
�������
��	���
������

AN405
SCN2681/SCN68681 and SCC2691 data
communications

Supersedes data of 1986 Aug 1998 Sep 21

INTEGRATED CIRCUITS

Philips Semiconductors Application note

AN405SCN2681/SCN68681 and SCC2691 data communications

21998 Sep 21

INTRODUCTION
This SCN2681/SCN68681 and SCC2691 data communications
applications note contains answers to some of the most frequently
discussed user inquiries. There are three main sections: functions
that are common to all three; functions that are unique to the
SCN2681/SCN68681; and a typical SCC2691 application using the
musical instrument digital interface (MIDI).

DUART/UART COMMON FUNCTIONS

Reading Reserved Register
Performing a bus read operation at location 02H or 0AH will force
these devices into a diagnostic operation. This diagnostic mode is
used to test the baud rate generator circuitry. When a read
operation occurs on either address, the device will output clock
pulses on the general purpose outputs that are a multiple of the
frequencies in the baud rate table.

This mode may be entered accidentally, in some cases, by a monitor
program that uses a write followed by an automatic read/verify
cycle. For example, a write to CRA or CRB with this type of monitor
will invoke the reserved test mode. Care must be taken when a
development system is used in the manual mode, since most
development systems use a write followed by a read/verify cycle.
Mostly, this anomaly can occur in the SC68681. If the rising edge of
the write pulse occurs before the rising edge of CEN, the reserved
mode is invoked (even if R/WN rising is only 10 to 20ns early).
Users of the SCN68681 must be sure that the rising edge of R/WN
rises with or after the rising edge of CEN.

Receiver FIFO
All three devices have a three-deep receive FIFO. The FIFO acts
more like a circular queue than a FIFO. The FIFO acts more like a
circular queue than a FIFO. The receiver has both a head and tail
pointer. The head pointer is controlled by a bus read operation and
is bumped to the next location whenever a read of the receiver takes
place. The tail pointer is bumped whenever a character is
assembled in the receive shift register and transferred to the receive
holding register.

After an external reset is applied or a reset receiver command is
issued, the head and tail pointers are at the same location in the
FIFO. Although the data sheet specifies the receiver is flushed
when a reset receiver command is issued, nothing is done to the
contents of the receiver. Therefore, three consecutive reads of the
the receiver will move the head pointer around in a circle until it
comes back to the starting point. If no new data has been received
in the receive shift register, the old data will still be in the FIFO.

Care must be taken when using a monitor in the manual mode,
since the receiver head pointer can be bumped by a write to the
transmit holding register (THR). (Write followed by a read/verify
operation at the same address has already been discussed. See
Reading Reserved Registers.)

The best way to determine if the receiver should be read is to poll
the RxRDY bit in either the ISR or the SR registers. If RxRDY = 1,
read the receiver again. Continue this loop until RxRDY = 0. Once
this state is reached, stop reading the receiver, or the pointers will
be bumped beyond the current valid data.

Detecting the End of Break
Detecting a break is a simple function built into all three devices.
The receiver continuously samples RxD. If a low is sensed for the
start bit and the full number of programmed bit times, a zero

character is accumulated in the receive FIFO. If no stop bit is
sensed (a mark condition, then the receiver samples beyond the
character frame for one more bit time. If a low is sensed, a framing
error has been detected. Once the framing error bit is set in the
status register and a zero is accumulated in the receive FIFO, the
resulting condition forces the received break bit to set in the ISR and
in the SRA or SRB. In this manner, a start of break is detected.

In order to detect an end of break, the delta break bits in the ISR
register must be tested. Whether the CPU is polling the ISR or if the
CPU is interrupt driven, the zero character in the receive FIFO
should not be read nor should the receive break be cleared in SRA
or SRB until the break is completely over. To detect an end of
break, the CPU should issue a reset delta break command (50H to
CRA or CRB), which will reset the delta break bit in the ISR. If the
CPU is using interrupts, the next step is to mask on the delta break
interrupt. If the CPU is polling, it should continue polling until the
delta break sets. Delta break will be set and interrupt only when a
change of state occurs on RxD. When the rising edge of RxD
occurs and the break is over, the delta break bit can be cleared (50H
to CRA or CRB), the received break and framing error can be
cleared (40H to CRA or CRB), and the zero character can be read
from the receiver and discarded.

Disabling the Transmitter After a Short Frame
The data sheet states that the transmitter may be disabled after the
last character is loaded in the transmit shift register. This is used to
end a block transmission or to negate RTS, after the last character
is shifted out of the transmit shift register. This method of disabling
the transmitter is essential if the RTS handshake lines are to be
used. It is not a good method to use when short, one or two byte
frames are to be transmitted as a response to a primary or
secondary station. The problem occurs when the transmitter is
re-enabled to send another short frame response. If the last
character of a message is still being serialized when an enable
transmitter command is executed, the serialized character will either
be garbled or lost.

