
Freescale Semiconductor
Application Note

Document Number: AN3813
Rev. 0, 04/2009

Contents

Introduction . 1
Theory of Operation. 2
ADC Average Configuration and Control Parameters . . . 3

3.1 Pre-Compile Definitions. 3
3.2 Run-Time Parameters . 4
Required Resources that Operate ADC Average Driver . 6
Driver Implementation . 6

5.1 ADC Average Initialization. 6
5.2 ADC Average Driver Configuration 6
ADC Averaging . 7
Sample Application . 8

7.1 Initialization . 8
7.2 Scheduler Initialization. 11

.3 Sample Application . 12

ADC Average Driver Using the IO
Processor (IOP) in the MPC5510
Family
by: Oscar Luna

PMMC Software Engineer
GDL
1 Introduction
This application note describes the implementation of an
averaging sample buffer by using the eQADC module in
the 5510 family. This solution provides you the way to
average multiple samples from the eQADC module at a
certain sample rate.

In real-world applications there are occasions when it
may be inappropriate to use a single ADC conversion
result. Although the result is a correct conversion of the
analog value that existed at input an external disturbance
may have caused it to be unrepresentative of the signal of
interest.

This is of particular concern, where a short series of
results is disturbed by some undesired noise at input.

One way of addressing this problem and rejecting
disturbance, is to average the incoming ADC values and
extract the longer-term value of the signal. This is most
effective when the desired signal changes slowly.

1
2
3

4
5

6
7

7

© Freescale Semiconductor, Inc., 2009. All rights reserved.

Theory of Operation
Averaging can be applied over a number of samples, and output based on the most recent results. Each time
a result is taken from the ADC module, the oldest previous result is deleted, and the average is recalculated
using the remaining results and the newest value.

2 Theory of Operation
The ADC average driver bases its operation on the boxcar filter. The boxcar filter is a simple digital filter
with a finite impulse response (FIR). It is used to create an output series composed by the runtime mean
of input series values.

The simplicity of a boxcar filter is due to the fact that each sample is multiplied by a unit-valued coefficient
that performs a filtering task without multiples. The overhead of this filter is from the typical multiply and
accumulate to accumulate.

After sample accumulation is finished, the final step in the FIR is to normalize all samples by dividing the
calculated result by the sum of filter coefficients, in this case it is the number of samples to be averaged.

Figure 1 shows the impulse response of a boxcar filter.

Figure 1. Impulse Response of Boxcar Filter

Figure 2 shows the frequency response of a boxcar filter using an 8-step configuration. The frequency
responses of this filter gives a general low-pass characteristic with lots of lobs. See Figure 2.

This has the effect of preserving the desired, slowly changing (low frequency) signal. It is important to
bear this frequency response in mind when considering the type of noise that the averaging filter rejects.

h(n)

n

ADC Average Driver Using the IO Processor (IOP) in the MPC5510 Family, Rev. 0

Freescale Semiconductor2

ADC Average Configuration and Control Parameters
Figure 2. Frequency Response of 8-Step Boxcar Filter

Equation 1 is the mathematical expression of a boxcar filter. Describing the mathematical principle of a
boxcar filter is:

Eqn. 1

3 ADC Average Configuration and Control Parameters
This section describes how to configure the ADC average driver to operate during run-time and describes
pre-compile statements.

3.1 Pre-Compile Definitions
The ADC average driver has many pre-compile definitions to enable and disable certain functionalities in
the driver. All pre-compile definitions are located in file AdcFltr_Cfg.h with the exception of macro named
SYS_FREQ located in the System_Cfg.h file.

3.1.1 SYS_FREQ

This definition describes the operating system frequency of the whole driver. The ADC average driver uses
this definition to calculate the timing references of the PIT channel used to manage the task scheduler. This
field must be captured at hertz units as shown below:

#define SYS_FREQ (uint32_t) 64000000U /* Hz units */

y n bix n i–

i 0–

P

=
ADC Average Driver Using the IO Processor (IOP) in the MPC5510 Family, Rev. 0

Freescale Semiconductor 3

ADC Average Configuration and Control Parameters
ATDFLTR_0_AVERAGECHANNELS — This macro defines the number of ADC channels that the
software averages. The value of this macro must be between 1 and the maximum number of ADC channels
allowed in the MPC5510 family.

