Freescale Semiconductor Order this document
by AN427/D

AN427

MC68HC11 EEPROM Error Correction Algorithms in C

By Richard Soja
Freescale Ltd.
East Kilbride, Glasgow

Introduction

This application note describes a technique for correcting 1-bit errors
and detecting 2-bit errors in a block of data ranging from 1 to 11 bits in
length. The technique applied is a modified version of a Hamming code
and has been implemented entirely in C. Additional functions have been
provided to program and read the EEPROM (electrically erasable
programmable read-only memory) on an M68HC11 microcontroller unit
using the error encoding and decoding algorithms.

Encoding and Decoding Algorithms

Some texts (see References [1] and [2]) describe the use of
simultaneous equations to calculate check bits in Hamming distance-3
error correcting codes. These codes are so named because there are at
least three bit differences between each valid code in the set of available
codes. The codes are relatively easy to generate and can be used to
correct 1-bit errors. However, their main drawback is that if 2-bit errors
occur, then the correction will be made erroneously. This is because the
condition of 2-bit errors corresponds exactly with a 1-bit error from
another valid code.

freescale"

© Freescale Semiconductor, Inc., 2004. All rights reserved. semiconductor
© Motorola, Inc., 1990, 2000 AN427

For More Information On This Product,
Go to: www.freescale.com

rxzb30
ForwardLine

rxzb30
freescalecolorjpeg

rxzb30
fslcopyrightline

4\ Freescale Semiconductor, Inc.

Application Note

The technique described here is based on an algorithmic strategy which
produces Hamming distance-4 codes over the range of 1 to 11 data bits.
This type of code is capable of correcting single-bit errors and detecting
2-bit errors.

Alternatively, if the errors are only to be detected, without correction,
then up to three bit errors can be detected. The reason for this is that the
condition of a 3 bit error in one code corresponds to a 1-bit error from an
adjacent valid code. The implication of this is that if the algorithms are
used to correct errors, then a 3-bit error will be corrected erroneously
and flagged as a 1-bit error.

The C program is divided into three modules, plus one header file. For
example:

1. EECOR1.C — This is the main program segment and serves only
to illustrate the method of calling and checking the algorithms.

2. HAMMING.C — This module contains the functions which encode
and decode the data.

3. EEPROG.C — This module contains the EEPROM programming
functions tailored for an M68HC11 MCU.

4. HC11REG.H — This is the header file which contains the
M68HC11 input/output (I/O) register names defined as a C
structure.

Implementation of Error Correction Strategy

The basic principle of decoding the error correcting codes is to use a
parity check matrix, H, to generate a syndrome word which identifies the
error. The H matrix can be generated as follows:

1. Identify how many data bits are needed. For example: 8 data bits

2. Use the standard equation to derive the number of check bits
required: If k is the number of check bits and m the number of data
bits, then for the Hamming bound to be satisfied:

Kom+k+1

AN427

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
Implementation of Error Correction Strategy

A simple way to understand why this equation holds true is as
follows: If one can generate a check code which is able to identify
where a single error occurs in a bit stream, then the check code
must have at least the same number of unique combinations as
there are bits in the bit stream, plus one extra combination to
indicate that no error has occurred. For example, if the total
number of data plus check bits were seven, then the check code
must consist of three bits to cover the range one to seven plus one
extra (0) to indicate no error at all.

In this example, if m = 8, then by rearranging the earlier equation:
2 _k-128

One way to solve for k is to just select values of k starting at, say,
1 and evaluating until the bound is reached. This method is
implemented by algorithm in function InitEncode() in Module
HAMMING.C.

For m = 8, the solution is k = 4. Note that this value exceeds the
Hamming bound, which means that additional data bits can be
added to the bit stream, thus increasing the efficiency of the code.
In fact, the maximum number of data bits is 11 in this case.