For example, assume that the last character of a two byte frame
was loaded into the THR. If the transmitter is running at 9600 baud,
it will take from 1 to 2ms before the last character is completely
shifted out on TxD (the 2ms time occurs when the first character in
the two byte frame is currently in the TSR). If the CPU needs to
send another response, it will start by enabling the transmitter and
loading the first byte of the next frame. Even if the second byte of
the last frame is now in the TSR, the transmitter must go to mark
due to the re-enable command and the last character is either lost or
garbled.

The best way to avoid this problem is to wait until the last character
is completely shifted out of the TSR before disabling the transmitter.
This can be verified by polling the TxEMPT bit until it is set in SRA
or SRB. As pointed out earlier, this will not work when using RTS,
since the RTS output will only toggle if the transmitter is disabled
while the last data character is in the THR. In that case, the user
can time out a delay before re-enabling the transmitter.

Disabling the Transmitter and/or Receiver on the
Fly
Problems have been encountered when trying to write to the mode
registers (MR2, MR1), or the clock select registers (CSRA/B), or to
ACR[7] without first disabling the transmitter and receiver. If the
mode register changes while character serialization is still active, the
transmission may start over under the new mode configurations. If
the mode register changes after serialization is complete and the
transmitter is empty, two potential problems can appear: TxD may

Philips Semiconductors Application note

AN405SCN2681/SCN68681 and SCC2691 data communications

1998 Sep 21 3

go to the space condition for a short period of time, or TxRDY in the
ISR will set and then reset. These results are obtained independent
of the data written to the mode registers. Programming the registers
to the current values can still product the above results.

The problem is more serious when writing to CSRA/B or ACR[7],
when the clock is still running. If the transmit and/or receive clocks
are changed without disabling the transmitter and receiver, a clipped
or shortened clock may appear during the change from one
frequency to another. These short clock pulses can lock up the
transmitter and/or receiver, until they are re-enabled by command to
CRA or CRB.

The best way to avoid these problems is to disable the transmitter
and receiver, before changing either the mode or CSR registers or
ACR[7]. Disabling the transmitter and receiver will stop the TXC
and RXC while the changes are made. When the changes are
complete, the transmitter and receiver should be reset and then
re-enabled by software command. A reset command insures that
everything is in a known state before the changes are initiated.

Setting Up the Counter/Timer as a Timer
The maximum frequency that can be generated by the C/T
(counter/timer) is dependent on whether the 1X or 16X clock source
mode is used. If the C/T is to be used to drive the receiver directly,
a 16X clock must be generated that will sample the incoming data
stream.

As an example, let the X1/CLK input = 4MHz and set the C/T to its
minimum value (CTUR/CTLR = 0002H). Since the C/T will count
down to zero before its output changes state, two full counts must
pass before the C/T output changes back to its original state.
Therefore, the maximum frequency output will be 4MHz divided by
4 (minimum count) divided by 16 (for sampling clock). This results
in a 62.5kHz baud rate.

If a higher C/T clock rate is required, the 1X mode must be
programmed. The highest C/T output is 1MHz (4MHz divided by 4).
The C/T can be programmed to output 1MHz on OP3, which can be
tied by wire to IP3/4 or IP5/6. These inputs can be selected to be
transmit and receive 1X clock inputs. To program this type of
function, write OPCR = 04H, ACR = 60H, CTUR/CTLR = 0002H,
and CSRA/B =FFH. Start the C/T by performing a read at address
0EH (start counter command). When in the timer mode, the C/T will
not stop oscillating until ACR[6:4] is written to the counter mode
followed by a stop time command (read at address 0FH).

The counter can be used to count external events, or used as a
system delay timer. As an example, the C/T can be set up to time
out a 2ms delay and interrupt the CPU (used to refresh dynamic
RAM). Using the X1/CLK at 4MHz as the C/T clock, the total time in
counts is (2ms) / (250ns times 16) = 500 or 01F4H (times 16 is used
since X1/CLK divided by 16 is the only internal clock source
available in the counter mode). This function would be implemented
by writing ACR = 30H, CTUR/CTLR = 01F4H, and IMR = 04H. The
counter must be stopped and started by command from the CPU for
each count down (stop = read at address 0FH, start = read at
address 0EH).

Multidrop/Wake-Up Mode
If MR1[4:3], the devices are in the multidrop or wake-up (SCC2691)
mode. This will cause the transmitter to send data with the last bit of
each character identified as the address/data (A/D) bit. If MR1[2] =
0, the A/D bit will be ‘1’ and the assembled character will be
interpreted by the secondary receiver as an address. Both primary
and secondary stations must be in the multidrop mode. In order to
transmit an address character followed by data characters, a write

must be performed to MR1. Writing of the mode registers may
cause garbled data, if the transmitter and receiver are not disabled.
The following sequence should be used when writing to the mode
registers:
1. To insure that the transmitter is in a quiescent state, do not write

to MR1 until TxEMT = 1.
2. Reset the MR pointers. Disable the transmitter and the receiver.
3. Write MR1 using the previously written data, with MR1[2] = 1

(Tx address). Reset and enable the transmitter and receiver.
4. Load the address character in the transmit holding register

(THR). The A/D bit will be appended to the character during
transmission according to the polarity of MR1[2].