#define ATDFLTR_0_AVERAGECHANNELS 6U

ATDFLTR_0_AVERAGETAPS — This macro defines the number of values to include in the average
calculation. It indicates to the ADC average driver how many samples will be used to calculate the final
average value per ADC channel.

The driver allows only certain predefined average taps validated by the ADC average error layer. The tap
ranges allowed by the driver are: 2, 4, 8, 16, 32, and 64.

The main reason why only these ranges are allowed by the driver is to avoid using the division instruction.
Instead the driver performs the shifting operation to avoid division instructions. This provides the driver
with better performance.

These tap ranges are represented with the following macros:
#define _2_SAMPLE_DEPTH_ 1U
#define _4_SAMPLE_DEPTH_ 2U
#define _8_SAMPLE_DEPTH_ 3U
#define _16_SAMPLE_DEPTH_ 4U
#define _32_SAMPLE_DEPTH_ 5U
#define _64_SAMPLE_DEPTH_ 6U

To set the number of taps (or samples) the driver uses to calculate the average value, the user must first set
the macro named SAMPLE_AVERAGE_VALUE with one of the parameters described above.
#define SAMPLE_AVERAGE_VALUE _8_SAMPLE_DEPTH_

During run time, the ADC average driver uses the ATDFLTR_0_AVERAGETAPS macro definition to indicate
the number of taps the driver averages per ADC channel.
#define ATDFLTR_0_AVERAGETAPS SAMPLE_AVERAGE_VALUE

ATDFLTR_0_AVERAGEINTERRUPT — When enabled to the on state, this macro causes the driver to
raise an interrupt by calling the function previously configured in the macro, ATDFLTR_0_FILTER_FNC.

#define ATDFLTR_0_AVERAGEINTERRUPT ON
#define ATDFLTR_0_FILTER_FNC &vfnFilter_1_End

ADC_FLTR_ERROR_DETECT — When enabled to the on state, the ADC average error layer enables
parameter validation assigned through the ADC average functions.

#define ADC_FLTR_ERROR_DETECT ON

3.2 Run-Time Parameters
The run-time parameters in the ADC average driver helps track information about the number of samples
the driver retrieves per ADC channel. The run-time parameters contain the buffers to store each of the
samples per ADC channel.
ADC Average Driver Using the IO Processor (IOP) in the MPC5510 Family, Rev. 0

Freescale Semiconductor4

ADC Average Configuration and Control Parameters
3.2.1 ADC Average Control Structure
typedef struct
{
 uint16_t numTAPS:6;
 uint16_t numChannels:6;
 uint16_t interruptCPU:1;
 void (*AverageEndFnc)(void);
} tAdcFltr_ChannelConfig;

numTAPS — Contains the number of samples to take for each ADC channel.

numChannels — Indicates the total number of ADC Channels to convert.

interruptCPU — Causes the driver to jump into a predefined function to indicate the driver has averaged
the configured ADC channels.

3.2.2 ADC Average Channel Structure
typedef struct
{
 uint16_t* pSampleBuffer;
 vuint16_t* pResultRegister;
 uint16_t u16AccumulateSample;
 uint16_t* pFilterResult;
} tAdcFltr_ChannelStruct;

pSampleBuffer — Points to the stored ADC samples. This pointer is used by the driver to store the samples
per ADC channel.

pResultRegister — Points to the ADC result variable managed by the eDMA module. The eDMA module
stores the ADC results in the rQUEUE array.

u16Accumulate — This variable accumulates the sample results aquired per ADC channel.

pFilterResult — Points to the averaged results from every configured ADC channel.
ADC Average Driver Using the IO Processor (IOP) in the MPC5510 Family, Rev. 0

Freescale Semiconductor 5

Required Resources that Operate ADC Average Driver
4 Required Resources that Operate ADC Average Driver
Table 1 shows the on-chip resources required to operate the ADC average driver.

The driver requires the availability of ADC channels to perform an average of each sample taken. If a
specific sampling frequency is required, then the ADC average driver must make use of any available PIT
channel.

5 Driver Implementation

5.1 ADC Average Initialization
The driver contains a routine that initializes the control parameters of the driver and configures the ADC
module to operate at a certain conversion frequency, bit resolution, and so on.

