
Freescale Semiconductor
Application Note

Document Number: AN3737
Rev. 0, 12/2008

Contents

Introduction . 1
Emulated PWM Module Principles 2
PWM Driver Configuration. 4

3.1 Channel Configuration. 4
3.2 Channel Parameters Explanation 4
3.3 Configuring PWM Channels 5
3.4 PWM General Configuration Definitions 5
PWM Driver Initialization . 6

4.1 Configuring I/O Pins as PWM Channels 6
4.2 Periodic-Interrupt-Timer (PIT) Initialization 7
Error Detection Layer . 8
PWM Implementation Functions 9

6.1 Changing the Duty Cycle During Run-Time 9
6.2 Changing Period and Duty Cycle During Run-Time10
6.3 Initializing the Z0 Core and Transferring Control . 10
PWM Driver Features . 10

7.1 Enabling Switching Offsets to Reduce EMI 10
7.2 Measuring Loads on PWM Channels Using the . . 11
PWM Sample Application . 12
References . 13

Emulating a PWM Module Using
the IO Processor (IOP) on the
MPC5510 Family
by: Oscar Luna

RTAC Latin America
1 Introduction
This application note provides software framework to
emulate a pulse width modulated (PWM) driver by
taking advantage of the MPC5510 second core (Z0).

There are many techniques available to generate pulse
width modulated signals. This document describes
software emulation of PWM signals using the IOP.

1
2
3

4

5
6

7

8
9

© Freescale Semiconductor, Inc., 2008. All rights reserved.

Emulated PWM Module Principles
2 Emulated PWM Module Principles
An emulated PWM module is implemented by setting up one or several GPIO pins as output and by
configuring one periodic interrupt timer (PIT) channel as a time base reference for generating all PWM
signals.

The PIT channel is initialized with a predefined interrupt time base to generate each of the PWM channel
signals configured by the user. The PIT provides the number of time ticks generated for each PWM
channel. The PIT also determines the resolution of all the generated PWM signals.

The IOP core services the PIT timer interrupt. When a service routine occurs the IOP core decreases a
counter variable providing the exact position within the period. Depending on this position and the desired
duty cycle the generated PWM algorithm decides whether to set, clear, or leave unchanged the signal on
an output pin. Several PWM channels with different duty cycles can be executed by using one PIT as a
time base reference.

Figure 1. Generated PWM Signal Principle
Emulating a PWM Module Using the IO Processor (IOP) on the MPC5510 Family, Rev. 0

Freescale Semiconductor2

Emulated PWM Module Principles
Figure 2. PWM Generating Algorithm

PIT Interrupt Service
Routine

Reload Period
Information from

Configuration
Structure

Switch PWM
Channel Off

1

Load PWM Channels
Configuration

Current PWM
Channel

Yes

Yes

No

No

No

Switch PWM
Channel On

Switch PWM
Channel On

No

Channel
Counter Equal
to Duty Value

Channel
Counter Equal
to Duty Value?

Is Current
Period Over?

Decrease Period
Counter Value

Yes

Next Channel

Is the Current
Channel The

Last?
1

Clear PIT
Interrupt Flag

Yes
Emulating a PWM Module Using the IO Processor (IOP) on the MPC5510 Family, Rev. 0

Freescale Semiconductor 3

PWM Driver Configuration
3 PWM Driver Configuration
A configuration structure is used to operate the PWM driver during initialization and run-time operation.
The configuration holds all the information related with each configured PWM channel. All configuration
parameters are located in Pwm_Cfg.c. Detailed information to configure the emulated PWM driver is
further explained in this section.

3.1 Channel Configuration
Each PWM channel needs five different configuration parameters to operate correctly. Figure 3
demonstrates each of the five parameters.

Figure 3. PWM Channel Configuration Parameters

3.2 Channel Parameters Explanation
• u32Pwm_Channel_Id — Symbolic identifier used as a reference for vfnSetPeriodAndDuty and

vfnSetDuty_Cycle functions.

