it is recommended to clear the flags at the start of interrupt handling in the both the core routines.

ISR307_address_0

• • •

ISR62_address_0

ISR61_address_0

• • •

ISR1_address_0

ISR0_address_0

ISR Vector table 0

ISR_307_0
ISR_0• • •ISR_0• • •ISR_0

ISR_62_0ISR_0_0

3 4

5

6

7
Handler15_0

• • •

Handler4_0

Handler3_0

Handler2_0

Handler1_0

Handler0_0

Handler table 0

21

CORE_0

ISR307_address_1

• • •

ISR62_address_1

ISR61_address_1

• • •

ISR1_address_1

ISR0_address_1

ISR Vector table 1

ISR_307_1
ISR_1• • •ISR_1• • •ISR_1

ISR_62_1ISR_0_1

3 4

5

6

7
Handler15_1

• • •

Handler4_1

Handler3_1

Handler2_1

Handler1_1

Handler0_1

Handler table 1

21

CORE_1

Interrupt
request

INTC_1

INTC_0
Prolog

• • •
Epilog

Prolog
• • •

Epilog

Figure 1. Interrupt service procedure in Software Vector mode

The numbered labels in the above figure can be described as follows:
• 1: Interrupt request
• 2: Jump to IVOR4 external input interrupt.
• 3: Start prolog of IVOR4 external input interrupt.
• 4: Find ISR which is given by interrupt request in the interrupt vector table.
• 5: Go to ISR.
• 6: Run ISR.
• 7: Return back to IVOR4 Epilog and continue with interrupted code.

CAUTION
The important part of interrupt function is to clear the interrupt flag which caused
interrupt. If the interrupt flag is not cleared, the interrupt function will run over and over
again.

Interrupts

Interrupts in Decoupled Parallel Mode for MPC5675K, Rev. 0, 3/2012

4 Freescale Semiconductor, Inc.

3 Description of using files and important settings
One project is chosen for both the cores in Multi 5.0 which creates only one Executable and Linkable Format file (ELF). The
application independence of both the cores is given by the main function for each core—main0 for Core0, and main1 for
Core1. This kind of project construction allows easy sharing of functions used on both the cores such as controlling ADCs,
and driving light-emitting diodes. It must be noted that the application uses Software Vector mode so that each core can have
its own interrupt vector table which is significant for the connection interrupt request and function for its handling. These
functions can be shared between more interrupts of both the cores, such as solving peripheral errors which can lead to Safe
mode. The next necessary part of work with interrupts is setting their priorities which default to 0 (the lowest priority) after
reset. The values of priorities are required to be higher than the priority of current running process. At the end, the global
interrupt must be allowed.

CAUTION
The default priority of the running application (main or other function) for both the cores
is 15 after reset (the highest priority). This must be decreased so that the priority of used
interrupt will be higher than the priority of running application.

The graphic interpretation of relationship among the used files is shown in Figure 2. Header file and Linker files are the basic
files for using a microcontroller and are common for both of its cores. The Header file (Header in Figure 2) allows entrance
to the peripherals of a given microcontroller (mapping of peripheral). The Linker file defines sections in memory where the
code is stored. These sections can have different length and start addresses, and use different type of memory. For example,
the code variables are located in the SRAM memory and code is in flash memory. The interrupt handling routines for internal
request of cores must be on the different location in memory for each core which is aligned to 64 KB boundary. Their
addresses are saved in the Interrupt Vector Offset Registers (IVORs). The simplest way is to create different memory
sections for each core and align these to 64 KB boundary. Similarly, IVOR4 handlers must also be aligned to 64 KB
boundary. There is one software vector table for each core which contains indexes to handle routines for external interrupt
requests. These tables must be aligned to 2 KB boundary. The ISR is selected on the basis of address which consists of two
parts. The first part is given by the address of software vector table, which is saved in IVPR, and the second part is given by
interrupt request which serves as offset from the start of table. For example, the start address of software vector table will be
0x1 0000 and ADC0 will generate the End of Conversation (EOC) interrupt. The number of this interrupt is 62 with offset
address 0x3E0 = 62*16, where space for each of the interrupts is 16 bytes. The IVOR4 starts to execute code from address
0x1 03E0 where the address of ISR is located. The collection of all the used files is in shown in Table 3.

Description of using files and important settings

Interrupts in Decoupled Parallel Mode for MPC5675K, Rev. 0, 3/2012

Freescale Semiconductor, Inc. 5

CORE_0

IVOR0s

Vector
table0

IVOR4_1

IVOR1s

main0

start-up

init0
interrupt

IVOR4_0

Microcontroller

Header
file

ld file

main1

Vector
table1

start-up

init1
interrupt

T
im

e

INTC0 INTC1

ADC0

ADC1

Module

CORE_0 CORE_1

PBRIDGE0 PBRIDGE1

while

Function
 or

code

Figure 2. Using files and modules in example project

The example project includes demonstration of using ISRs in DPM. If the microcontroller is used in DPM, interrupts can be
handled by two basic ways—one which uses the same interrupt for both the cores (sharing interrupt), and the other which
uses different interrupts for each of the cores. The demonstration application includes both.

