
Freescale Semiconductor
Application Note

© 2011 Freescale Semiconductor, Inc. All rights reserved.

This application note is a reference for the MSC815x boot
process through the use of serial RapidIO (SRIO)
transactions and the SmartDSP OS. It includes a booting
example that serves as a learning exercise in setting up the
MSC815x ATMUs, configuring the MSC8156AMC card,
and booting a multi-device serial RapidIO system.

Although typically the MSC815x DSP is booted from a
non-DSP host, such as a device built on Power
Architecture® technology (for example, the P4080), this
application note uses an MCS8156ADS as a boot host and
the multi-device MSC8156AMC as the boot target.

While this document demonstrates a host booting the master
DSP over serial RapidIO, it also provides the full
configuration to put all three AMC DSPs into serial RapidIO
boot mode.

This document applies to the following devices:
• MSC8144
• MSC8144E
• MSC8151
• MSC8152
• MSC8154

Document Number: AN4321
Rev. 0, 08/2011

Contents
1. Background information . 2
2. Setup for the MSC8156ADS to MSC8156AMC boot

demo example . 3
3. Performing serial RapidIO transactions 8
4. Using the LED example application 13
5. Running the ADS to AMC SRIO boot application . . 13
6. Revision history . 15

MSC815x Serial RapidIO Boot
SmartDSP Boot of MSC8156AMC from an ADS Host

by Networking and Multimedia Group
Freescale Semiconductor, Inc.
Austin, TX

MSC815x Serial RapidIO Boot, Rev. 0

2 Freescale Semiconductor

Background information

• MSC8154E
• MSC8156
• MSC8156E
• MSC8157
• MSC8157E
• MSC8158
• MSC8158E
• MSC8251
• MSC8252
• MSC8254
• MSC8256
• MSC8256E

1 Background information

1.1 Reference materials relevant to boot example
This table lists reference material useful for serial RapidIO boot and serial RapidIO usage relevant to this
document. The documentation IDs for Freescale documents are included for ease of ordering.

Table 1. Relevant reference materials

ID Title Purpose

Applicable device ID Applicable device reference
manual

Discusses the serial RapidIO boot process in detail (see the corresponding
“Boot Program” section in the applicable device reference manual), the
required device setup (see the corresponding “Reset” section in the applicable
device reference manual), and the serial RapidIO and High Speed Serial
Interface (HSSI) blocks details. The manual also provides relevant register
address information and programming descriptions.

MSC8156ADSRM MSC8156ADS Reference
Manual

Provides configuration, module, and connectivity information for the MSC8156
ADS board. This document was used to provide information on MSC8156
Reset Device Configuration and SerDes to AMC backplane connectivity.

MSC8156AMCUM MSC8156 Advanced
Mezzanine Card User’s
Manual

Used for reference on DIP switch configuration, DSP device ID, and SerDes
switch configuration and connectivity.

AN4256 Understanding OCN ATMU
with SmartDSP OS
Examples

Explains the MSC815x’s OCN ATMU and how it pertains to SmartDSP. Also
provides programming examples.

MSC815x Serial RapidIO Boot, Rev. 0

Freescale Semiconductor 3

Setup for the MSC8156ADS to MSC8156AMC boot demo example

1.2 Acronyms and Abbreviations
This table contains acronyms and abbreviations used in this document.

2 Setup for the MSC8156ADS to MSC8156AMC boot
demo example

In the following example, the MSC8156ADS is used as a boot host to boot the MSC8156AMC card with
a program that flashes the AMC card’s LEDs.

AN3661 RapidIO® Technology in
Wireless Base Stations:
Programming DSPs over a
RapidIO Interconnect

Provides background and reference material for serial RapidIO in the AMC
system, and configuration/boot over a PPC host device.

TARGETING_
STARCORE_DSPS

CodeWarrior Development
Studio for StarCore DSP
Architectures Targeting
Manual

Provides information on manipulating and reading the executable files
associated with user projects for Freescale StarCore-based DSP devices. This
document was used to generate boot images to be sent over serial RapidIO.