• u32Pwm_Port_Channel — This parameter indicates the microcontroller pin number to configure
as a PWM channel. This field contains only the offset value of the microcontroller pin configurated
as a PWM signal. For example, pin sixteen describes the offset value of PortB pin 0, pin seventeen
describes the offset value of PortB pin 1, and so on.

• u32Period — Holds the number of time ticks to generate a desired period.

• u32Duty — This parameter contains the number of time ticks that reach a specific duty cycle
within the limits of the period value.

• u32Cntr — Run-time counter used to match the end of a duty cycle signal and final edge of the
period.

/** Pwm Channel Configuration Parameters */
typedef struct
{
 uint8_t u8Pwm_Channel_Id; /* Pwm channel name */
 uint8_t u8Pwm_Port_Channel; /* Assigned HW channel */
 uint32_t u32Period; /* Pwm Period Value */
 uint32_t u32Duty; /* Pwm duty Cycle */
 uint32_t u32Cntr; /* Duty Cycle Counter */
} Pwm_ChannelConfigType;
Emulating a PWM Module Using the IO Processor (IOP) on the MPC5510 Family, Rev. 0

Freescale Semiconductor4

PWM Driver Configuration
3.3 Configuring PWM Channels
These are the general configuration parameters needed to configure each PWM channel. Configuration
parameters are located in Pwm_Cfg.c.
Pwm_ChannelConfigType Pwm_ChannelConfig[] =
{
 {

 (uint8_t)(PWM_CHANNEL_0), /* Pwm Channel Id */
 (uint8_t)(PORTB_PIN_0), /* Port B, Pin 0 */
 (uint32_t)SET_PERIOD_AT_150HZ, /* Period running at 150Hz */
 (uint32_t)DTY_AT_5P_WITH_150HZ,/* 5% Duty Cycle */
 (uint32_t)0x00 /* Duty Counter Initialized */

 },
{

 (uint8_t)(PWM_CHANNEL_1), /* Pwm Channel Id */
 (uint8_t)(PORTB_PIN_1), /* Port B, Pin 1 */

 (uint32_t)SET_PERIOD_AT_100HZ, /* Period running at 100Hz */
 (uint32_t)DTY_AT_20P_WITH_100HZ,/* 20% Duty Cycle */
 (uint32_t)0x00 /* Duty Counter Initialized */

 }
};

3.4 PWM General Configuration Definitions
There are general parameters mandatory to correctly operate the PWM driver. These parameters are:

• PWM_MAX_CHANNELS — The total number of configured PWM channels. Maximum number
of allowed PWM channels are thirty-two and only if enough port pin resources are available.

• PWM_ERROR_DETECT — Enables or disables the error detection layer.

• Z0_CORE — When configured to on state, the IOP processor manages the PIT interrupt service
routine to generate all PWM signals.

• PWM_INIT_DELAY — Enables or disables the switching delays between PWM signals to reduce
EMI. Enabling this feature allows the driver to start each of the configured PWM signals with a
predefined delay between signals to reduce EMI.

• DIAGNOSTICS — When configured to on state, this allows the ADC to be triggered at any point
within a period.

NOTE
User must set the total amount of configured PWM channels in the
PWM_MAX_CHANNELS to avoid unexpected behaviors in the driver
operation.
Emulating a PWM Module Using the IO Processor (IOP) on the MPC5510 Family, Rev. 0

Freescale Semiconductor 5

PWM Driver Initialization
4 PWM Driver Initialization
Three different sections complement the PWM driver initialization. These sections are further detailed in
this application note. Figure 2 shows the complete initialization sequence the driver performs.

Figure 4. PWM Driver Initialization Procedure

4.1 Configuring I/O Pins as PWM Channels
During the PWM initialization sequence the driver first configures all I/O pins described in the
configuration as outputs. No other pins are configured as PWM channels other than the pins stated in the
channel configuration.

The I/O pin configuration algorithm goes through each of the PWM channels in the channel configuration
to initialize every pin as output. The initialization algorithm takes the pin number value from the
parameter, configures the pin as output, and sets the output state as high.

PWM Driver Initialization

Read PWM Configuration
Structure

Configure PWM I/O Pins
as Output

Configure
Periodic-Interrupt-Timer
Servicing Every 33 s to

have a PWM Signal
Resolution of 0.5%

Periodic-Interrupt-Timer
Remains Stopped

Start PWM Signal
Generation?

