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Digital Signal Processing and 
ADC/DAC for DSP56800/E
by: XiangJun Rong

Systems and Applications Engineering
Asia/Pacific Region
1 Introduction
The DSP56800/E is Freescale’s 16-bit fixed-point digital 
signal controller (DSC), which can be used in a variety 
of industrial control applications, such as motor control 
for BLDC, PMSM, ACIM, SR, and STEP motors, as 
well as in switch-mode power supplies and as an 
electronic lamp ballast.

Freescale devices that use the DSP56800/E core can 
perform up to 32–120 MIPS.

• The DSP56F80x can perform up to 40 MIPS
• The MC56F83xx can perform up to 60 MIPS
• The MC56F80xx can perform up to 32 MIPS
• The DSP5685x can perform up to 120 MIPS

Most of the devices have on-chip flash, GPIO, watchdog 
timer, Quad Timer, ADC, DAC, CAN bus, SPI bus, SCI 
bus, IIC bus, decoder, and JTAG/OnCE peripherals.

This application note provides:
• On-chip ADC specifications of the DSP56800/E
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DSP56800/E Features
• Procedures to design a finite impulse response filter (FIR) and an infinite impulse response filter 
(IIR) using CodeWarrior embedded QEDesign Lite for the DSP56800/E

• Examples by Processor Expert (PE) to create a digital filter and FFT based on the DSP56800/E 
core

• The relationship between PWM cycle and PWM resolution when the PWM is viewed as a DAC

Figure 1 is a common digital signal processing procedure. The ADC and DAC can be on-chip or off-chip. 
The DSC is capable of implementing the digital signal processing in real time based on the DSP 
architecture and compact instructions set. Most of the Freescale DSCs have on-chip ADC.

Figure 1. Digital Signal Processing Scheme

2 DSP56800/E Features

2.1 Overview
Every device in the DSP56800/E family is a general-purpose DSC for various control and signal 
processing applications.
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DSP56800/E Features
As shown in Figure 1, the key attributes of the DSP core are:
• Multiply/accumulate (MAC) operation in one clock
• Harvard structure, fetching up to two operands per instruction cycle, for the MAC
• Program control to provide versatile operation
• Input/output transferring data to and from the DSC

The Freescale DSP56F80x family is well suited for digital signal processing and motor control. It 
combines a DSP’s calculation capability with an MCU’s controller features on a single chip.

DSP56F805, a typical member of the DSP56F80x family, provides these peripheral blocks:
• Two pulse-width modulator modules (PWMA and PWMB). Each provides six PWM outputs, three 

current-sense inputs, and four fault inputs. It has fault-tolerant design with dead-time insertion and 
supports both center-aligned and edge-aligned modes.

• A 12-bit analog-to-digital convertor (ADC). Supports two simultaneous conversions with dual 
4-pin multiplexed inputs. The ADC can be synchronized by a PWM or by a timer.

• Two quadrature decoders (Quad Dec0 and Quad Dec1). Each provides four inputs or two additional 
Quad Timers, A and B.

• Two dedicated general-purpose Quad Timers totalling six pins: Timer C with two pins and Timer 
D with four pins.

• CAN 2.0 A/B module with 2-pin ports used to transmit and receive
• Two serial communication interfaces (SCI0 and SCI1). Each provides two pins, or four additional 

GPIO lines.
• Serial peripheral interface (SPI) with configurable 4-pin port, or four additional GPIO lines.
• Computer-operating-properly (COP) watchdog timer.
• Two dedicated external interrupt pins.
• 14 dedicated general-purpose I/O (GPIO) pins and 18 multiplexed GPIO pins.
• External reset pin for hardware reset.
• JTAG/On-chip emulation (OnCE).
• Software-programmable, phase-lock loop-based frequency synthesizer for the DSP core clock.

Other than the fast analog-to-digital converter and 16-bit quadrature timers, the pulse-width modulation 
block (PWM) offers a high degree of freedom in its configuration to control various motors in an efficient 
way.