3. A parity matrix, H, is created from a "horizontally oriented" binary
table. The number of columns (b1 to b12) in the matrix correspond
to the total number of data and check bits and the number of rows
(r1 to r4) to the number of check bits.

i.e. bl b2 b3 b4 b5 b6 b7 b8 b9 bl0 bll bl2

ri 1 0 1 0 1 0 1 0 1 0 1 0
r2 0 1 1 0 0 1 1 0 0 1 1 0
r3 0 0 0 1 1 1 1 0 0 0 0 1
ra 0 0 0 0 0 0 0 1 1 1 1 1

Because the H matrix in this form is simply a truncated 4-bit binary
table, it can easily be generated by algorithm.

AN427

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Application Note

4. The position of all the check bits (C1 to C4) within the encoded
word is the position of the single 1s in the columns of H. The
remaining bits correspond to the data bits (D1 to D8).

i.e. C1 C DI C3 D2 D3 D4 C4 D5 D6 D7 D8
1 0 1 0 1 0 1 0 1 0 1 0
0 1 1 0 0 1 1 0 0 1 1 0
0 0 0 1 1 1 1 0 0 0 0 1
0 0 0 0 0 0 0 1 1 1 1 1

5. Each check bit is generated by taking each row of H in turn and
modulo-2 adding all bits with a 1 in them e
xcept the check bit positions.

i.,e. C1=D1+D2+D4+D5+D7
C2 = D1+D3+D4+D6+D7
C3 =D2+D3+D4+D8
C4 = D5+D6+D7+D8

6. The syndrome, s, is the binary weighted value of all check bits.
i.e. s=1*Cl+2*C2+4*C3+8*C4

The error position (i.e. column) is determined by the value of the
syndrome word, provided it is not zero. A zero syndrome means
no error has occurred. Note that this error correction technique
can correct errors in either data or check bits, which is not
necessarily the case with certain other error correction strategies.

The advantage of this method, where the check bits are
interspersed in a binary manner throughout the code word, is that
the error position can be calculated by algorithm.

An important point to note is that the parity check matrix described
earlier generates Hamming distance-3 codes, which means that
two errors will cause erroneous correction. This can be fixed by
adding an extra parity check bit, C5, which is the modulo-2
addition of all data and check bits together.

i.,e. C5=C1+C2+D1+C3+D2+D3+D4+C4+D5+D6+D7+D8

The code word then becomes:
Cl1C2D1C3D2D3D4C4D5 D6 D7 D8 Ch

AN427

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
Efficiency

To determine if an uncorrectable error has occurred (i.e. two
errors) in the received word, the extra parity bit is tested. If the
syndrome is non-zero and the parity bit is wrong, then a
correctable error has occurred. If the syndrome is non-zero and
the parity bit is correct, then an uncorrectable error has occurred.

Efficiency
The following table lists the relative efficiencies of this algorithm, against
data size.
Data Bits Encoded Bits Efficiency %

1 4 25

2 6 33

3 7 43

4 8 50

5 10 50

6 11 55

7 12 58

8 13 62

9 14 64

10 15 67

11 16 69
The implementation of these techniques are given in Module
HAMMING.C.
In order to maintain orthogonality in the EEPROM algorithms, the
encoded data used by the functions in Module EEPROG.C are forced
to either 1-byte or 2-byte (word) sizes. This also eliminates the
complexities of packing and unpacking data in partially filled bytes.

AN427

For More Information On This Product,
Go to: www.freescale.com

wr
PRt

Freescale Semiconductor, Inc.

Application Note

Conclusions

In this application note, the encoding algorithm’s generator matrix is the
same as the parity check matrix.

The C functions <read> and <write> in Module HAMMING.C return a
status value — 0, 1, or 2 — which indicates whether the data has no
errors, one corrected error, or two erroneously corrected errors. This
means that if the status value is 0 or 1, then the data can be assumed
good. If the status value is 2, then the data will be bad.

Alternatively, the functions can be used for error detection only, without
correction. In this case, a status value of 1 corresponds to either 1- or
3-bit errors, while a status value of 2 indicates that 2-bit errors have
occurred.

By using the C functions listed in this application note, the encoded data
size can easily be changed dynamically. To do this, the function
<InitEncode> must be called with the required new data size. The global
variables used by all the encoding, decoding, and EEPROM
programming and reading functions are automatically updated. This
allows the encoding and error correction process to be virtually
transparent to the user. In addition, the functions <write> and <read> will
automatically increment the address pointer by the correct encoded data
size set up by <InitEncode>. This simplifies the structure of loops to
program and read back data. Example code is provided in Module
EECORI1.C.