5. Wait until TxEMT = 1. (Wait for transmitter empty).
6. Reset the MR pointers. Disable the transmitter, and the

receiver.
7. Write MR1 using previous data with MR1[2] = 0 (Tx data).

Reset and enable the transmitter and receiver.
8. Load the first data character into the THR. Continue sending

data until the message is done. To send a message to a
different address, repeat steps 1 through 8.

When the secondary station sets RxRDY = 1, the CPU must
immediately read the receiver to determine if the address is correct.
If the received address compares, the CPU must set RxEN = 1 in
CRA or CRB so the message can be received. At higher baud rates
(19.2k and 38.4k), some users have lost the first character of the
message. This is due to the amount of time required for the CPU to
read the address out of the receiver and finish a compare operation
before enabling the receiver. If this is a problem, the CPU can
enable the receiver (RxEN = 1) as soon as the address is received
and the CPU is initially interrupted. Later, after the compare
operation is finished, the CPU can either read the data from the
receiver or reset the receiver depending on the received address
(see Figure 1 for a software example).

Handling Interrupts
When the transmitter is enabled and TxRDY is masked on in the
IMR, and interrupt will occur immediately. If no messages are to be
sent, the user should mask TxRDY off (IMR[4:0] = 0), or no other
interrupts will be generated. Only the interrupting section of the
device can reset the current interrupt.

For example, loading the transmitter resets TxRDY, reading the
receiver resets RxRDY, stopping the counter resets counter ready,
etc. If the function is not fully serviced, all other pending interrupts
are held up. To avoid this problem only enable the IMR bits that will
be immediately in use. Enable and disable TxRDY in the IMR just
prior to and at the end of a block transmission.

Driving X1 Externally or Using a Crystal
If a user wants to use an external clock instead of a crystal, the best
way is to drive X1 and ground X2 (SCN2681/68681 only). The data
sheets show two inverters used to drive X1 out of phase with X2.
While this is acceptable, it sacrifices the use of one gate. The only
drawback to driving the clock inputs from an external source is that
a minimum high voltage of 4.0 volts is required. A VOH greater than
4.0 volts can be insured by use of an open collector buffer (with
resistor), or by adding a pull-up resistor to an ordinary TTL buffer (be
sure VOL is less than 0.8 volts). Another requirement is the
minimum high and low clock pulse width must be 100ns. This
parameter can best be met with an external oscillator that has 50%
duty cycle.

Another more subtle problem has been seen using a crystal on the
X1/X2 inputs. If capacitors C1 and C2 with values of 15pF or
greater are used, power-on problems may be experienced

Philips Semiconductors Application note

AN405SCN2681/SCN68681 and SCC2691 data communications

1998 Sep 21 4

intermittently. The crystal may not oscillate due to an insufficient
charge on the capacitors. It is recommended that C1 and C2 be
around 5pF to insure proper charging during the power on cycle.
Many DUARTs show a 60/40 duty cycle when the crystal is installed
between X1 and X2. When viewed with an oscilloscope on X1, the
typical high time is 90ns, while the low time is approximately 130ns.
To force the crystal to operate at a 50% duty cycle (with clock high
and low time approximately 110ns), a 100kΩ or greater resistor
should be added from the X1 input to the X2 input. This addition will
raise the oscillator’s trip point and force the crystal high and low
times to be equal.

In the case of the SCC2691, none of the above problems have been
experienced with the crystal. The SCC2691 is different when driven
from an external source. Any time X1 is driven, X2 must be left
open. If X2 is grounded, the clock will not oscillate. Note that the
X1 output can only drive one CMOS external buffer. Care must be
taken not to overload the X1/CLK input.

X1/X2 Crystal
When ordering the 3.6864MHz crystal, either a series or a parallel
crystal can be used as long as the frequency tolerance is close to
+.005%. Because of the nature of the X1/X2 circuit, a parallel
crystal should be used. Testing has shown that if the tolerance
value is low, the error in frequency is divided down to the point
where it is negligible. A series crystal can be used if the tolerance is
+.005% or less. For crystal samples call: Saronix, located in Palo
Alto, CA. Request part no. NMP037: 3.6864MHz HC-18/U. A
second crystal source is U.S. Crystal, located in Fort Worth, Texas.
Request part number SIG36864-HC18.

General Initialization
Figure 2 describes the typical flow of software initialization. Usually
the mode registers are first. If a reset was issued prior to the
initialization, there is no need to reset the MR pointers. Note that
the transmitter and receiver should be disabled and reset when
either the mode registers (MR1A/B and MR2A/B) are loaded.