3.1 Different interrupts
The example project uses different interrupts for each core which looks like working with one core (interrupts and cores are
independent). The project uses interrupt request End Of Conversation (EOC) from ADC0 for Core0 and EOC from ADC1 for
Core1. Each core uses 2 different LEDs. Core0 turns on LED2 and disconnects LED1 while Core1 turns on LED4 and
disconnects LED3 in the ISR. See the table below.

Table 2. LED pins

LEDs Package LBGA 473 Package LBGA 257

1 P2 L16

2 P1 K17

3 P4 P15

4 P3 N15

Description of using files and important settings

Interrupts in Decoupled Parallel Mode for MPC5675K, Rev. 0, 3/2012

6 Freescale Semiconductor, Inc.

3.2 Shared interrupts
In this method of interrupt handling, the same interrupt request is used by both the cores. This is possible because each core
has its own INTC module. The application uses interrupt request EOC from ADC0 for both the cores. Therefore, it is very
important to ensure that both the cores are running correctly at the time when the interrupt occurs because Core1 is started by
Core0. If the sharing interrupt request occurs before initialization and start up Core1, this core will not know about it because
Core0 clears the flag of this interrupt request. The flags of interrupts are saved in the peripherals and not in the INTC module,
therefore Core1 does not know about this. The global flag ensures that Core1 is ready when flag=1. Each core uses 2 LEDs.
Core0 turns on LED1 and disconnects LED2 and Core1 turns on LED3 and disconnects LED4 in the ISR.

Global variable INTC_SEL which can contain two values, INTC_SHARED for shared interrupts or INTC_INDEPE for
independent interrupts, provides separation of these two modes in application.

Table 3. List of project files

Name of file Type of file Mode Breath definition Cores

Mpc5675k-0200 header LS/DP Description of used
device (consists of

description registers)

Both

IVOR4_SW_Handler_V
LE

asm LS Code for external
interrupt IVOR4

handler (it means code
for external interrupt).

Core0

IVOR4_SW_Handler_V
LE_1

asm DP Code for external
interrupt IVOR4

handler (it means code
for external interrupt).

Core1

GHS_MPC56xx_55xx_
FLASH

Id LS/DP Linker file for definition
memory spaces

Both

crt0_VLE_Flash asm LS/DP Startup code: Both the
cores use the same
MMU table besides
definition of RAM

memory, shadow, and
test memory.

Both

Vector_SW_VLE -
Z3_Z4_Z6_Z7_0

asm LS Setting IVPR and IVOR
registers of Core0. It is

for definition of
interrupt subroutine of
core interrupts besides
IVOR4 which has own

file.

Core0

Vector_SW_VLE -
Z3_Z4_Z6_Z7_1

asm DP Setting IVPR and IVOR
registers of Core1. It is

for definition of
interrupt subroutine of
core interrupts besides

IVOR4 which has its
own file.

Core1

main c LS/DP main code Both

Table continues on the next page...

Description of using files and important settings

Interrupts in Decoupled Parallel Mode for MPC5675K, Rev. 0, 3/2012

Freescale Semiconductor, Inc. 7

Table 3. List of project files (continued)

Name of file Type of file Mode Breath definition Cores

IntcIsrVectors c LS/DP Separate vector tables
for each core

Each core has own
vector table.

MPC56xx_55xx_Dual_
PRC0_Interrupt_Init

c LS/DP The interrupt controller
configuration file

Setting priority of the
main function, start

address vector table

4 References
• MPC5675KRM available at http://www.freescale.com
• E200Z760RM Power Architecture® Core reference manual available at http://www.freescale.com

References

Interrupts in Decoupled Parallel Mode for MPC5675K, Rev. 0, 3/2012

8 Freescale Semiconductor, Inc.

http://www.freescale.com
http://www.freescale.com

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

Document Number: AN4495
Rev. 0, 3/2012

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductors products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any liability, including without limitation
consequential or incidental damages. "Typical" parameters that may be provided in
Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters,
including "Typicals", must be validated for each customer application by customer's
technical experts. Freescale Semiconductor does not convey any license under its patent
rights nor the rights of others. Freescale Semiconductor products are not designed,
intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other
application in which failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claims alleges
that Freescale Semiconductor was negligent regarding the design or manufacture of
the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.
For further information, see http://www.freescale.com or contact your Freescale
sales representative.

For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© 2012 Freescale Semiconductor, Inc.

	Introduction
	Interrupts
	Definition of interrupts
	DPM versus LSM
	Software versus Hardware Vector mode
	Interrupts—Description of sequence during handling of ISR

	Description of using files and important settings
	Different interrupts
	Shared interrupts

	References