Table 2. Acronyms and Abbreviated Terms

Term Meaning

ADS Application Development System

AMC Advanced Mezzanine Card

ATMU Address Translation Mapping Unit

CLASS Chip Level Arbitration and Switching System

DIP Dual-Inline Package

DSP Digital Signal Processor

EPROM Erasable Programmable Read-Only Memory

EEPROM Electrically Erasable Programmable Read-Only Memory

OCN DMA OCeaN DMA. Also known as On-chip Network DMA.

PEFCAR Performance Capabilities Register

RCWHR Reset Configuration Word High Register in the DSP

RCWLR Reset Configuration Word Low Register in the DSP

SDOS SmartDSP Operating System

uTCA Micro Telecommunications Computing Platform

Table 1. Relevant reference materials (continued)

ID Title Purpose

MSC815x Serial RapidIO Boot, Rev. 0

4 Freescale Semiconductor

Setup for the MSC8156ADS to MSC8156AMC boot demo example

NOTE
The example application code in this section was tested using the SmartDSP
OS v3.7.0 and CodeWarrior 10.1.5. Updates in the OS and tools since then
are not expected to impact these specific projects.

2.1 Connectivity considerations
The MSC815x can be configured for up to 4x SRIO, which is used in this example because it is supported
on both the MSC8156ADS and MSC8156AMC cards. Both ADS and AMC cards can be plugged into a
Schroff uTCA chassis to enable connectivity.

2.2 MSC8156AMC connectivity and architecture
This figure shows the MSC8156AMC block diagram. Note the SerDes lane numbers available on the
AMC card’s connector; these are used to connect over the uTCA. There are three DSPs on the
MSC8156AMC card that are connected via a serial RapidIO switch to the AMC connector.

Figure 1. MSC8156AMC block diagram

2.3 MSC8156ADS connectivity and architecture
The MSC8156ADS provides the user with the option to connect either via AMC ports 4:7 or via AMC
ports 8:11. The uTCA chassis slots #1 and #4 allow the user to connect over lanes 8:11 to provide space
for fans and other devices; this also provides the user with space to change DIP switches, if needed,
without removing cards. The figure below shows the MSC8156ADS serial RapidIO-only block diagram.

MSC815x Serial RapidIO Boot, Rev. 0

Freescale Semiconductor 5

Setup for the MSC8156ADS to MSC8156AMC boot demo example

Ports 8:11 connect to the switch on the AMC and to SerDes1 on the ADS. Because ports 8:11 connect to
a switch on the AMC, the user has the option of using either of the MSC8156’s SerDes ports for AMC
DSPs. AMC port 8:11 connects to the switch’s port #4. The host is properly configured when ports 8:11
are connected to switch port #4 on the AMC, and ports 8:11 are connected to the SerDes1 on the ADS.

Figure 2. MSC8156ADS serial RapidIO-only block diagram

When the lanes (in this case, lanes 8:11) and uTCA slots have been determined, the hardware will be set
up as shown in this figure.

Figure 3. Proper setup of uTCA chassis with MSC8156ADS and MSC8156AMC connected over lanes 8:11

MSC8156

AMC

CLKin

REF
CLK1, 2

GPIO/TMR
TDM0–3/RGMII1, 2
I2C
SPI
UART
JTAG

DDR1 DDR2

SerDes2
SRIO IF/

PCIe
SGMII

SerDes1
SRIO IF/

SGMIIs

PORT0

PORT2

PORT4–7

PORT8–11

PORT12–15

10
00

B
as

e-
X

MSC815x Serial RapidIO Boot, Rev. 0

6 Freescale Semiconductor

Setup for the MSC8156ADS to MSC8156AMC boot demo example

2.4 AMC-specific setup
When the hardware is set up as shown in Figure 3, configure the AMC card so that the DSPs are ready to
boot over serial RapidIO.

2.4.1 Configuring the AMC DSPs out of reset
The AMC DSPs are configured out of reset via an I2C EEPROM shared by all DSPs. The EEPROM
contains the RCWHR and RCWLR configuration words to determine boot port, peripheral configuration,
and device ID.