2.2 On-Chip ADC Features
The ADC module has these features:

• 12-bit resolution
• A sampling rate up to 1.66 million samples per second
• Maximum ADC clock frequency of 5 MHz with 200 ns period
• Single conversion time of 8.5 ADC clock cycles (8.5 × 200 ns = 1.7 μs)
• Additional conversion time of 6 ADC clock cycles (6 × 200 ns = 1.2 μs)
Digital Signal Processing and ADC/DAC for DSP56800/E, Rev.0
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DSP56800/E Features
• Eight conversions in 26.5 ADC clock cycles (26.5 × 200 ns = 5.3 μs) using simultaneous mode
• Simultaneous or sequential sampling
• Internal multiplexer to select two of eight inputs
• Ability to sequentially scan and store up to eight measurements
• Ability to simultaneously sample and hold two inputs
• Optional interrupts at end of scan, if an out-of-range limit is exceeded or if at zero crossing
• Optional sample correction by subtracting a pre-programmed offset value
• Signed or unsigned result
• Single-ended or differential inputs

In loop mode, the time between each conversion is six ADC clock cycles (1.2 μs). Using simultaneous 
conversion, two samples can be obtained in 1.2 μs. Therefore the module can process up to 1.6 million 
samples per second.

The external analog signal must be sampled in a constant cycle if FIR, IIR, or FFT is adopted. The  
DSP56800/E family provides two trigger modes to acquire samples. One is software trigger mode, which 
is set by setting the START bit in the ADC control register; the other is hardware trigger mode. In hardware 
trigger mode, the timer outputs a signal to trigger the ADC internally. The user can set the timer register 
to set up a constant sample cycle.

The DSP56800/E also supports a more complicated trigger mode. For example, the PWM reload event 
triggers the timer and the timer triggers the ADC after delays. This is an important mode for sampling three 
motor phase currents for a Clark transformation. Refer to the application note AN1933, Synchronization 
of On-chip Analog to Digital Converter on DSP56F80x DSPs, for details. Only the hardware trigger mode 
can guarantee the synchronization of the ADC samples, so the user must use the hardware trigger mode to 
get samples via on-chip ADC to implement FIR, IIR, or FFT.

2.3 ADC Specifications
This section defines all the ADC specifications used in this application note.

• Differential non-linearity (DNL) — the measurement of the maximum deviation from the ideal 
step size of 1 LSB.

• Effective number of bits (ENOB or effective bits) — another method of specifying signal-to-noise 
and distortion (SINAD). ENOB is defined as (SINAD – 1.76)/6.02, and it is equivalent to the 
number of bits in a perfect ADC.

• Gain error — the deviation from the ideal slope of the transfer function.
• Integral non-linearity (INL) — a measurement of the deviation of each individual code from a line 

drawn from ground (1/2 LSB below the first code transition) through positive full scale (1/2 LSB 
above the last code transition). The deviation of any given code from this straight line is measured 
from the bottom of that code value or ground.

• Offset voltage — the maximum input voltage of the ADC analog channel when the ADC sample 
reading is zero.
Digital Signal Processing and ADC/DAC for DSP56800/E, Rev.0
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DSP56800/E Features
• Signal-to-noise ratio (SNR) — the ratio, expressed in dB, of the RMS value of the fundamental 
signal to the RMS value of the sum of all other spectral components below one-half of the sampling 
frequency, but not including harmonics from f2 to f9 or DC.

• Signal-to-noise plus distortion (S/N+D or SINAD) — the ratio, expressed in dB, of the RMS value 
of the fundamental signal to the RMS value of all the other spectral components below half of the 
sample frequency, including all harmonics but excluding DC.

• Spurious free dynamic range (SFDR) — the ratio, expressed in dB, of the RMS values of the 
fundamental signal to the RMS value of the peak spurious signal. The spurious signal is any signal 
presented in the output spectrum that is not presented at the input.

• Total harmonic distortion (THD) — the ratio, expressed in dB, of the RMS value of the 
fundamental signal to the RMS value of the total of the first nine harmonics. THD is calculated 
with f1 as the RMS power of the fundamental (output) frequency and f2 through f10 as the RMS 
power in the first nine harmonic frequencies.

• Crosstalk between channels — the mutual influence between two analog channels expressed in dB. 
For example, the crosstalk between two ADC analog channels is 60 dB in the MC56F8300 family. 
If the input of one channel is 1 V, the second channel may get 1 mV noise signal from the first 
channel.

• Common mode voltage — defined only in the ADC differential input mode, and equal to the 
average voltage of the two differential input signals. Note that each channel voltage must range 
from GND to Vrefh even in differential mode, because the on-chip ADC of the DSP56800/E cannot 
accept negative voltage.