Asynchronous Diagnostics
Figure [3] is a software function program that can be used to test the
integrity of the data bus as well as TxDA, RxDA, TxDB and RxDB.
The program starts by initializing channel ‘A’ and ‘B’. Next the MR
pointers are reset and MR1A is read back and compared to the
value written. If the compare passes, a relay is turned on that shorts
TxDA with RxDA and TxDB with RxDB. Since the channels are in
the normal mode, this will result in an external loop back.
Transmitter ‘A’ is loaded with 256 characters as the transmitter
comes ready. When the receiver interrupts the CPU, the receive
FIFO is read and the contents compared with what had been
transmitted. If all 256 characters are received correctly, channel ‘B’
is tested in the same manner. Since the SCC2691 does not have
A3 to select channel ‘B’, the second half of this test is a simple
retest of the SCC2691 using different initialization values.

SCN2681/68681 UNIQUE FUNCTIONS

Delta Break Anomaly
When the ‘Rev E’ parts are powered-on, some have the delta break
bits set (ISR[6:2]). This can cause two possible problems: (1) if
these bits are masked on in the IMR, they will immediately get a
break interrupt; (2) the first characters received into the RHR will be
flagged with errors (framing, break or parity) in SRA/B even though
the characters were received correctly.

The way to clear these errors is to issue an external hardware reset
a second time after the power-up reset, or to issue a clear delta
break command to CRA or CRB before enabling the transmitter and
receiver. The best method is to first, disable the transmitter and
receiver; second, initialize all registers (Mr1, MR2, CSRA/B, ACR,
etc.), and then clear all errors through the command registers. To
be effective, this must take place at the end of the initialization
routine. The ending string of commands to CRA or CRB might look
like:

CRX = 50H (clear delta break bit)
CRX = 20H (reset receiver)
CRX = 30H (reset transmitter)
CRX = 45H (clear errors, enable Tx/Rx)

RTS/CTS Functions
When using the RTS/CTS functions, care must be taken to follow
the flow chart in the data sheet on how to set up RTS. Although the
RTS output will negate automatically, the output must first be
asserted by writing a ‘1’ to the appropriate output pin after the
transmitter has been enabled, and before the first byte of the
message is loaded into the THR. When the receiver controls
negation of RTS, a ‘1’ must be written to the appropriate output pin
immediately after enabling the receiver.

When the receiver is controlling the negation of RTS, the sending
transmitter will be stopped when the FIFO is full and the start bit of a
fourth character is detected in the RSR. If the sending transmitter is
a Philips Semiconductors part, the transmission will be ended when
the character currently in the TSR is finished being shifted out on
TxD.

When CTS goes high, the transmitter clock is stopped after the
current character is shifted out on TxD. The only problem this
causes is that the TxEMPT bit will not set in the SRA or SRB (even
if the transmitter is empty), until the clock starts running again (when
CTS goes back low).

The receivers are designed to hold three characters in the RHR and
one character in the RSR. If the sending transmitter is not a Philips
Semiconductors part, the character in the RSR may be overrun by a
fifth character. For example, if the sending transmitter is made by
Intel, the transmitter will continue to empty both the THR and the
TSR when its CTS input is high. Although it will not allow any other
characters to be transmitted, the receiver shift register (RSR) is still
overrun.

Input Port
The 40-pin version of the SCN2681 and SCN68681 have a 7-bit
input port that can be read through two different means. The port
can be read in parallel by doing a read at address ‘OD’ hex. The
lower four bits of the input port can also be read through the input
port change register (IPCR). The bits in the IPCR will change as
IP0–IP3 change. IPCR[0:3] show the current state of IP0–IP3.
IPCR[4:7] will be set if a change of state has occurred since the
IPCR was read last. Users will note that there can be differences
between the data in the lower four data bits when a read is executed
at address ‘OD’ hex. The reason for the difference is that the IPCR
is updated by the internal state machine which is run on a 38.4k
clock. It will take at least one clock time (25µs) to update the IPCR.
Since a read of the input port is done immediately, there can be a
difference in the two values.

In order to demonstrate how IP0–IP3 can interrupt the CPU, assume
that the IP0 input is connected to some critical element. The
interrupt is enabled by writing a one to the delta IP0 interrupt
(ACR[0]) and also to the input port change mask (IMR[7]). The delta

Philips Semiconductors Application note

AN405SCN2681/SCN68681 and SCC2691 data communications

1998 Sep 21 5

change bits (IPCR[4:7]) should be reset by performing a read of the
IPCR. When IP0 changes, IPCR[4] will be set and with it ISR[7] will
set, causing an interrupt. The interrupt is reset by a read of the
IPCR.