To load from I2C EEPROM, the MSC8156AMC DIP switches are set up as follows (where 1 = OFF):
SW2 = 00010100

SW1 = 00000000

Additionally, the user must configure RCWLR[S1P/S2P] appropriately. Because an MSC8156 contains
only one serial RapidIO ID, when the serial RapidIO switch is enumerating, there will be a problem if both
MSC8156 serial RapidIO ports are enabled and connected to the switch; this is because two switch ports
must not contain the same serial RapidIO device ID. If the user attempts to boot through more than one
port, unpredictable results occur. If the two switch ports contain the same device ID, the user must make
sure only one is enabled. The user must only configure S1P for 4x SRIO; the other SerDes port will be
disabled.

The data contents, which the user must load into the EEPROM and which configure the RCWLR and
RCWHR for 4x SRIO, along with the executable to configure DSP1 for serial RapidIO boot are provided
with this application note, in the following zip file:

BOOT1A_Workaround_forDSP1_rest_normal-AMC_v3.txt

Booting out of EEPROM—using the above file—configures all DSPs for serial RapidIO boot and moves
them into standard serial RapidIO boot operation.

NOTE
The AMC switch out of reset is not enumerated; therefore, this is left to the
boot host to manage. For details, see Section 3.1, “SmartDSP OS
enumeration of MSC8156AMC’s SRIO switch.”

MSC815x Serial RapidIO Boot, Rev. 0

Freescale Semiconductor 7

Setup for the MSC8156ADS to MSC8156AMC boot demo example

2.4.2 Standard process for booting over serial RapidIO

This figure illustrates the standard process for MSC815x booting over serial RapidIO.

Figure 4. MSC8157 serial RapidIO boot flow

The MSC815x comes out of reset, opens and enables serial RapidIO and SerDes lanes, and then writes
1717 1717h to its own M3 memory (address C010 1C00h for MSC8156). At this point, the MSC815x
polls that same memory location until the boot host has updated the value from 1717 1717h to
A5A5 A5A5h.

The role of the boot host is to load the application into the MSC8156’s memory and then update the “start
address” (also known as the “entry point”), to which the PC jumps, so that the PC jumps to the new
application loaded by the host; that is, the boot host sets the address and then the controlling program
jumps to the new address to begin execution of the application loaded by the host starting at that address
in memory.

The memory location where the entry point is indicated is C010 1C10h on the MSC8156.

After the full program and program start address have been loaded, the boot host’s final function is to write
A5A5 A5A5h to the address the MSC8156 is polling (address C010 1C00h for MSC8156). At this point,
the MSC8156 executes the loaded application.

2.5 ADS-specific setup (serial RapidIO boot host)
The MSC8156ADS must be set up to configure SerDes1 for 4x SRIO, which is done using the following
DIP switch settings. Note that 1 = OFF:

SW1 = 00000000

SW2 = 00000110

SW3 = 00010000

SW4 = 11000000

Disable tri-state on lanes

Set C000 0000h to 1717 1717h

Read address C000 0000h

Boot mode select is serial RapidIO interface

= A5A5 A5A5h

Continue boot flow

No

Yes

Note: Addresses are
different between
MSC8156 and MSC8157.

MSC815x Serial RapidIO Boot, Rev. 0

8 Freescale Semiconductor

Performing serial RapidIO transactions

SW5 = 10010000

SW6 = 00000000

SW7 = 00000011

Details of the boot host code are covered in the following sections:
• Section 3, “Performing serial RapidIO transactions”
• Section 4, “Using the LED example application”
• Section 5, “Running the ADS to AMC SRIO boot application”

3 Performing serial RapidIO transactions
The MSC8156 serial RapidIO interface provides the capability to perform standard serial RapidIO
transactions (NWRITE, NWRITE_R, SWRITE, and NREAD). These transactions are used in this
example to perform loading and checking of boot code, along with signaling of boot load completion.

3.1 SmartDSP OS enumeration of MSC8156AMC’s
SRIO switch

The SmartDSP OS initializes the MSC815x serial RapidIO by setting up internal registers and by doing a
standard port discovery process. When performing these tasks, the SmartDSP OS checks what is
connected to the MSC8156. When the ADS is connected to the MSC8156AMC, the SmartDSP OS detects
the switch connection and assigns serial RapidIO IDs to the switch lanes, as shown in the following table.