• Vrefh current — the current the Vrefh pin consumes. When the user uses a voltage reference, this 
specification must be considered.

• Impedance of the analog channel — refer to Freescale application note AN1947, DSP56F800 
ADC, for the formula to compute this value. It is about 200 kΩ.

NOTE
The root mean square (RMS) for a collection of n values {x1,x2,x3,...,xn} 

can be expressed as , for a sine signal. If the

amplitude of the sine signal is A, the RMS of the sine signal is .

2.4 How to Calculate ENOB
Resolution is an important specification for an ADC. It indicates the minimum ADC recognition for the 
analog input variation. For example, if the ADC is 12 bits, the resolution of the ADC is 12 bits. But because 
the actual ADC cannot recognize the analog input variation as its resolution describes, we define the 
ENOB parameter to describe its actual resolution.

2.4.1 How to Derive the ENOB Parameter

From a mathematical point of view, quantization is the process of mapping the continuous analog signal 
to a discrete definite number set. Quantization error is introduced in the process. We can use the 
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DSP56800/E Features
quantization error to measure the difference between the actual analog value x(k) and the corresponding 
ADC digital sample. Assume the digital ADC sample is

Eqn. 1

We use the root-mean-square error to define the quantization error as Equation 2. The error x is the 
difference between the analog sample and the digital sample:

Eqn. 2

For a general ADC, we assume the analog signal voltage is uniformly distributed. Therefore the uniform 
quantization is the optimum quantization.

Suppose that:
• Analog signal ranges from –V to +V
• Nominal resolution is L bits
• Desired number of levels is 2L

• Quantization gap is 2 × V/2L

• Sample frequency is Fs
• Signal frequency is F (for meeting the Nyquist sampling theorem, Fs must be greater than 2F)

Suppose we quantize a sine waveform signal with the ADC — the amplitude of the sine signal is V. In an 
ideal ADC converter, the quantization error is uniformly distributed between –1/2 LSB and +1/2 LSB. The 
sum of the noise, or the root-mean-square quantization error (or the energy of the quantization error), is

Eqn. 3

In the above formula, x denotes the quantization error between the continuous analog signal and the digital 
sample, and p(x) is the possibility of the quantization error assumed to be uniformly distributed. So

 and 

and the noise energy is

Eqn. 4

For a sine signal with amplitude V, the signal energy is V2/2, so

Eqn. 5
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10 × log10(Signal Energy/Noise Energy) = 10 × log10((V2/2)/J) = 6.02L + 1.76
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DSP56800/E Features
Eqn. 6

2.4.2 One Method to Compute ENOB Parameter

According to Equation 6, if we can calculate the signal and noise energy, we can derive L. L is the ENOB 
in the data sheet.

Suppose we input an arbitrary initial-phase sine signal to the ADC, which can be expressed as

Asin(wt)+Bcos(wt). The amplitude of the sine signal is . Assume that the frequency of the signal

is FREQ and the signal energy is . Assume that the sample frequency is FS. Select the input 
sine signal frequency FREQ to make the result of FS/FREQ to be an integer, such as 100, to increase 
accuracy.

Assume we get one whole cycle sine discrete signal y(k) by sampling the sine signal. The number of points 
is NP, which equals FS/FREQ. Use Equation 7 to calculate the noise value.

Eqn. 7

Estimate the optimum values for parameters A and B that will yield a minimum value for the noise 
energy J. After calculating the optimum A and B, we can compute J. Let the following partial derivatives 
with respect to A and B equal zero.

To calculate signal energy, we use Equation 8 and Equation 9, where parameter k is from 0 to NP–1.

Eqn. 8

Eqn. 9

Using these two equations, we can calculate A and B. With the values for A and B, use Equation 7 to 
calculate the noise, J.

Eqn. 10

Note that the average of the y(k) sequence is zero. We can subtract the original sample sequence by the 
average and get the y(k) sequence.

ENOB L = [10 × log10(Signal Energy/Noise Energy) – 1.76] / 6.02
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Signal Energy = (A2+B2) / 2
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DSP56800/E Features
Using Equation 6 we can calculate L, which is ENOB as defined in the data sheet.