Output Port
The output port on the 40-pin version of the SCN2681 and
SCN68681 has eight outputs. Each output can be set or reset by
performing a write to address ‘OE’ or ‘OF’ hex (‘OE’ = set output
port bits, ‘OF’ = reset output port bits). These bits are initially in the
high state. Writing a one to a location at address ‘OE’ hex will force
that individual output low. Writing a one to the same location attress
‘OF’ hex will reset that output to a high. For example, OP7 can be
forced low by writing an ‘80’ hex on the data bus to address ‘OE’
hex. Any output can be forced to toggle high and low as long as the
output has not been programmed in the OPCR as a special function.
If any output in the OPCR has been selected, that output will be
under control of the internal state machine and the user will no
longer have control of its polarity. Note that if any of the bits in
OPCR[4:7] are set, the output will be considered an open drain
interrupt and will need a pull-up resistor.

SCN2681 Bus Interface
The CEN and RDN, and the CEN and WRN signals are internally
ANDed in the SCN2681. Because of this arrangement, the signal
last asserted initiates the cycle and the signal first negated
terminates the cycle. For write operations, the rising edge of either
CEN or WRN latches data into the SCN2681 registers and
terminates the cycle. Due to the relationship of these segnals, a
number of different bus interfacing techniques can be used. Some
users have grounded CEN and used an address decoder to pulse
RDN and WRN. Others have pulsed CEN while driving WRN with a
static R/WN and RDN with the inverse static line RN/W. Still others
have used the conventional method of pulsing all three lines. In all
cases the interface works.

Note 10 of the AC Electrical Characteristics states that consecutive
writes to the same command register (CRA or CRB) require at least
three edges of the X1 clock after the device has been deselected.
This is necessary since data to the command register is only latched
on the rising edge of WRN (or CEN) and three extra edges are
needed for execution of the comand by the state machine.

SCN68681 Bus Interface
The SCN68681 write operation can be completed by either using
CSN or the falling edge of DTACK. As with the SCN2681, there are
limitations on how frequently the device can be accessed. This is
given by the parameter tCSW, which provides the value of the
minimum high time of CSN (tCSW minimum = 160ns). DTACK is a
clocked output which is generated by the first two rising edges of the
X1 clock after CSN has been asserted. Because CSN is
asynchronous with respect to the occurrence of the rising edge of
X1, the assertion of DTACK can vary as much as one full X1 clock
period between device selections. Note that DTACK is an open
drain output when asserted and needs a pull-up resistor (see
Reading Reserved Registers for a review of possible interface
problems).

MIDI INTERFACE USING THE SCC2691
The following is a good example of how the SCC2691 can be
applied as a serial interface used with musical instruments (MIDI).

The musical instrument digital interface (MIDI) is setting the
standard on virtually all new electronic musical instruments.
Synthesizers, drum machines, sequencers, and other music related
devices as well as home computer add-ons are employing this serial
data interface. The digital interface operates asynchronously, at
31.25k baud, with one start bit, eight data bits, and one stop bit. The
physical interface operates via an opto-isolated 5mA current loop.
Multiple instruments are connected to each other in a ‘daisy-chain’
fashion via ‘in’, ‘out’, or ‘thru’ ports.

Hardware Interface and Data Format
Figure 5 shows the hardware interface used by the MIDI. Note that
the MIDI ‘thru’ connect is an optional connection that provides a
copy of the received MIDI ‘in’ data.

MIDI data format and baud rate:
Start bits – 1
Stop bits – 1
Data bits – 8
Parity – none
Baud rate – 31.25k

SCC2691 Baud Rate Selection
The SCC2691 on-board baud rate generator for the receiver and
transmitter is from 18 fixed rates. With a given clock frequency of
3.6864MHz, via its internal divider circuitry, virtually all common
baud rates encountered in low speed data communications. The
following baud rates are available:

CSR[7:4] ACR[7] = 0 ACR[7] = 1

0000 50 75

0001 110 110

0011 200 150

0100 300 300

0101 600 600

0110 1,200 1,200

0111 1,050 2,000

1000 2,400 2,400

1001 4,800 4,800

1010 7,200 1,800

1011 9,600 9,600

1100 38.4k 19.2k

1101 Timer Timer

1110 MPI – 16X MPI – 16X

1111 MPI – 1X MPI – 1X

The MIDI baud rate, however, seems to be an exception in that an
external clock of the appropriate frequency would have to be used in
order to generate the required 31.25k baud rate. By changing the
frequency of the external crystal, the desired baud rate can be
achieved. Referring to the list of baud rates, note that the division
ratio when using the 38.4k baud rate with the standard crystal
frequency works out to be 96. If the crystal frequency is changed to
3MHz and using 96 as the division ration, the MIDI 31.25k baud rate
can be generated internally. Also note that changing the crystal
frequency to 3MHz does not violate the minimum/maximum clock
specification (2 to 4MHz), therefore no problem is created in the
remaining timing specifications. To implement this clock scheme,
program the clock select register (CSR = CCH) and the auxiliary
control register (ACR[7] = 0.