The function, vfnAdcFltr_Init initializes three filter result parameters: the average value of each ADC
channel, the sample buffer pointer, and the pointer where the driver reads the ADC converted value.

The ADC average initialization function also validates the configuration structure parameters to avoid
unexpected behavior in the driver.

The second parameter validated by the function is the number of samples to convert for each ADC channel.
If the function detects an invalid condition outside of the allowed tap ranges, the initialization flow aborts
immediately leaving the ADC registers and buffers untouched. The allowed sample ranges are: 2, 4, 8, 16,
32, and 64.

After the initialization function validates correct configuration parameters, the control buffers are
initialized and the ADC module is configured based on the parameters located in the file, Adc_Cfg.h.

5.2 ADC Average Driver Configuration
The ADC Average driver operates based on a few configuration parameters located in the file,
AdcFltr_Cfg.h.

These parameters are the ADC channels to average, the number of samples taken per ADC channel, the
total number of ADC channels to average, and the function to jump into, after the driver finishes averaging.
The procedure to configure the driver is explained below:

Table 1. ADC Average Required Resources

Parameter Value

Mandatory peripheral use ADC channels as required

Mandatory peripheral use eDMA channels 0 & 1 required

Optional peripheral use PIT channel
ADC Average Driver Using the IO Processor (IOP) in the MPC5510 Family, Rev. 0

Freescale Semiconductor6

ADC Averaging
1. Configuring the ADC channels needed to average. These channels are indicated in the
configuration array located in the file named AdcFltr_Cfg.h

uint16_t u16AdcChannel_Convert[ATDFLTR_0_AVERAGECHANNELS] =
{

ADC_CHANNEL_0, /* Adc Channel 0 */
ADC_CHANNEL_1, /* Adc Channel 1 */
ADC_CHANNEL_2, /* Adc Channel 2 */
ADC_CHANNEL_3, /* Adc Channel 3 */

 ADC_CHANNEL_4, /* Adc Channel 4 */
ADC_CHANNEL_5 /* Adc Channel 5 */

};

2. The total amount of ADC channels to average
#define ATDFLTR_0_AVERAGECHANNELS 6

3. The number of samples to average by the driver.
#define SAMPLE_AVERAGE_VALUE _8_SAMPLE_DEPTH_ /* 8-Step samples */

4. Enable or disable the end filter interrupt function. This condition indicates the driver to jump into
a specific predefined function when the channel averaging finishes.

#define ATDFLTR_0_AVERAGEINTERRUPT ON
#define ATDFLTR_0_FILTER_FNC &vfnFilter_1_End

Figure 3shows the ADC average configuration structure.

Figure 3. ADC Average Configuration Structure.

6 ADC Averaging
The driver uses the function vfnAdc_Sample_Acquire to trigger the ADC channels to sample. The
function triggers the eDMA module to start sending commands to the ADC module and reads the
converted results.

Every time this function is called, the eDMA sends commands to convert four ADC channels at the same
time. This feature provides better performance to the driver when many ADC channels are requested to
average.

The ADC averaging function figures out sending commands to the ADC module when less than four
channels are configured to be averaged. The function uses a circular command buffer to store conversion
commands. If only two ADC channels need to be averaged, the function fills the rest of the two command
buffers with the same commands from first ADC channels.

tAdcFltr_FilterStruct sATD0 =
 {
AdcFltr_0_ChannelStruct,
{
ATDFLTR_0_AVERAGETAPS,
ATDFLTR_0_AVERAGECHANNELS,
ATDFLTR_0_AVERAGEINTERRUPT,
 ATDFLTR_0_FILTER_FNC
}
 };
ADC Average Driver Using the IO Processor (IOP) in the MPC5510 Family, Rev. 0

Freescale Semiconductor 7

Sample Application
If a specific sampling frequency is required, a PIT channel is initialized to call this function
(vfnAdc_Sample_Acquire), periodically.

7 Sample Application
A sample application is provided within this application note. It demonstrates the ADC average driver
operation. A multi-task scheduler has been mounted in the sample application to retrieve the averaged
results.