The encoding and decoding algorithms listed here may be applied to
other forms of data, such as that used in serial communications or for
parallel data transfers.

By incorporating the error correction or detection-only schemes
described in this application note, the integrity of data storage and
transfer can be greatly improved. The impact on EEPROM usage is to
increase its effective reliability and extend its useful life beyond the
manufacturer’s guaranteed specifications.

AN427

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
References

References

[1] Carlson, Communication Systems, Chapter 9, McGraw-Hill.

[2] Harman, Principles of the Statistical Theory of Communication,
Chapter 5, McGraw-Hill.

Module EECOR1.C

Tests EEPROM error detection using a nodified hanmm ng encodi ng schene.
typedef unsigned char byte;
typedef unsigned int word;

/* G obal variables used by main () */
byte *ee_addr, *start_addr, *end_addr, i, Error;
word dat a:

AR R AR E RS EEEEEEEREEEEEEEERE R R R R R R R R R R R R R R R R R Ry

/ *External gl obal variables */
extern byte CodeSi ze; /* = nunber of bits in encoded data */

/* External Functions */

extern byte read(word *data, byte **addr); /* Function returns error status */
extern byte wite(wrd data, byte **addr); [* "
/* Table of Status returned by read and wite functions
Ret urned St atus Condi tion

0 No errors detected or corrected.

1 One error detected and corrected.

2 Two errors detected, but correction is erroneous.
Not es:

1/ When the returned value is 2, the function <read> will returned a bad value in variable <data> due to
the inability to correctly correct two errors. <read> al so automatically increments the address pointer
passed to it, to the next menory space. The increnented val ue takes into account the actual size of the
encoded data. i.e. either 1 or 2 byte increment.

2/ Function <wite> also perforns a read to update and return an error status. This gives an i mediate
indication of whether the wite was successful. <wite> also automatically increments the address
poi nter passed to it, to the next free menory space. The increnented val ue takes into account the actual
size of the encoded data. i.e. either 1 or 2 byte increnent.

*/

/**/

int main ()
CodeSi ze=I ni t Encode(11); /* Get code size (less 1) needed */
/* by 11 data bits */
ee_addr =(byte *)0xb600; /* Initialise EEPROM start address */
for(i=1;i<=0x10;i ++) /* and 'erase’ EEPROM */
Error=wite(Ox7ff, &e_addr); /* Function successful if Error<>2 */
ee_addr =(byte *)0xb600; /* Reset EEPROM address */
Error=wite(0Ox5aa, &e_addr); /* Wite Ox5aa & increnment ee_addr */

AN427

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.
Application Note
Error=wite(0x255, &e_addr); /* Wite Ox255 at next avail abl e address */
CodeSi ze=I ni t Encode(4); /* Change nunber of data bits to 4 */
start_addr=ee_addr; /* Save start address for this data */
for(i=1;i<0x10;i<<=1) /* Program ’wal ki ng 1s’ */
Error=wite(i, &e_addr);
end_addr =ee_addr ; /* Save end address */

ee_addr=start_addr;
whi | e (ee_addr <end_addr) /* Read back all the 4 bit data */
Er r or =r ead(&dat a, &ee_addr) ; /* <data> good if Error=0 or 1 */

} /* main */

Module HAMMING.C

/* Modul es to Generate hammi ng codes of distance 4, for data sizes in the range 1 bit to 11 bits.
The upper bound is linmted by the encoded word type bit range (16 bits).

Corrects 1 bit error in any position (check or data), and detects 2 bit errors in any position.