Philips Semiconductors Application note

AN405SCN2681/SCN68681 and SCC2691 data communications

1998 Sep 21 6

BEGIN
;
; 2681 MULTIDROP OR 2691 WAKE-UP MODE TEST ROUTINE
; CHANNEL ‘A’ TXD OUTPUT IS TIED TO CHANNEL ‘B’ RXD INPUT BY WIRE
;
MR1A EQU $7F001
MR1B EQU $7F011
MR2A EQU $7F001
MR2B EQU $7F011
SRA EQU $7F003
SRB EQU $7F013
CSRA EQU $7F003
CSRB EQU $7F013
CRA EQU $7F005
CRB EQU $7F015
RHRA EQU $7F007
RHRB EQU $7F017
THRA EQU $7F007
THRB EQU $7F017
ACR EQU $7F009
ISR EQU $7F00B
IMR EQU $7F00B
CTUA EQU $7F00D
CTUR EQU $7F00D
CTL EQU $7F00F
CTLR EQU $7F00F
RELAY EQU $7FC001
;
INIT: MOVE.B #$3A,CRA ;RXT TXA

MOVE.B #$2A,CRB ;RST RXB
MOVE.B #$1F,MR1A ;MULTIDROP, 8 BITS, A/D=1
MOVE.B #$1B,MR1B ;MULTIDROP, 8 BITS, A/D=0
MOVE.B #07,MR2A ;NORMAL, STOP=1
MOVE.B #07,MR2B
MOVE.B #$66,CSRA ;TXC=RXC=1200 BAUD
MOVE.B #$66,CSRB
MOVE.B SRB,D1 ;SAVE CHAN B STATUS
MOVE.B #06,CRA ;ENABLE TX CHAN A

CHK0: MOVE.B SRA,D0 ;READ CHAN A STATUS
BTST #03,D0 ;IS TXEMT?
BEQ CHK0 ;WAIT UNTIL TXEMT=1
MOVE.B #$0AA,THRA ;LOAD ADDRESS IN THRA

CHK1: MOVE.B SRA,D0
BTST #03,D0 ;IS TXEMT=1?
BEQ CHK1 ;WAIT UNTIL TX IS EMPTY
MOVE.B #$0A,CRA ;DISABLE TX A

CHK2: MOVE.B SRB,D2 ;IS RXRDY=1 CHAN B?
BTST #0,D2 ;POLL UNTIL RXRDYB=1
BEQ CHK2
MOVE.B RHRB,D7 ;DISABLE RHR CHAN B
CMPI.B #$0AA,D7 ;DID CHAN B RECEIVE ADDRESS?
BEQ DATCHK ;YES, CONTINUE, ELSE STOP
TRAP #15

DATCHK: MOVE.B #$09,CRB ;ENABLE TX FOR CHAN B
MOVE.B #$1A,CRA ;RESET MR POINTERS CHAN A
MOVE.B #$1B,MR1A ;REWRITE MR1A (A/D=0)
MOVE.B #$3A,CRA ;RESET TX A
MOVE.B #06,CRA ;ENABLE TX A
MOVE.B #$55,THRA ;SEND MESSAGE (DATA BYTE=55)

ENDCHK: MOVE.B SRB,D0
BTST #0,D0 ;WAIT UNTIL RXRDY=1 (CHAN B)
BEQ ENDCHK
MOVE.B RHRB,D7 ;SAVE DATA CHAR
TRAP #15

SD00665

Figure 1. SCN2681 Multipdrop or SCC2691 Wake-Up Mode

Philips Semiconductors Application note

AN405SCN2681/SCN68681 and SCC2691 data communications

1998 Sep 21 7

Hardware Elimination via Mode Selection
As mentioned, the MIDI specification includes an optional ‘thru’
connection providing a direct copy of the received data stream to
other MIDI devices further down the ‘daisy chain’. By utilizing the
auto-echo feature of the SCC2691, the additional hardware required
for the ‘thru’ connection can be eliminated. In auto-echo mode, the
received data is reclocked and retransmitted on the TxD output
using the receiver clock. Communications between receiver and
CPU continues normally but the CPU-to-transmitter link is disabled.
To invoke this mode of operation, set mode register 2(MR2[7:6]=01).
When switching from auto-echo back to normal mode, the
transmitter will remain in auto echo until a stop bit is transmitted if
the deselected process occurs immediately after the receiver has

sampled the stop bit and the transmitter happens to be enabled.
Note that in auto-echo mode, it is not necessary to enable the
transmitter.

Wake Up Mode
The SCC2691 wake up mode provides automatic wake up of the
receiver through address frame recognition. In this mode, a master
station transmits an address character followed by data characters
for the addressed slave station. The slave stations, whose receivers
are normally disabled, examine the received data stream and wake
up the CPU upon receipt of an address character. The SCC2691
data sheet describes this procedure.