This table shows how the SmartDSP OS assigns serial RapidIO IDs to the switch lanes.
Table 3. SDOS enumeration of MSC8156AMC’s serial RapidIO switch

Switch Lane Port Mode
Serial RapidIO

Switch
Port Number

AMC End Point Serial RapidIO ID

3:0 4x 0 DSP2 SRIO0 ID = 1

7:4 4x 1 DSP2 SRIO1 NA

11:8 4x 2 DSP3 SRIO0 ID = 2

15:12 4x 3 DSP3 SRIO1 NA

19:16 4x 4 AMC SRIO1 Connected directly to the ADS

23:20 4x 5 AMC SRIO2 NA

27:24 4x 6 AMC SRIO0 NA

31:28 4x 7 SMC SRIO3 NA

35:32 4x 8 DSP1 SRIO0 ID = 3

39:36 4x 9 DSP1 SRIO1 NA

Note:
1. Serial RapidIO IDs for the disabled serial RapidIO ports are listed as NA.

MSC815x Serial RapidIO Boot, Rev. 0

Freescale Semiconductor 9

Performing serial RapidIO transactions

After the SmartDSP OS assigns IDs to the switch lanes, the user may direct transactions towards these IDs.
Note that, in Section 2.4.1, “Configuring the AMC DSPs out of reset,” only one port of serial RapidIO is
enabled for each DSP.

3.2 Setting up the ATMU windows
To perform serial RapidIO transactions, the user must configure the ATMUs. The MSC8156 has ATMUs
for the following:

• For the two OCN DMA controllers
• For each serial RapidIO unit

These ATMUs are used basically as a multiplexer to direct data traffic to different destinations.

3.2.1 Understanding the OCN DMA controller ATMU window
The OCN DMA controller ATMU allows up to ten access windows. The programmer must set up at least
a subset of these windows (see msc815x_config.c in the SmartDSP demos) to allow the DMA controller
to access the memory space.

A DMA ATMU window includes the following:
• Start address
• Window size
• Interface

The window start address and size act effectively as the multiplex controller. If an address is within the
range between an ATMU window’s start address to the start address + window size then that ATMU
window is selected and the transaction is forwarded to the output port determined by the ATMU window’s
interface (output port can be to the PCI Express block, SRIO0, SRIO1, or to the MSC815x’s internal
subsystem CLASS via one of the OCN/CLASS ports).

3.2.2 Configuring the OCN DMA controller ATMU windows
In the case of the serial RapidIO boot demo for this application note, the host’s ATMU windows in the
SmartDSP’s msc815x_config.c is defined as follows:

ocn_dma_init_params_t ocn_dma_init_params1 ={

 OCN_DMA_ID1,

 OS_HWI_PRIORITY0,

 { /* On which core to enable the channel. */

 ANY_CORE_ID, ANY_CORE_ID, ANY_CORE_ID, ANY_CORE_ID,

 },

 {

 {

 RIO0_ATMU_BASE,

 OCN_DMA_WIN_2M,//DMA_ATMU_WIN_SIZE,

 OCN_DMA_INTERFACE_RIO0

 },

MSC815x Serial RapidIO Boot, Rev. 0

10 Freescale Semiconductor

Performing serial RapidIO transactions

 {

 RIO0_ATMU_BASE*2,

 OCN_DMA_WIN_2M,//DMA_ATMU_WIN_SIZE,

 OCN_DMA_INTERFACE_RIO0

 },

 {

 RIO0_ATMU_BASE*3,

 OCN_DMA_WIN_2M,//DMA_ATMU_WIN_SIZE,

 OCN_DMA_INTERFACE_RIO0

 },

 {

 RIO0_ATMU_BASE*4,

 OCN_DMA_WIN_2M,//DMA_ATMU_WIN_SIZE,

 OCN_DMA_INTERFACE_RIO0

 },

 {

 M3_BASE_ADDR,

 DMA_ATMU_WIN_SIZE,

 OCN_DMA_INTERFACE_LOCAL1

 },

 {

 0x40000000ULL,//DDR0 base address

 OCN_DMA_WIN_1G,//DMA_ATMU_WIN_SIZE,

 OCN_DMA_INTERFACE_LOCAL1

 }

 }};

In the example above, six OCN DMA controller ATMU windows are created. The first four windows
provide accesses to data over SRIO0; the last two windows provide data accesses to memory connected to
M3 and DDR on this chip.