After execution of the <Decode> function, the global variable <ErrFlag> is updated to indicate
| evel of error correction.

i.e. ErrFl ag Condi tion

0 No errors detected or corrected.

1 One error detected and corrected.

2 Two errors detected, but correction is erroneous.
Note that when ErrFlag is 2, function <Decode> will return a bad value, due to its inability to
correctly correct two errors.
*/

#define TRUE 1
#define FALSE O
typedef unsigned char byte;
typedef unsigned int word;

byt e Dat aSi ze, CodeSi ze, EncodedWr d, Err Fl ag;

/* Function prototypes */

byte GddParity(word Code);

word Power 2(byte e);

byte InitEncode(byte Datalength);
word MakeCheck(word Dat a);

word Encode(word Data);

wor d Decode(word Code);

byt e GddParity(Code)

wor d Code;

/*

Returns TRUE if Code is odd parity, otherw se returns FALSE
*/

{
byte p;

p=TRUE;
VWi | e (Code! =0)

AN427

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
Module HAMMING.C

{
if (Code & 1) p=!p;
Code>>=1;

}

return(p);

}

word Power 2(e)
byte e;

/*

Ret urns 2”%e
*/

{
word P2;

signed char i;

pP2=1;

if ((signed char) (e)<0)
return(0);

el se

{
for (i=1;i<=(signed char) (e);i++)
P2<<=1;
return(P2);
}
}

byte | nitEncode(Dat aLengt h)
byt e Datalengt h;
/*
Returns the m ni mum nunber of total bits needed to provide
Hanmi ng di stance 3 codes from a data size defined by passed
vari abl e <DatalLength>. This value al so updates gl obal variable <DataSize>.
i.e. finds the mnimmsolution of (k+nm) for the inequality:
22k 2k + m+ 1

I'n addition, updates global variable <EncodedSize> to reflect nunber of bytes
per encoded data. <EncodedSize> will be either 0 or 1.
*/

byt e CheckLength,i;

Dat aSi ze=Dat aLengt h; /* DataSi ze used by other functions in this nmodule */
CheckLengt h=1;
whi | e ((Power2(CheckLengt h) - CheckLengt h- 1) <Dat aLengt h)
CheckLengt h++;
i =CheckLengt h+Dat aLengt h;
EncodedWord=i / 8§; /* =0 if byte sized, =1 if word sized */
ret urn(CheckLengt h+Dat aLengt h) ;
}

wor d MakeCheck(Dat a)

word Dat a;

/*

Returns a check word for Data, based on global variables <DataSize>
and <CheckSi ze>. The H parity matrix is generated by a sinple for |oop.

*/

{
byte i, H, CheckSi ze, CheckVal ue, Check, CheckMask;
wor d Dat aMask;

AN427

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Application Note

Check=0;
CheckMask=1;
CheckSi ze=CodeSi ze- Dat aSi ze;
for (i=1;i<=CheckSize;i ++)
{
CheckVal ue=FALSE;
Dat aMask=1
for (H=1l; Hk=CodeSi ze; H++)

if ((0x8000 % H)!=0) /* Colum with single bit set */

if ((H & CheckMask !=0)
CheckVal ue"=((Dat aMask & Data) !=0);
Dat aMask<<=1;
}
}
if (CheckVal ue) Check|=CheckMask;
CheckMask<<=1;

ret urn(Check);
}
word Encode (Data)
wor d Dat a;
/*
Ret urns an encoded word, consisting of the check bits
concatenated on to the nost significant bit of <Data>.
A single odd parity bit is concatenated on to the Encoded word to
i ncrease the hanm ng bound from3 to 4, and provide 2 bit error
detection as well as 1 bit correction.
Uses gl obal variabl es <Datasi ze> and <CodeSi ze> to determ ne the
concat enati ng positions.
*/

wor d Code;

Code=Data | (MakeCheck(Dat a)<<Dat aSi ze);
if (QddParity(Code))
Code| =Power 2(CodeSi ze) ;
return(Code);
}

wor d Decode(Code)

word Code;

/*

Returns the error corrected data word, decoded from <Code>.

Uses gl obal variable <DataSize> to deternine position of the
check bits in <Code>.