Enable
Periodic-Interrupt-Timer (any
PIT Channel) to Start PWM

Signals Generation

No

Yes
Emulating a PWM Module Using the IO Processor (IOP) on the MPC5510 Family, Rev. 0

Freescale Semiconductor6

PWM Driver Initialization
The algorithm configures only the I/O pins described in the configuration:
for(u32PortCntr = PWM_MAX_CHANNELS; u32PortCntr > (uint32_t)0 ; u32PortCntr--)
{
/* Obtain current Port Pin Offset to calculate physical address */
u8PortPinOffset = (&PortCfgPtr[(uint32_t)u32PortCntr - (uint32_t)1])->u8Pwm_Port_Channel;
/* Configure current Pin Pad as Output */
SIU_PCR_ADDR(u8PortPinOffset);
/* Set current pin state as High or Low */
SIU_GPDO_ADDR(u8PortPinOffset,PWM_HIGH);
}

NOTE
Make sure that pins configured as PWM channels are not used by another
task in the application.

4.2 Periodic-Interrupt-Timer (PIT) Initialization
The PIT provides the time base for generating the PWM signals. The PWM driver makes use of PIT
channel one as a time base reference and is configured to generate a periodic interrupt of 33 s. This
periodic interrupt is chosen to provide the driver to generate frequencies of 100 and 150 Hz with a duty
cycle resolution of 0.5%.

The PWM frequency can easily be changed by setting a different counter value invoking the function
shown below:

vfnPit_Init(uint8_t u8PitChannel, uint32_t u32Period)

To change the frequency operation of the PWM driver it is required to specify the PIT channel to use as a
base timer (u8PitChannel) and also the PIT counter value used to generate the periodic interrupt intervals
(u32Period) to generate PWM signals.

The example code provided within this application note generates PWM frequencies of 100 and 150 Hz
for a high quality lighting application.

To generate a 33 s time base using PIT channel one, the initialization code start enabling the PIT module.
After enabling the module, channel one is selected and preloaded with a counter value of 2112 based on a
system frequency of 64 MHz. This counter value generates an interrupt service of 33 s.

Eqn. 1

Period=33 s,Clock_Period(64MHz)=15.63 ns

Eqn. 2

After selecting and loading channel one counter, the next step the code executes is to rise the interrupt
priority level of PIT channel one. It also assigns the core that will take control of channel one.

The PWM driver can take control of any PIT channel and assign the PIT interrupt service routine to Z1
(main processor) or Z0 (second processor) core. By default the Z0 core takes control of PIT channel one.

PitInterruptCounter
Period

ClockPeriod
--------------------------------- 1–=

PitInterruptCounter
33s

15.62ns
------------------- 1– 2112s= =
Emulating a PWM Module Using the IO Processor (IOP) on the MPC5510 Family, Rev. 0

Freescale Semiconductor 7

Error Detection Layer
The PWM driver then clears the PIT interrupt flag from channel one to avoid any false triggering before
enabling the channel. After clearing the channel flag the channel is enabled to operate and generate an
interrupt every 33 s.

Figure 4 shows the complete initialization of PIT channel one that generates a time base of 33 s.

Figure 5. PIT Channel One Initialization Procedure

NOTE
The user must decide which core takes control over the PIT channel
interrupt and define the interrupt vector in the correct core vector table.

5 Error Detection Layer
An error detection layer has been implemented in the PWM driver to catch any wrong parameters that pass
through each of the implemented functions in the driver.

The error detection layer can be enabled or disabled as desired. This option reduces the size of the driver
if no error detection is needed during run-time. The error detection layer is enabled by setting the
PWM_ERROR_DETECT value to on state.

#define PWM_ERROR_DETECT ON

The error detection layer avoids writing wrong configuration values to PWM functions and invalid register
values to the periodic-interrupt-timer. When the error detection layer validates the parameters through the
PWM functions it configures the registers and continues with the function flow.