There are four separate windows with four separate start addresses, all of which are pointed to SRIO0. This
is because when these transfers reach SRIO0, they are then directed by a second ATMU, the serial
RapidIO’s ATMU, towards specific serial RapidIO IDs for serial RapidIO transactions.

3.2.3 Understanding the serial RapidIO ATMU windows
A serial RapidIO ATMU window contains the following:

• ATMU window number
• Serial RapidIO ID
• OCN base address
• Translation address
• Window size
• Priority level
• Access type

MSC815x Serial RapidIO Boot, Rev. 0

Freescale Semiconductor 11

Performing serial RapidIO transactions

NOTE
The OCN base address is the address used as an input to the “ATMU MUX.”
The translation address is the output address from the “ATMU MUX.”

3.2.4 Configuring the serial RapidIO ATMU windows
In the case of the serial RapidIO boot demo for this application note, the serial RapidIO ATMU windows
in msc815x_config.c have been configured as follows:

{//AMC Master DSP M3 memory window

 1, /* Window number */

 3, /* SRIO ID towards which to direct the flow */

 RIO0_ATMU_BASE, /* 36 bit Ocean address. - Base address*/

 M3_BASE_ADDR, /* 34 bit RapidIO translation address - destined for M3 */

 RIO_ATMU_WIN_SIZE, /* Window size */

 MEDIUM_FLOW_LEVEL, /* Priority level */

 NWRITE /* Access type on RapidIO */

 },

 {//AMC DSP2 M3 memory window

 2, /* Window number */

 1, /* SRIO ID towards which to direct the flow */

 RIO0_ATMU_BASE * 2, /* 36 bit Ocean address. - Base address*/

 M3_BASE_ADDR, /* 34 bit RapidIO translation address - destined for M3 */

 RIO_ATMU_WIN_SIZE, /* Window size */

 MEDIUM_FLOW_LEVEL, /* Priority level */

 NWRITE /* Access type on RapidIO */

 },

 {//AMC DSP3 M3 memory window

 3, /* Window number */

 2, /* SRIO ID towards which to direct the flow */

 RIO0_ATMU_BASE*3, /* 36 bit Ocean address. - Base address*/

 M3_BASE_ADDR, /* 34 bit RapidIO translation address - destined for M3 */

 RIO_ATMU_WIN_SIZE, /* Window size */

 MEDIUM_FLOW_LEVEL, /* Priority level */

 NWRITE /* Access type on RapidIO */

 },

 {//AMC Master DSP M2 memory window

 4, /* Window number */

 3, /* SRIO ID of AMC Master device */

 RIO0_ATMU_BASE*4, /* 36 bit Ocean address. - Base address*/

 0x30000000ULL, /* 34 bit RapidIO translation address - destined for M3 */

MSC815x Serial RapidIO Boot, Rev. 0

12 Freescale Semiconductor

Performing serial RapidIO transactions

 SRIO_ATMU_OUT_WIN_512K,//RIO_ATMU_WIN_SIZE, /* Window size */

 MEDIUM_FLOW_LEVEL, /* Priority level */

 NWRITE /* Access type on RapidIO */

 },

All four SRIO ATMU windows are capable of being programmed to be decoded into four separate serial
RapidIO endpoints, or four different address ranges of a single SRIO endpoint. The sample code above
illustrates how four windows are directed to three different SRIO endpoints. The first and fourth windows
both go to SRIO ID3, which points to DSP1 of the AMC card. For more information on how the SmartDSP
OS assigns serial RapidIO IDs to the switch lanes, see Table 3. The difference between the first and fourth
window is the translation address.

3.3 Creating an OCN DMA controller transaction
When the OCN DMA controller ATMU and the SRIO ATMU are both set up, an example transaction, such
as performing a single write of a block of data from the ADS’s DDR to M3 of the AMC’s DSP1, can be
performed. To perform this task, the user needs to create an OCN DMA transaction that:

• Reads data from the DDR (with an appropriate address offset),
• And sends data to the SRIO aimed for SRIO ATMU window four (with an appropriate offset).

To create an OCN DMA that meets the above requirements, the user must create a DMA transaction.
Because it is only a single transaction, the user should create a direct transaction. The full direct transaction
example is provided in the host code provided in the zip file for this application note.