Updat es gl obal variable <ErrFlag> to indicate error status i.e.:

ErrFl ag St at us
0 No errors found
1 Single error corrected
2 Doubl e error - invalid correction
*/
{

word ParityBit, Data, Check, Error Check, Syndr orme, Dat aMask;
byt e Dat aPos, CheckSi ze, CheckPos, H, Dat aBi t ;

Er r Fl ag=0;
ParityBit=Code & Power 2(CodeSi ze); /* Extract parity bit */
Dat aMask=Power 2(Dat aSi ze) - 1; /* Make data nmask */
Dat a=Code & Dat aMask; /* Extract parity bits. */
CheckSi ze=CodeSi ze- Dat aSi ze; /* Extract check bits, */
AN427
10

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
Module EEPROG.C

Check=(Code>>Dat aSi ze) & (Power 2(CheckSi ze) - 1; /* ignoring parity. */

Er r or Check=MakeCheck(Dat a) ;

Syndr one=Check ~ Error Check; /* CGet bit position of error. */

if (Syndrone>0) ErrFl ag++; /* Increment flag if error exists */
H=0;

Dat aPos=0;

CheckPos=Dat aSi ze;
Dat aBi t =TRUE;

while ((H +Syndrome) & (DataPos<DataSi ze)) /* ldentify which data or */
{

H++; /* code bit is in error. */
Dat aBi t =(0x8000 % H) ;

if (DataBit) DataPos++;

el se CheckPos++;

}

if (DataBit) Code”=Power 2(Dat aPos-1);
el se Code”=Power 2(CheckPos- 1) ;
Code| =ParityBit;

if (OddParity(Code)) ErrFl ag++;
return(Code & Dat aMask);

Module EEPROG.C

/*NModul e to program MC68HCL1 EEPROM

Contai ns <read> and <write> functions to encode and decode data
formatted by nodified hamm ng schene.

*/

#i ncl ude <HC11REG H>
#define regbase (*(struct HCl1l O *) 0x1000)

#define eras 0x16
#define wit 0x02
typedef unsigned char byte;
typedef unsigned int word;

uni on twobytes

{

word w,

byte b[2]; /* Word stored as MSB, LSB */
} udata;

extern byte EncodedWrd, Err Fl ag;
/* Function prototypes */

extern word Encode(word Data);
extern word Decode(word Code);

voi d del ay(word count);

voi d eeprog(byte val, byte byt, byte *addr,word count);
voi d program byte byt, byte *addr);

byte read(word *data, byte **addr);

byte wite(word data, byte **addr);

voi d del ay(count)
word count;

{
regbase. TOCl=r egbase. TCNT+count ; /* Set tineout period on OClL and */

AN427

11

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note

regbase. TFLGL=0x80; /* clear any pending OCl flag. */
do; while ((regbase. TFLGL & 0x80) ==0); /* Wait for tinmeout flag. */
voi d eeprog(val, byt, addr, count)
byte val; /* val determi nes Erase or Wite operation */
byte byt; /* byt is byte to be progranmed */
byte *addr; /* addr is address of encoded byte in EEPROM */
word count; /* count is nunber of E clock del ays */
{
regbase. PPROG=val ; /* Enabl e address/data | atches */
addr =byt ; / Wite value to required eepromlocation */
++r egbase. PPROG /* Enabl e vol tage punp */
if (count<100) count=100; /* Allow for software overhead */
del ay(count); /* wait a bit */
-regbase. PPROG /* Disabl e punp,then addr/data | atches */
r egbase. PPROG=0;
voi d progranm byt, addr)
byte byt;
byte *addr;
{
eepr og(eras, byt, addr, 20000) ; /* First erase byte */
eeprog(wit, byt, addr, 20000) ; /* Then write val ue */
}
byt e read(data, addr)
word *dat a;
byte **addr;
{
udat a. b[1] =*(*addr) ++; /* Read back data LSB first, and inc address */
i f (EncodedWrd) /* If word stored then read MSB */
udat a. b[0] =*(*addr) ++; /* Inc address for next call to this function */
el se /* else only byte stored, so clear MSB */
udat a. b[0] =0;
dat a=Decode(udat a. w) ; / Decode data, which updates <ErrFlag>, */
return(ErrFl ag); /* and return ErrFl ag */
}
byte write(data, addr)
word dat a;
byte **addr;
{
byt e *ol daddr;
udat a. w=Encode(dat a) ; /* Encode data.
ol daddr =* addr ; /* Save initial address for verification. */
progran(udata. b[1], (*addr) ++) ; /* Program LSB first to allow for either */
i f (EncodedWrd) /* 1 or 2 byte encoded data */
progran(udat a. b[0], (*addr) ++) ; /* MSB of word sized data, & i nc address */
return(read(&udata.w, &l daddr)); /* Return <ErrFlag> to calling segnent */
AN427
12