SD00381

Figure 2. Asynchronous Initialization

Philips Semiconductors Application note

AN405SCN2681/SCN68681 and SCC2691 data communications

1998 Sep 21 8

;
; 2681/2691 FUNCTION PROGRAM
; THIS PROGRAM VERIFIES THE DATA BUS IS GOOD BY READING BACK THE VALUE
; IN MR1. IF THIS FIRST TEST PASSES, CHANNEL ‘A’ AND THEN ‘B’ ARE TESTED
; BY WRITING 256 CHARACTERS TO THE TRANSMITTERS (A & B) AND THEN VERIFYING
; THE CONTENTS READ FROM THE RECEIVERS (A &B).
;
INIT: MOVE.B #$1A,CRA

MOVE.B #$30,CRA ;RESET TX
MOVE.B #$20,CRA ;RESET RX
MOVE.B #$13,MR1A ;NO PARITY, 8 BITS
MOVE.B #7,MR2A ;NORMAL, STOP=1
MOVE.B #$66,CSRA ;TXC=RXC=1200 BAUD
MOVE.B #$10,CRA ;RESET POINTER, DISABLE TX–RX
MOVE.B MR1A,D1 ;READ MR1A
MOVE.B #$13,D0
CMP.B D0,D1 ;COMPARE DATA VALUES
BEQ TEST1 ;IF COMPARE DATA BUS IS OK
TRAP #15 ;STOP IF FAIL

;
;THIS TEST SENDS CHAR FF THRU 00 THRA THEN READS THEM BACK.
;RX DATA IS COMPARED WITH TX DATA FROM CHANNEL ‘A’ ONLY.
;NOTE: RELAY SHORTS TX TO RX FOR NEXT TWO TESTS.
;
TEST1: MOVE.B #1,RELAY ;SHORT TX TO RX AND CTS TO RTS

MOVE.B #$50,CRA ;RESET DELTA BREAK
MOVE.B #$20,CRA ;RESET RECEIVER
MOVE.B #$30,CRA ;RESET TRANSMITTER
MOVE.B #$45,CRA ;CLR ERRORS, ENABLE TX–RX
MOVE.W #$100,D7 ;SETUP FIRST SEND CHAR

TEST1A: SUBI.B #1,D7 ;DEC D7 UNTIL D7=0
BEQ TEST2 ;IF D7=0 GO TO NEXT TEST
MOVE.B D7,THRA ;SEND NEXT CHAR TO TRANSMITTER

WAIT1: BTST #0,SRA ;IS RECEIVER READY?
BEQ WAIT1
MOVE.B RHRA,D1 ;FETCH RECEIVED CHAR
CMP.B D7,D1 ;IS SENT CHAR=RECEIVED CHAR
BEQ TEST1A ;IF SO REPEAT OPERATION
TRAP #15 ;STOP IF FAIL

;
;THIS TEST CHECKS CHAN ‘B’ IN THE SAME WAY AS CHAN ‘A’ IN TEST1.
;ONLY THE DATA FORMAT HAS BEEN CHANGED. (SINCE THE 2691 HAS NO ADDRESS
;A2, THIS TEST WILL SIMPLY BE A RETEST OF THE SERIAL CHANNEL.)
;
TEST2: MOVE.B #$1A,CRB ;DISABLE TX–RX, RESET MR PNTR

MOVE.B #7,MRB1 ;ODD PARITY, 8 BITS
MOVE.B #$0F,MR2B ;NORMAL, TWO STOP BITS
MOVE.B #$0BB,CSRB ;9600 BAUD
MOVE.B #$50,CRB ;RESET DELTA BREAK
MOVE.B #$30,CRB ;RESET TX
MOVE.B #$20,CRB ;RESET RX
MOVE.B #$45,CRB ;CLR ERRORS, ENABLE TX & RX
MOVE.W #$100,D7

TEST2A: SUBI.B #1,D7 ;DECREMENT D7
BEQ STOPIT ;IF D7=0 STOP SENDING CHAR
MOVE.B D7,THRB ;IF D7>0 WRITE TX HOLDING REG

WAIT2: BTST #0,SRB ;TEST FOR RX READY
BEQ WAIT2 ;IF NOT READY, LOOP
MOVE.B RHRB,D1 ;PICK UP RECEIVED CHAR
CMP.B D7,D1 ;COMPARE TX CHAR WITH RX CHAR
BEQ TEST2A ;IF THEY COMPARE, SEND AGAIN

STOPIT: TRAP #15 ;END ROUTINE
END INIT

SD00666

Figure 3. SCN2681/SCC2691 Function Program

Philips Semiconductors Application note

AN405SCN2681/SCN68681 and SCC2691 data communications

1998 Sep 21 9

For MIDI applications, this mode functions in the following manner.
MIDI data types are divided into status bytes and data bytes. The
MSB (D7) of the received data determines whether a status byte
(D7 = 1) or a data byte (D7 = 0) has been received. By
programming the receiver for seven data bits versus the transmitted
eight data bits, the 8th received bit can be interpreted as the
address/data (A/D) bit, thereby indicating a status byte transfer or
data byte transfer.

If the receiver is disabled, a status byte transfer (A/D = D7 = 1) will
set the RxRDY status bit and load the character in the receive
register FIFO. This RxRDY status can be programmed to appear on
the multi-purpose output pin thereby ‘waking up’ the CPU.
Depending on the status message, the CPU can then either ignore
(Rx disabled) or respond (Rx enabled) to data bytes which might
follow.