3.3.1 Setting up the direct DMA transaction
The direct DMA transaction for the example in Section 3.3, “Creating an OCN DMA controller
transaction,” is set up as follows:

ocn_dma_transfer_config.source.addr.high_addr = 0;

 ocn_dma_transfer_config.source.addr.low_addr = (uint32_t)boot_seg0;//DDR

 ocn_dma_transfer_config.size = sizeof(boot_seg0);

 ocn_dma_transfer_config.destination.addr.low_addr= (uint32_t)0x00000000;
//0x30000000 intended address -> base offset provided by ATMU

 ocn_dma_transfer_config.destination.addr.high_addr = 4;

 /* Performing transfer directly. */

 status = ocnDmaTransfer(ocn_dma[TRANSACTION_DMA], &ocn_dma_transfer_config, 0);

3.3.2 Understanding the sample code
In the sample code provided in Section 3.3.1, “Setting up the direct DMA transaction,” the high address
of the source is set to 0, and the lower 32 bits are assigned to a variable stored in DDR memory. The DMA
controller decodes this using its last (sixth) ATMU window (as set up in Section 3.2.2, “Configuring the
OCN DMA controller ATMU windows”), and considers this as an access through the CLASS bus to DDR
memory.

MSC815x Serial RapidIO Boot, Rev. 0

Freescale Semiconductor 13

Using the LED example application

The destination address highest 32 bits are set to 4, and the OCN DMA controller decodes this using its
fourth ATMU window to forward the data on to SRIO0.

SRIO0 reads the high 32-bit address as 4, which matches the 36-bit OCN address for SRIO ATMU window
#4. SRIO0 forwards the transaction on using the description of ATMU window 4: NWRITE to SRIO
endpoint with ID #3, Address = 3000 0000h + the lower 32-bit address offset, which was 0 in the example
code.

If the source and destination addresses of the transfer were reversed, the transaction would have acted as
an NREAD instead of an NWRITE, pulling data from SRIO ATMU window 4 (SRIO ID 3, which is the
AMC DSP1) and writing to DDR memory.

4 Using the LED example application
The LED example application, which flashes AMC LED D1 (the green LED, not the yellow LED), is
provided in the zip file contained with this application note, under the “Files for AMC” folder.

To obtain the segment values required to load over serial RapidIO, the ELD is extracted from the code
example in a way similar to the standard I2C EEPROM boot demo; using the output from the i2cboot.exe
application, each segment is extracted from the EEPROM text file. The first 32 bytes are the “start address”
of the segment. For detailed information on reading ELD (ELF format files) for the purpose of creating a
boot image, see the CodeWarrior Development Studio for StarCore DSP Architectures Targeting Manual,
provided with the CodeWarrior development tools in the <CodeWarrior Install>\SC\Help\PDF\ folder.
The I2CBOOT utility tool is used for the small LED Flashing demo. Users with more complex
applications are advised to refer to the sections on the ELF File Dump Utility and the ELF2XX utility in
the Targeting Manual.

Instead of creating an intelligent ELF reader, the required program, data, and segments for the LED flash
ELD are loaded into a header file. As noted above, when moving to a larger, more complicated application,
it is advised that the programmer use an ELF reader utility to read directly from an ELD file at boot time
and boot over SRIO.

5 Running the ADS to AMC SRIO boot application
The AMC card requires the setup described in the MSC8156 Advanced Mezzanine Card User’s Manual.

To burn the EEPROM for the AMC board:
1. Create a SmartDSP demo folder based on the standard msc815x demo folder. The user must ensure

that the folder contains the AMC support related folder package required for all AMC projects (that
is, the amc_support package). The folder created should reside in a directory parallel to the
msc815x directory. Its location should resemble the following: demos\starcore\msc815x_amc\

2. Extract the AMC_i2c_burn_DSP_EEPROM.zip file to this folder.
3. Ensure the I2C code includes the BOOT1A_Workaround_forDSP1_rest_normal-AMC_v3.txt.
4. Build and run this application on the AMC card.
5. Repower or PORESET the AMC card using the blue push button on the front of the card.