7.1 Initialization
Figure 4 shows the sample application flow chart.
ADC Average Driver Using the IO Processor (IOP) in the MPC5510 Family, Rev. 0

Freescale Semiconductor8

Sample Application
Figure 4. Sample Application Flow Chart

Configure Bus Clock
to run up to 64MHz

Configure eDMA channel 0 to
transfer conversion commands
from cQUEUE buffer to ADC

Configure eDMA channel 1 to
transfer conversion results to

rQUEUE buffer

Enable ADC mode on
pins 0,1, 2, and 3

Read ADC Average
Filter Result

Configure ADC0
Module

Configure and Initialize
ADC Average driver

Configure PIT Channel
2 to be serviced every

100us

Configure Scheduler
driver using PIT

Channel 1 as Time
reference

Start Scheduler
Execution

1

21

Store result values into
“u16Avg_Channel”

buffer array.

2

10ms
elapsed?

A
D

C
 A

ve
ra

ge
 d

riv
er

S
ch

ed
ul

er
 d

riv
er

No

Yes
ADC Average Driver Using the IO Processor (IOP) in the MPC5510 Family, Rev. 0

Freescale Semiconductor 9

Sample Application
The first action the sample application performs, is to configure the microcontroller bus clock to run-up to
64 MHz. After the bus clock is set, the microcontroller pin numbers 0, 1, 2, and 3 are configured to enable
the ADC mode.

When ADC functionality pins are enabled, the eDMA channels 0 and 1 are configured to handle transfers
and store conversions from the ADC module.

eDMA channel 0 is used to handle conversion command transfers to the ADC module and eDMA channel
1 is configured to store result conversions. A conversion command buffer named cQUEUE is used to
transfer commands from the buffer to the ADC module. A result conversion buffer rQUEUE is used to
store converted results from ADC channels.

When the eDMA channels are properly configured, the ADC initialization is executed to start configuring
the general parameters of the ADC module, such as the ADC conversion rate, bit resolution, and result
alignment. All these parameters are taken from the ADC configuration file Adc_Cfg.h.

PIT channel 1 is enabled to be serviced every 100 s. Every 100 s the ADC averaged function is called
to start averaging the configured ADC channels. This interrupt time base provides a frequency conversion
rate of 10 KHz.

Configuring the ADC average routine is the last initialization step. The routine configures the cQUEUE
buffer to indicate to the ADC module that channels 0, 1, 2, and 3 need to be converted. The following
configuration steps are set to operate with this sample application:

1. Maximum number of ADC channels equal to 4

2. Number of samples per ADC channel equal to 8

3. The driver generates an interrupt after all averaged ADC channels. This condition is true whenever
the interrupt macro in the driver is enabled.

Figure 5 shows configuration parameters used in the sample application.
ADC Average Driver Using the IO Processor (IOP) in the MPC5510 Family, Rev. 0

Freescale Semiconductor10

Sample Application
Figure 5. ADC Average Configuration Parameters

7.2 Scheduler Initialization
After initialization, the scheduler function vfnScheduler_Init runs to configure PIT channel number 2
as a time base reference.

A macro definition LOOP_TIME_5ms located at Pit.h file calculates the value of the PIT channel 2 counter
to generate an interrupt service every 5 ms. This macro makes use of the actual system clock used by the
sample application that is 64 MHz.

After the vfnScheduler_Init function is called, the scheduler execution remains in hold state until the
function vfnStart_Scheduler starts executing the scheduler. This function enables PIT channel 2 timer
to start counting and enables complete operation of the scheduler.

This is the schedule initialization procedure. The correct initialization and execution of the scheduler.
vfnScheduler_Init(); /* Initialize Scheduler timebase */
vfnStart_Scheduler(); /* Start Tasks execution */

uint16_t u16AdcChannel_Convert[ATDFLTR_0_AVERAGECHANNELS] =
{

ADC_CHANNEL_0, /* Adc Channel 0 */
ADC_CHANNEL_1, /* Adc Channel 1 */
ADC_CHANNEL_2, /* Adc Channel 2 */
ADC_CHANNEL_3 /* Adc Channel 3 */

};

/* Filter struct */
tAdcFltr_FilterStruct sATD0 =
{
 AdcFltr_0_ChannelStruct,
 {
 ATDFLTR_0_AVERAGETAPS,
 ATDFLTR_0_AVERAGECHANNELS,
 ATDFLTR_0_AVERAGEINTERRUPT,
 ATDFLTR_0_FILTER_FNC
 }
};