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note

HC11REG.H
/* HC11 structure - I/Oregisters for MC68HCL1 */
struct HC11l O {
unsi gned char PORTA; /* Port A- 3 input only, 5 output only */
unsi gned char Reser ved;
unsi gned char Pl OC; /* Parallel I/0 control */
unsi gned char PORTC, /* Port C */
unsi gned char PORTB; /* Port B - Qutput only */
unsi gned char PORTCL; /* Alternate port C latch */
unsi gned char Reservedl;
unsi gned char DDRC; /* Data direction for port C */
unsi gned char PORTD; /* Port D */
unsi gned char DDRD; /* Data direction for port D */
unsi gned char PORTE; /* Port E */
/* Ti mer Section */
unsi gned char CFORC; /* Conpare force */
unsi gned char OC1M /* Ccl nmask */
unsi gned char COC1D, * Ol data */
int TCNT; /* Timer counter */
int TI C1; * I nput capture 1 */
int TI C2; | nput capture 2 */
int TI C3; I nput capture 3 */
int TOCL; /* CQutput conpare 1 */
int TOC2; * Qut put conpare 2 */
int TCOC3; /* CQutput conpare 3 */
int TOC4; * Qut put conpare 4 */
int TCOC5; /* Qutput conpare 5 */
unsi gned char TCTL1, * Timer control register 1 */
unsi gned char TCTL2; /* Timer control register 2 */
unsi gned char TMBK1, * Main timer interrupt mask 1 */
unsi gned char TFLGL; Main tinmer interrupt flag 1 */
unsi gned char TMBK2; Main tiner interrupt nask 2 */
unsi gned char TFL&; Main tinmer interrupt flag 2 */
/* Pul se Accunul ator Tiner Control */
unsi gned char PACTL; /* Pul se Acc control */
unsi gned char PACNT /* Pul se Acc count */
/* SPl registers */
unsi gned char SPCR; /* SPI control register */
unsi gned char SPSR; /* SPI status register */
unsi gned char SPDR; /* SPI data regi ster */
/* SCl registers */
unsi gned char BAUD; /* SCI baud rate control */
uni sgned char SCCR1; /* SCl control register 1 */
uni sgned char SCCR2; /* SCI control register 2 */
uni sgned char SCSR; /* SCl status register */
unsi gned char SCDR,; /* SCl data register */
/* Ato Dregisters */
unsi gned char ADCTL; /* AD control register */
unsi gned char ADR] 4] ; /* Array of ADresult registers */
/* Define each result register */
AN427
13

For More Information On This Product,

Go to: www.freescale.com

#def i ne
#def i ne
#def i ne
#def i ne

unsi gned

char

adr 1
adr 2
adr 3
adr 4

ADR[0]
ADR[1]
ADR 2]
ADR[3]

Rsrv[4];

/* Syst em Confi guration

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

3

char
char
char
char
char
char
char

OPTI ON,
COPRST;
PPROG,
HPRI O

INIT

TEST1,;
CONFI G

/* End of structure HCL1 */

Freescale Semiconductor, Inc.

Application Note

/*

*/

Reserved for A to D expansion

System configuration options

Arnml Reset COP tinmer circuitry
EEPROM pr ogr anm ng control reg

Hi ghest priority i-bit int & msc
RAM - |/ O mappi ng regi ster
Factory TEST control register
EEPROM cel | - COP, ROM & EEPROM en

AN427

14

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
HC11REG.H

AN427

15

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.

Technical Information Center
2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150

LDCForFreescaleSemiconductor@hibbertgroup.com

Application No

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

freescale"

semiconductor

For More Information On This Product,
Go to: www.freescale.com

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	Introduction
	Encoding and Decoding Algorithms
	Implementation of Error Correction Strategy
	Efficiency
	Conclusions
	References
	Module EECOR1.C
	Module HAMMING.C
	Module EEPROG.C
	HC11REG.H