MSC815x Serial RapidIO Boot, Rev. 0

14 Freescale Semiconductor

Running the ADS to AMC SRIO boot application

To run the serial RapidIO boot demo on the ADS:
1. After the MSC8156AMC is programmed with the new EEPROM image and repowered, extract

the rio_dma-amc_boot_host.zip file into the standard SmartDSP demo’s folder for ADS code:
demos\starcore\msc815x\

2. Build and run this demo.
3. The demo will stop on a debug statement break in appRioDmaInit after using direct DMA

transactions to send the boot application to the AMC’s DSP1.
4. The demo provides the following output:

Discovered a switch with 10 ports. Connected to port 4 (hop count=0)

Mapped Dev ID 0x0 to port 4 on switch, hop count=0

Port 0 on switch is active (hop count=0)

Mapped Dev ID 0xffff to port 0 on switch, hop count=0

Discovered endpoint. Enumerated with ID 1 (hop count=1).

Update routing table with found endpoint

Mapped Dev ID 0x1 to port 0 on switch, hop count=0

Port 2 on switch is active (hop count=0)

Mapped Dev ID 0xffff to port 2 on switch, hop count=0

Discovered endpoint. Enumerated with ID 2 (hop count=1).

Update routing table with found endpoint

Mapped Dev ID 0x2 to port 2 on switch, hop count=0

Port 8 on switch is active (hop count=0)

Mapped Dev ID 0xffff to port 8 on switch, hop count=0

Discovered endpoint. Enumerated with ID 3 (hop count=1).

Update routing table with found endpoint

Mapped Dev ID 0x3 to port 8 on switch, hop count=0

Note that re-enumerating the switch when it is already enumerated does not work. At this point, the
MSC8156AMC card's green LED should start blinking, indicating that boot has successfully loaded to the
AMC DSP1, and executed.

MSC815x Serial RapidIO Boot, Rev. 0

Freescale Semiconductor 15

Revision history

6 Revision history
This table provides a revision history for this document.

Table 4. Document revision history

Rev.
Number

Date Substantive Change(s)

0 08/2011 Initial public release

Document Number: AN4321
Rev. 0
08/2011

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Freescale, the Freescale logo, CodeWarrior, PowerQUICC, QorIQ, and
StarCore are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat.
& Tm. Off. CoreNet, QorIQ Qonverge, QUICC Engine, and VortiQa are
trademarks of Freescale Semiconductor, Inc. All other product or service
names are the property of their respective owners. The Power Architecture
and Power.org word marks and the Power and Power.org logos and related
marks are trademarks and service marks licensed by Power.org.
© 2011 Freescale Semiconductor, Inc.

	MSC815x Serial RapidIO Boot
	1 Background information
	1.1 Reference materials relevant to boot example
	Table 1. Relevant reference materials

	1.2 Acronyms and Abbreviations
	Table 2. Acronyms and Abbreviated Terms

	2 Setup for the MSC8156ADS to MSC8156AMC boot demo example
	2.1 Connectivity considerations
	2.2 MSC8156AMC connectivity and architecture
	Figure 1. MSC8156AMC block diagram

	2.3 MSC8156ADS connectivity and architecture
	Figure 2. MSC8156ADS serial RapidIO-only block diagram
	Figure 3. Proper setup of uTCA chassis with MSC8156ADS and MSC8156AMC connected over lanes 8:11

	2.4 AMC-specific setup
	2.4.1 Configuring the AMC DSPs out of reset
	2.4.2 Standard process for booting over serial RapidIO
	Figure 4. MSC8157 serial RapidIO boot flow

	2.5 ADS-specific setup (serial RapidIO boot host)

	3 Performing serial RapidIO transactions
	3.1 SmartDSP OS enumeration of MSC8156AMC’s SRIO switch
	Table 3. SDOS enumeration of MSC8156AMC’s serial RapidIO switch

	3.2 Setting up the ATMU windows
	3.2.1 Understanding the OCN DMA controller ATMU window
	3.2.2 Configuring the OCN DMA controller ATMU windows
	3.2.3 Understanding the serial RapidIO ATMU windows
	3.2.4 Configuring the serial RapidIO ATMU windows

	3.3 Creating an OCN DMA controller transaction
	3.3.1 Setting up the direct DMA transaction
	3.3.2 Understanding the sample code

	4 Using the LED example application
	5 Running the ADS to AMC SRIO boot application
	6 Revision history
	Table 4. Document revision history