If the error detection layer does not validate a correct parameter, the function reports where the error is
detected and the type of error. These report parameters are stored in a RAM location and it is up to the user
to take action if an error occurs.
 if(Pwm_Cfg_Ptr == NULL_PTR) /* Pwm module already initilized? */
 {
 vfnPwm_Report_Error(PWM_SETDUTYCYCLE_ID,PWM_E_UNINIT);
 }

void vfnPit_Init(uint8_t u8PitChannel, uint32_t u32Period)
{

PIT_CTRL = (uint32_t)0x00;
PIT_LOAD_VALUE(u8PitChannel, u32Period);
#if Z0_CORE == ON
INT_PSR((uint8_t)((uint8_t)PIT_BASE_OFFSET + (uint8_t)u8PitChannel)
,(uint8_t)0xC1);
#else
INT_PSR((uint8_t)((uint8_t)PIT_BASE_OFFSET + (uint8_t)u8PitChannel)
,(uint8_t)1);
#endif
PIT_FLG = (PIT_FLG | ((uint32_t)1<< (uint32_t)u8PitChannel));
PIT_INTEN = (PIT_INTEN | ((uint32_t)1<< (uint32_t)u8PitChannel));
PIT_INTSEL = (PIT_INTSEL | ((uint32_t)1<< (uint32_t)u8PitChannel));
vfnPit_Set_Callback_Fnc(Pwm_Generation_Fnc);
}

Emulating a PWM Module Using the IO Processor (IOP) on the MPC5510 Family, Rev. 0

Freescale Semiconductor8

PWM Implementation Functions
6 PWM Implementation Functions

6.1 Changing the Duty Cycle During Run-Time
Changing the duty cycle is allowed during run-time by invoking the function vfnSetDuty_Cycle. A new
duty cycle value takes place after the period in progress reaches the end.

The duty cycle function is configured by passing the PWM channel id and the new duty cycle value. This
function validates whether the new duty cycle value is within the allowed maximum range.

 void vfnSetDuty_Cycle(uint8_t u8PwmChannel, uint32_t u32DutyCyle)

To configure the maximum range of duty cycle permitted, it is mandatory to set the macro
MAX_DUTY_CYCLE with the desired maximum value.

 #define MAX_DUTY_CYCLE (uint32_t) (DUTY_CYCLE_100)

The maximum duty cycle is not restricted to any value. The user can set the maximum value needed.

Figure 6 shows how the change duty cycle function works.

Figure 6. Procedure to Change Duty Cycle During Run-Time

Change Duty Cycle
Function

Exit Change Duty Cycle
Function without Setting

any Parameter

Wait Until Find the Period
Counter from the Specified

PWM Channel

Change Duty Cycle
Reached Channel

Counter Value

Change Duty Cycle to the
PWM Channel

Is the On-Going
Period Reached the

End of Cycle?

No

No

Yes

Yes

Store New Duty Cycle
Value and PWM Channel

Into Temporal Variable
Emulating a PWM Module Using the IO Processor (IOP) on the MPC5510 Family, Rev. 0

Freescale Semiconductor 9

PWM Driver Features
6.2 Changing Period and Duty Cycle During Run-Time
Changing period and duty cycle in run-time is possible by calling vfnSetPeriodAndDuty. This function
needs three different parameters to change the period and duty cycle of a specific PWM channel.

These three parameters are the PWM channel id, the new period value, and the new duty cycle value. The
vfnSetPeriodAndDuty function validates the values of the period and duty cycle to avoid any malfunctions
in the PWM signal generation.

6.3 Initializing the Z0 Core and Transferring Control Over PIT
Channel One

After the microcontroller exits the reset state, the Z1 core is activated. The IOP core remains in reset after
the device comes out from power reset. To release the IOP core from the reset state, the Z1 core can then
release the IOP core from reset.

A macro definition is used to release the IOP core from reset. The IOP core is brought out of reset by
writing the Z0VEC register in the clock, reset, and power control (CRP) module with the start address.

#define RUN_PWM_ON_Z0 CRP.Z0VEC.R = (unsigned long)__start_p1

7 PWM Driver Features

The PWM driver includes a channel offset feature that reduces EMI and a diagnostic feature that allows
an ADC channel to be triggered at various points during the PWM period. These features can be enabled
at a pre-compiled time and are found at Pwm_Cfg.h file.