We can also calculate ENOB according to a discrete Fourier transformation (DFT) of the y(k) sequence — 
they yield the same result. For example, assume we have computed the DFT of the y(k) sequence, and get 
the power spectrum sequence from bin0 to bin50. Obviously, bin0 is the DC component which is zero here 
— bin1 is the fundamental component. In computing the SNR, because bin10 to bin50 are regarded as 
noise, we sum from bin10 to bin50 to get noise. Bin2 to bin10 are regarded as harmonics. In computing 
S/N+D or SINAD, bin2 to bin50 are regarded as noise. Therefore, to compute the value for the noise, sum 
from bin2 to bin50. Note that when we compute for all the specifications, the input sine signal voltage must 
be in full scale.

We can use Equation 11 to compute the ENOB after we get the SINAD.

Eqn. 11

2.5 ADC Voltage Reference Circuit
The on-chip ADC of the DSP56800/E has a Vrefh pin that can be used to provide reference voltage to the 
ADC.

Use a dedicated voltage reference device to improve the ADC precision. Refer to the data sheet of each 
individual DSP chip to get the typical current requirements of the Vrefh pin that provides a reference 
voltage for the on-chip ADC. For example, the Vref pin of DSP56F805 typically needs 12 mA DC current, 
and the optimum voltage of the Vref is about 3.0 V. But for the MC56F8300 family and MC56F8000 
family, the optimum input voltage for the Vrefh is 3.3 V. This application note uses the LM385-ADJ chip 
as the voltage reference device for the Vrefh pin of DSP56F805. The user can connect the Vrefh pin to VDDA 
for a low-cost design.

ENOB = (SINAD – 1.76) / 6.02
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–
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Filter Design Using QEDesign Lite
Figure 2. Voltage Reference Circuit

Here, the “+”, “–”, and “FB” are nodes copied from the data sheet of the LM385-ADJ chip. Because the 
clamp diode clamps the voltage between the FB node and the Vrefh node to 1.24 V, and the current flow 
through R2 and R3 is the same, we can derive the formula given here:

 Eqn. 12

Eqn. 13

If R3 is 14.3 kΩ and R2 is 10 kΩ, then Vrefh will be 3.0 V.

R1 must be a tri-port adjustable resistor. The maximum resistance is R1 = 0.3 V / 0.012 A = 25 Ω. It must 
be less than 25 Ω. Typically it is about 16–17 Ω, because the Vrefh pin consumes 12 mA current.

3 Filter Design Using QEDesign Lite

3.1 FIR Filter
We provide a filter solution, including digital filter design and digital filter implementation, using the DSP. 
For filter design, CodeWarrior for DSP56800/E integrates QEDesign Lite, which can help the user design 
an individual filter as required.

NOTE
QEDesign Lite must be installed in your computer and working normally. 
This tool is integrated into CodeWarrior.

Use the procedure below to design a filter using QEDesign Lite.
1. As shown in Figure 3, click the FIR button in the tool bar, and select filter type in the “FIR 

(Window) Design” dialog box that appears.
The filter types include Lowpass, Highpass, Bandpass, and Bandstop. 
Click on the Next button.

Vrefh 1.24–
R3

---------------------------- 1.24
R2

----------=

Vrefh 1.24 1 R3
R2
-------+⎝ ⎠

⎛ ⎞=
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Figure 3. QEDesign Lite FIR Filter Type Selection

2. As shown in Figure 4, input filter parameters vary according to the application.
In the Lowpass Filter window, passband ripple (dB) is the gain of the filter, a gain that fluctuates 
with the frequency within the passband frequency field. Stopband ripple (dB) works exactly the 
same way for the stopband frequency field.
If you input x as the passband ripple within the passband, the gain ripple is 10–x/20 within the 
passband frequency. For example, if you input 3, the filter gain ripple is 0.708. The larger the ripple 
is in dBs, the smaller the filter gain ripple will be.
For a low pass FIR filter design, assume that the sample frequency is 1000 Hz, the passband is 
100 Hz, the stopband is 200 Hz, the passband ripple is 3 dB (the filter gain fluctuates between 
70.7% and 100% of the maximum gain within the passband), and the stopband ripple is 20 dB (the 
filter gain fluctuates within 10% of the maximum gain within the stopband).
You can input these typical values:
— Sampling frequency: 1000
— Passband frequency: 100
— Stopband frequency: 200
— Passband ripple (dB): 3
— Stopband ripple (dB): 20
Digital Signal Processing and ADC/DAC for DSP56800/E, Rev.0
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Figure 4. QEDesign Lite FIR Filter Specification Input
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Figure 5.  QEDesign Lite FIR Filter Length Estimates