For example, if the MIDI assigned channel is 5, a status byte
generated by the MIDI master to channel 5 (D0–D3, a voice
message perhaps), may appear as shown in Figure 4. With the A/D
bit set, the receiver interprets an address (status), loads data into
the RHR FIFO, and sets the RxRDY in the status register (SR).
This RxRDY bit can perform the wake up function to the CPU. The
CPU can then examine the data (status byte) to determine if it is the
receiver (channel) being addressed. If so, as in the above example,
the CPU would then enable the receiver to accept the incoming data
byte(s). Once the incoming data bytes have been received, the

CPU can then disable the receiver and continue handling other
functions until the receiver again indicates a status has been
received.

System Interconnect and Other Considerations
The bus circuitry of the SCC2691 is flexible enough to allow easy
interfacing to virtually any microprocessor or microcontroller. The
CE and RDN/WRN lines are ORed internal allowing either the RDN,
WRN, or CE lines to initiate a data transfer. The signal asserted last
initiates the cycle and the signal deasserted first terminates the
cycle. Figure 5 illustrates an all CMOS MIDI interface (other than
the opto-coupler), using an 80C49, HC logic and the SCC2691.
This circuit draws less than 50mA at full speed and less than 1mA in
standby mode. Board space reduction can also be attained by
using Philips SMD packaging, thus providing a compact, low-power
MIDI interface.

1 1 0 1 0 0 0 0 1 1

Bit D0 D1 D2 D3 D4 D5 D6 D7 Bit

Transmitted byte (status byte, voice message on channel 5)
Start LSB MSB Stop

1 1 0 1 0 0 0 0 1 1

Bit D0 D1 D2 D3 D4 D5 D6 A/D Bit

Transmitted byte (status byte, voice message on channel 5)
Start LSB MSB Stop

SD00664

Figure 4. Status Byte Generated by MIDI Master to Channel 5

Philips Semiconductors Application note

AN405SCN2681/SCN68681 and SCC2691 data communications

1998 Sep 21 10

+
5V

2 3

40
11

19 18 17 16 15 9 10

11
M

H
z

X
TA

L1

X
TA

L2

U
1

D
2

D
1

D
0

W
R

R
D

1 2
3 11

10

7 4 3

6 5 21 10

11 E
O

E

+
5V

6 7 8

A
2

A
1

A
0

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

W
R

N
R

D
N

15 16 17 18 19 20 21 22 23 1 14
C

E

X
1

X
2

T
X

D

9
10

32

24
12

+
5V R

X
D

U
4

+
5V

27
0

U
68

2 3

5

+
5V

1N
91

4 22
0

N
C

N
C

N
C

IN

1
4

2 5

3

1

N
C N
C

T
H

R
U

1
4

2 5

3

N
C N
C

O
U

T

1
4

2 5

3

22
0

22
0

22
0

22
0

+
5V

+
5V

2

3

4

5
6

9

8

5p
F

5p
F

D
7

D
6

D
5

D
4

D
3

A
LE

U
3

14 13 12

20

.5

 F
µ 3.
68

6
M

H
z

U
2

SD00382

Figure 5. MIDI Interface Using SCC2691

Philips Semiconductors Application note

AN405SCN2681/SCN68681 and SCC2691 data communications

1998 Sep 21 11

NOTES

Philips Semiconductors Application note

AN405SCN2681/SCN68681 and SCC2691 data communications

1998 Sep 21 12

Definitions
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For
detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or
at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended
periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips
Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or
modification.

Disclaimers
Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless
otherwise specified.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409
Sunnyvale, California 94088–3409
Telephone 800-234-7381

 Copyright Philips Electronics North America Corporation 1998
All rights reserved. Printed in U.S.A.

Date of release: 09–98

Document order number: 9397 750 04566

�������
��	���
������

	INTRODUCTION
	DUART/UART COMMON FUNCTIONS
	Reading Reserved Register
	Receiver FIFO
	Detecting the End of Break
	Disabling the Transmitter After a Short Frame
	Disabling the Transmitter and/or Receiver on the Fly
	Setting Up the Counter/Timer as a Timer
	Multidrop/Wake-Up Mode
	Handling Interrupts
	Driving X1 Externally or Using a Crystal
	X1/X2 Crystal
	General Initialization
	Asynchronous Diagnostics

	SCN2681/68681 UNIQUE FUNCTIONS
	Delta Break Anomaly
	RTS/CTS Functions
	Input Port
	Output Port
	SCN2681 Bus Interface
	SCN68681 Bus Interface

	MIDI INTERFACE USING THE SCC2691
	Hardware Interface and Data Format
	SCC2691 Baud Rate Selection
	Hardware Elimination via Mode Selection
	Wake Up Mode
	System Interconnect and Other Considerations

	Definitions
	Disclaimers