/** Indicates the driver the number of samples to be acquired per channel */
#define SAMPLE_AVERAGE_VALUE _8_SAMPLE_DEPTH_
/** 1..8/16 ; number of active channels used on this ADC */
#define ATDFLTR_0_AVERAGECHANNELS 6U
/* 1..64 ; size of filter - shared among all filters on this ADC */
#define ATDFLTR_0_AVERAGETAPS SAMPLE_AVERAGE_VALUE
/** If TRUE then XGATE interrupts CPU when done */
#define ATDFLTR_0_AVERAGEINTERRUPT ON
/** Filter End function used to indicate that all samples were averaged */
#define ATDFLTR_0_FILTER_FNC &vfnFilter_1_End
/** Enables or Disables the Error Layer */
#define ADC_FLTR_ERROR_DETECT ON
ADC Average Driver Using the IO Processor (IOP) in the MPC5510 Family, Rev. 0

Freescale Semiconductor 11

Sample Application
NOTE
It is important to mention, the scheduler driver is not part of the ADC
average driver. The scheduler driver helps demonstrate the functionality of
the ADC average driver.

7.3 Sample Application
Every 10 ms the scheduler reads the ADC average filter result buffer to retrieve the values averaged from
channels 0, 1, 2, and 3. This process is executed every 10 ms and is mounted under a function-like macro
EXECUTE_10MS_TASKS.

Figure 6 shows scheduler execution and the 10 ms thread called to retrieve the averaged channel values.
ADC Average Driver Using the IO Processor (IOP) in the MPC5510 Family, Rev. 0

Freescale Semiconductor12

Sample Application
Figure 6. Scheduler Execution

The averaged results are stored in the buffer variable u16Avg_Channel. The buffer array contains the
results from the four configured ADC channels.

while (gu8SleepModeEnabled == 0)
 {
 if ((gu8Scheduler_Flag & (uint8_t)0x01) == (uint8_t)0x01)
 {
 /*-- Allow 10 ms periodic tasks to be executed --*/
 EXECUTE_10MS_TASKS();

 /* Scheduled tasks finished, clear control flag */
 gu8Scheduler_Flag = (uint8_t)0x00;
 }
 else
 {
 if ((gu8Scheduler_Flag & (uint8_t)0x02) == (uint8_t)0x02)
 {

 /*-- Allow 20 ms periodic tasks to be executed --*/
 EXECUTE_20MS_TASKS();

 /* Scheduled tasks finished, clear control flag */
 gu8Scheduler_Flag = (uint8_t)0x00;
 }
 else
 {
 if ((gu8Scheduler_Flag & (uint8_t)0x04) == (uint8_t)0x04)
 {
 /*-- Allow 40 ms periodic tasks to be executed --*/
 EXECUTE_40MS_TASKS();

 /* Scheduled tasks finished, clear control flag */
 gu8Scheduler_Flag = (uint8_t)0x00;
 }
 else
 {
 if ((gu8Scheduler_Flag & (uint8_t)0x08) == (uint8_t)0x08)
 {
 /*-- Allow 80 ms group A periodic tasks to be executed --*/
 EXECUTE_80MS_A_TASKS();

 /* Scheduled tasks finished, clear control flag */
 gu8Scheduler_Flag = (uint8_t)0x00;
 }
ADC Average Driver Using the IO Processor (IOP) in the MPC5510 Family, Rev. 0

Freescale Semiconductor 13

Freescale™ and the Freescale logo are trademarks of
Freescale Semiconductor, Inc. All other product or service names
are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008. All rights reserved.

AN3813
Rev. 0
04/2009

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

	1 Introduction
	2 Theory of Operation
	3 ADC Average Configuration and Control Parameters
	3.1 Pre-Compile Definitions
	3.1.1 SYS_FREQ

	3.2 Run-Time Parameters
	3.2.1 ADC Average Control Structure
	3.2.2 ADC Average Channel Structure

	4 Required Resources that Operate ADC Average Driver
	5 Driver Implementation
	5.1 ADC Average Initialization
	5.2 ADC Average Driver Configuration

	6 ADC Averaging
	7 Sample Application
	7.1 Initialization
	7.2 Scheduler Initialization
	7.3 Sample Application