3. Select one of the types seen in Figure 5 so that the tools can truncate the infinite series. Then click 
on the Next button. After the procedure is finished, the user can get the figure and data files that 
contain the FIR coefficients.
The user can dump the coefficient and filter specifications into different files by clicking the tool 
bar. For example, these are the FIR filter coefficients with 11 taps that are saved in the data file:
— –5.96008300781250e–002
— –4.37927246093750e–002
— 3.07006835937500e–002
— 1.41784667968750e–001
— 2.41210937500000e–001
— 2.80975341796875e–001
— 2.41210937500000e–001
— 1.41784667968750e–001
— 3.07006835937500e–002
— –4.37927246093750e–002
— –5.96008300781250e–002
These are the filter specifications that are saved in the specification file:
— Filter Specification File
Digital Signal Processing and ADC/DAC for DSP56800/E, Rev.0
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Filter Design Using QEDesign Lite
— Filter Type: Low Pass                       1 Hz
— Passband Ripple in –dB        –.3000E+01
— Stopband Ripple in –dB        –.2000E+02
— Passband Cutoff Frequency   0.100000E+03 Hz
— Stopband Cutoff Frequency   0.200000E+03 Hz
— Sampling Frequency          0.100000E+04 Hz

Figure 6. QEDesign Lite FIR Filter Result Curve

For the 11-tap FIR filter, the transfer function is expressed as:

Eqn. 14

The digital filter is designed in a normalized frequency: Fnormal=Factual/Fsample.

Factual is the actual frequency of the analog signal.

Fsample is the ADC sample frequency.

H(z) = h(0) + h(1) × z-1 + h(2) × z-2 + h(3) × z-3 + …+ h(10) × z-10
Digital Signal Processing and ADC/DAC for DSP56800/E, Rev.0
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In magnitude versus frequency:

Eqn. 15

N is the total tap number of the FIR filter: w= 2πFnormal=2π×(Factual/Fsample). The overall gain is the gain 
of the filter in all frequency ranges, so that the maximum gain of the filter can equal one by dividing the 
actual filter gain by the overall gain parameter.

For the above 11-tap FIR filter, the curve for magnitude versus frequency can be calculated by

Eqn. 16

The normalized frequency ranges from 0 to π. Assume we use a step of π/100 — that is, w=0, π/100, 
2π/100, 3π/100, …π. The actual frequency, Factual, is from 0 to Fsample/2.

Thus, we can get a continuous curve for magnitude versus frequency. The actual frequency corresponding 
to the normalized frequency is Factual = Fnormal × Fsample.

In the curve of log magnitude versus frequency, the curve is computed by 20 × log10[|H(jw)|/overall gain], 
the normalized frequency w is from 0 to π, and the actual frequency is from 0 to half of the ADC sample 
frequency.

In phase versus frequency

Eqn. 17

the w ranges from 0 to π.

Regarding the group delay concept of a filter: if a sine signal passes through a linear system, the output is 
also a sine signal with the same frequency as the input and without any other frequency component, but 
the amplitude and phase will change. A linear phase system is a linear system: the phase shift between 
input and output is proportional to the input signal frequency. Group delay, as one of the linear phase 
system features, is a constant for all frequencies.

Two features of the linear phase are that the phase difference between the output sine signal and the input 
sine signal is proportional to the input signal frequency, and all frequency signals delay the same time after 
the sine signal passes through the linear phase system.

Regarding the impulse response versus time: input an impulse to the system (the filter can be treated as a 
linear system), and the output signal will be the impulse response.

Use the convolution formula to compute the impulse response versus time in the discrete system.

Eqn. 18

H jw( ) h n( ) e jnw–

Overall Gain
-------------------------------×

n 0=

N 1–

∑=

H jw( ) h 0( ) h 1( ) e jw– h 2( ) e 2jw– h 3( ) e 3jw– … h 10( ) e 10jw–×+ +×+×+×+[ ] Overall Gain⁄=

Phase(jw) = Arctan(image[H(jw)] / real[H(jw)])

y n( ) h k( ) x n k–( )×

k 0=

N 1–

∑=
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Filter Design Using QEDesign Lite
Use Equation 19 to compute the output sequence y(n).

Eqn. 19

For the impulse response, the input data sequence is:

Eqn. 20

So y(n) = h(n) and n ranges from 0 to N–1. In conclusion, impulse response means that only x(0)=1 for the 
input series. The output series is the same as h(n).