All PWM features are described below:
 #define PWM_INIT_DELAY OFF

#define DIAGNOSTICS OFF

Both features can be enabled/disabled by setting the predefined values of on/off to their respective feature.

7.1 Enabling Switching Offsets to Reduce EMI
Switching on all PWM channels and subsequent loads at the same time causes an increase in EMI. To
reduce this effect the PWM driver can be configured to offset the switching of each channel by a
programmable delay.

To enable the selectable switching delay feature it is mandatory to configure the next two parameters:

• Set PWM_INIT_DELAY definition located at Pwm_Cfg.h file with the precompiled definition on.
#define PWM_INIT_DELAY ON

• Configure the initialization counter value (u32Cntr) of each PWM channel to allow switching time
delay on that particular channel. The PIT timeout determines the smallest possible EMC delay
allowed.
Emulating a PWM Module Using the IO Processor (IOP) on the MPC5510 Family, Rev. 0

Freescale Semiconductor10

PWM Driver Features
The channel switching time delay counters are located at Pwm_Cfg.c file. The PWM software provides
flexibility during the EMC evaluation of the electronic module. The switching delay can be programmed
by enabling the precompiled definition PWM_INIT_DELAY and configuring each PWM channel with
different initialization values on their counter variables:

1. #define PWM_INIT_DELAY ON (Pwm_Cfg.h file)

2. On Pwm_Cfg.c file:

#if (PWM_INIT_DELAY == ON)
Pwm_ChannelConfigType Pwm_ChannelConfig[PWM_MAX_CHANNELS] =
{
 {

(uint32_t)(PWM_CHANNEL_0),
(uint32_t)(PORTB_PIN_0),
(uint32_t)SET_PERIOD_AT_150HZ,

 (uint32_t)DTY_AT_50P_WITH_150HZ,
 (uint32_t)0x08, /* Switching delay counter */

 #if (DIAGNOSTICS == ON)
(uint32_t)ADC_CHANNEL_28,

 (uint32_t)0x10,
 (uint32_t)0x00

 #endif
 },
 {
 (uint32_t)(PWM_CHANNEL_1),
 (uint32_t)(PORTB_PIN_1),

(uint32_t)SET_PERIOD_AT_150HZ,
(uint32_t)DTY_AT_50P_WITH_150HZ,

 (uint32_t)0x10, /* Switching delay counter */
#if (DIAGNOSTICS == ON)
(uint32_t)ADC_CHANNEL_29,
(uint32_t)0x10,
(uint32_t)0x00
#endif
}

}
#endif

The fifth parameter of each PWM channel structure is the initialization counter value that produces the
switching delay offset on that specific channel.

7.2 Measuring Loads on PWM Channels Using the Diagnostic
Feature

A diagnostic implementation function allows the driver to measure loads during the PWM signals
generation. To obtain an accurate measure of the load, this runtime feature has been implemented to trigger
as near as possible to the end of the active phase of the PWM period.

The following code shows an example of configuring ADC channel 28 to trigger every time the duty cycle
reaches 50%.
#if (DIAGNOSTICS == ON)
 (uint32_t)ADC_CHANNEL_28, /* ADC Channel 28 assigned */
 (uint32_t)0x60, /* Triggers ADC when 50% duty is reached */
 (uint32_t)0x00 /* Reset ADC buffer */
#endif
Emulating a PWM Module Using the IO Processor (IOP) on the MPC5510 Family, Rev. 0

Freescale Semiconductor 11

PWM Sample Application
An ADC trigger value is compared against the current counter value of a specific channel when the
diagnostic feature is enabled while the PWM signals are generated. After both values match, an ADC
conversion is initiated based on the ADC channel number taken from the PWM channel configuration
(Pwm_Cfg.c file).

To enable the diagnostic feature it is necessary to perform the following steps:

1. Enable the precompiled diagnostics definition by changing the state from off to on.
 #define DIAGNOSTICS ON (Pwm_Cfg.h file)

2. Configure the ADC channel to be sampled and the ADC triggering value used to start a conversion
at a certain position within the generation of the PWM signal.

The example code shown below uses ADC channel 28 to measure the load on PWM channel 0. The
seventh parameter (from top to bottom) holds the ADC trigger value indicating the value within the period
where the ADC conversion starts.

Pwm_ChannelConfigType Pwm_ChannelConfig[PWM_MAX_CHANNELS] =
{
 {
(uint32_t)(PWM_CHANNEL_0),
 (uint32_t)(PORTB_PIN_0),
 (uint32_t)SET_PERIOD_AT_150HZ,
 (uint32_t)DTY_AT_50P_WITH_150HZ,
 (uint32_t)0x08,
 #if (DIAGNOSTICS == ON)
 (uint32_t)ADC_CHANNEL_28,
 (uint32_t)0x10,
 (uint32_t)0x00
 #endif
 }
}

The diagnostic feature implemented during runtime only starts a conversion on a particular channel based
on the PWM configuration parameter. It is mandatory the user read the converted value using the function
described below at any given time within the user’s code:

ADC read function:
uint16_t u16Read_Adc_Result(uint8_t u8AdcFifoBuffer)

To use the ADC read function it is necessary to indicate which RFIFO to use to gather the result from the
last conversion. For practical purposes, the diagnostic feature uses RFIFO 0 to read any result from all
ADC channels.

8 PWM Sample Application
To demonstrate the use of the emulated PWM driver, two PWM channels are configured to generate
frequencies of 150 Hz on channel one and 100 Hz on channel two to drive a high quality lighting
application.

Each PWM channel has a resolution frequency of 0.5%. To achieve a period resolution of 0.5% at 150 Hz,
channel one of the periodic-interrupt-timer must be configured to service the interrupt routine every 33 s
based on the 64 MHz system frequency. The interrupt base time used in this example has been calculated
Emulating a PWM Module Using the IO Processor (IOP) on the MPC5510 Family, Rev. 0

Freescale Semiconductor12

References
by dividing 6.6 ms/ 200 to represent the resolution period proposed of 0.5%. The complete sample
application is mounted into a multi-thread scheduler programmed with four tasks to be executed at
different time intervals from 100 ms to 800 ms.

• The first task executes vfnSetDuty_Cycle after 100 milliseconds. This task changes the channel 0
duty cycle from 5% to 50% without modifying the 150 Hz period.

• The second task executes after 200 ms and changes the channel 1 duty cycle from 20% to 5%
keeping the same 100 Hz period.

• The third task is executed after 400 ms changing channel two parameters. The PWM period
changes from 150 Hz to 100 Hz and the duty cycle from 50% to 5%.

• The fourth task is executed after 800 ms changing the same parameters as the third task but with
different values. The PWM period changes from 100 to 150 Hz and duty cycle value from 65 to
20%.

9 References
AN3225 — XGATE Library: PWM Driver.
Emulating a PWM Module Using the IO Processor (IOP) on the MPC5510 Family, Rev. 0

Freescale Semiconductor 13

Freescale™ and the Freescale logo are trademarks of
Freescale Semiconductor, Inc. All other product or service names
are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008. All rights reserved.

AN3737

Rev. 0

12/2008

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

	1 Introduction
	2 Emulated PWM Module Principles
	3 PWM Driver Configuration
	3.1 Channel Configuration
	3.2 Channel Parameters Explanation
	3.3 Configuring PWM Channels
	3.4 PWM General Configuration Definitions

	4 PWM Driver Initialization
	4.1 Configuring I/O Pins as PWM Channels
	4.2 Periodic-Interrupt-Timer (PIT) Initialization

	5 Error Detection Layer
	6 PWM Implementation Functions
	6.1 Changing the Duty Cycle During Run-Time
	6.2 Changing Period and Duty Cycle During Run-Time
	6.3 Initializing the Z0 Core and Transferring Control Over PIT Channel One

	7 PWM Driver Features
	7.1 Enabling Switching Offsets to Reduce EMI
	7.2 Measuring Loads on PWM Channels Using the Diagnostic Feature

	8 PWM Sample Application
	9 References