When a step function inputs to the linear system, the output response is the step response.

For the step input response, the input data sequence is:

x(n)={1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,………}

After the interim process is finished, y(n) will converge to:

Eqn. 21

The value of n is greater than the tap number of the FIR filter.

3.2 IIR Filter Design
This section introduces the IIR filter design procedure and results. It also introduces how to implement the 
IIR filter. The user can get the code from Appendix A, “IIR Filter Code.”

3.2.1 IIR Filter Design Procedure and Results
1. As shown in Figure 7, you will input filter parameters according to the application.

You can input these values as an example:
— Sampling frequency: 1000
— Passband frequency: 100
— Stopband frequency: 200
— Passband ripple (dB): 3
— Stopband ripple (dB): 20

 y(n) = h(0) × x(n) + h(1) × x(n–1) + h(2) × x(n–2) + h(3) × x(n–3) +…..+ h(N–1) × x(n–N+1)

x n( )
1 n 0=,
0 n 0>,⎩

⎨
⎧

=

y n( ) h k( )

k 0=

N 1–

∑=
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Figure 7. QEDesign Lite IIR Filter Specification Input

2. As shown in Figure 8, select the filter type according to the application requirement. You can select 
Butterworth.
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Figure 8. QEDesign Lite IIR Filter Type Selection

IIR filter features are:
• Butterworth filter: a Butterworth filter is a maximally flat filter and has no ripples in the passband 

or the stopband.
• Tschebyscheff filter: a Tschebyscheff filter has ripples in the passband but is monotonic in the 

stopband. (Tschebyscheff is frequently spelled Chebyshev, but in this application note we will use 
the same spelling as in the GUI.)

• Inverse Tschebyscheff filter: an inverse Tschebyscheff filter is the reverse of a Tschebyscheff filter, 
and is monotonic in the passband but has ripples in the stopband.

• Elliptic filter: an elliptic filter has ripples in the passband and in the stopband.
• Bessel filter: a Bessel filter is monotonic in both passband and stopband. It has no sharp rolloff 

characteristic and is primarily used for a constant group delay filter (using the impulse invariant 
method). It is an approximate linear phase filter.

Butterworth and Bessel filters require the highest filter orders. Tschebyscheff and inverse Tschebyscheff 
filters require fewer, and the elliptic filter requires the least.

After inputting the parameters, QEDesign Lite will generate the IIR coefficients and draw the curves for 
magnitude vs. frequency, phase vs. frequency, impulse response, step response, and pole/zero position 
maps, as shown in Figure 9.
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Figure 9. QEDesign Lite IIR Filter Result Curve 

For a two-order IIR filter, the transfer function can be expressed as:

Eqn. 22

The magnitude versus frequency curve is expressed as:

Eqn. 23

The curve is computed by |H(jw)|/overall gain, the normalized frequency w is from 0 to π, and the actual 
frequency is from 0 to half of the ADC sample frequency.

We can sample w from 0 to π and take the step as π/100. Then we can draw the curve for magnitude versus 
frequency.

In Equation 23, w is a normalized frequency. The actual frequency corresponding to the normalized one is

Eqn. 24

To determine the log magnitude versus frequency curve:

The amplitude corresponding to w is 20 × log10(|H(jw)|/Overall Gain).

H(z) = [b0 + b1 × z-1 + b2 × z-2]/[1 – a1 × z-1 – a2 × z-2]

H jw( ) b0 b1 e jw– b2 e 2jw–×+×+
1 a1 e jw– a2 e 2jw–×–×–

------------------------------------------------------------------=

Factual = w × Fsample/(2π)
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The phase difference between output and input is

Eqn. 25

Group delay is the delay time vs. frequency, which can be computed based on normalized frequency or 
actual frequency Factual.

Eqn. 26

The impulse response is the response to an impulse input. The filter can be treated as a linear system. Input 
an impulse to the system, and the output sequence will be the impulse response.

Input data sequence   to

Eqn. 27

Assume that history y(–1), y(–2), x(–1), and x(–2) all equal zero. We can compute the output sequence 
y(n).

The step response is the response for a step input. The filter can be treated as a linear system. Input a step 
sequence to the system, and the output sequence will be the step response.

Input data sequence x(n)={1, 1,1,1,1,1,1,1,1,1……} to Equation 27.

Assuming that input and output history y(–1), y(–2), x(–1), and x(–2) are all equal to zero, we can compute 
the output sequence y(n).

The zero/pole figure is derived from H(z).

Eqn. 28

In the unit circle coordinator system, r1 and r2 are zero points, and p1 and p2 are pole points.

The IIR filter can be expressed in several forms. The normal format of an IIR filter is shown in 
Equation 29.

Eqn. 29

It can also be expressed in another form using a two-order module for any IIR digital filter, as in 
Equation 30.

Phase(w) = arctan{imag[H(jw)]/real[H(jw)]}

Group delay time = Phase(w)/w = Phase(w) / (2πFactual / Fsample)

x n( )
1 n 0=,
0 n 0>,⎩

⎨
⎧

=

y(n) = a1 × y(n–1) + a2 × y(n–2) + b0 × x(n) + b1 × x(n–1) + b2 × x(n–2)

H z( )
b0 b1z 1– b2z 2–++

1 a1z 1– a2z 2–––
--------------------------------------------

b0z2 b1z1 b2++

z2 a1z1 a2––
---------------------------------------

z r1–( ) z r2–( )
z p1–( ) z p2–( )

------------------------------------===

H z( ) brz
r–

r 0=

M

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

1 akz k–

k 1=

N

∑–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

⁄=
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Eqn. 30

Any IIR transfer function H(z) can be expressed as in the forms above. To use the IIR API function that 
Processor Expert provides, the user must denote H(z) in the format given here, if the user uses other tools 
to generate the IIR coefficients.

This application note picks only one item to analyze. Assume that

Eqn. 31

To change Equation 31 into zero-pole format, we can change the function to

Eqn. 32

In Equation 32, p1 and p2 are pole points, r1 and r2 are zero points. In a stable trans-function, the pole points 
p1 and p2 must be within a unit circle — that is, the absolute values of p1 and p2 must be less than 1. Also, 
p1 and p2 may be a pair of conjugate complex numbers or real numbers. If the absolute values of p1 and 
p2 are greater than 1, the trans-function is unstable or the output cannot converge to a value for a step input. 
So this application note discusses only the case in which the absolute values of p1 and p2 are less than 1.

The a1 and a2 restrictions for a stable system will be deduced as in Equation 33.

Eqn. 33

Therefore a1 and a2 can be defined as in Equation 34.

Eqn. 34

The value of a1 may be greater than 1, but must be less than 2; a2 must be less than 1.

Because devices in the DSP56800/E family are fixed-point processors, they are suitable for fixed-point 
computation. They cannot express a number greater than one using the fixed-point data type, so scale is 
required in case the IIR coefficients are greater than 1.

3.2.2 How to Implement the IIR Filter

For a two-order IIR filter

Eqn. 35

H z( )
b10 b11 z 1– b12 z 2–×+×+

1 a11 z 1– a12 z 2–×–×–
---------------------------------------------------------------

b20 b21 z 1– b22 z 2–×+×+

1 a21 z 1– a22 z 2–×–×–
---------------------------------------------------------------× …×=

H1 z( )
b10 b11 z 1– b12 z 2–×+×+

1 a11 z 1– a12 z 2–×–×–
---------------------------------------------------------------=

H1 z( )
b0 b1 z 1– b2 z 2–×+×+

1 a1 z 1– a2 z 2–×–×–
--------------------------------------------------------

z r1–( ) z r2–( )
z p1–( ) z p2–( )

-------------------------------------==

z2 a1 z a2–×– z p1–( ) z p2–( )=

a1 p1 p2  a2;+ p1– p2×= =

H z( )
b0 b1 z 1– b2 z 2–×+×+

1 a1 z 1– a2 z 2––×–×–
--------------------------------------------------------=
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assume that the input sequence is x(n). Then the output sequence is y(n), and its corresponding Z 
transformation is X(z) and Y(z).

Eqn. 36

We can use another format to implement the IIR filter:

Eqn. 37

We introduce a temporary variable W(z) and let

Eqn. 38

and

Eqn. 39

For each biquad calculation:

Eqn. 40

Eqn. 41

The C code is located in the directory:

\Code\PE_exampleDownloadFromPE\IIR_Lab|PE_Based|56858\dfr16IIRC_Fixed.c

3.3 Illustration of the Coefficients from QEDesign Lite
This application note adopts a low pass Butterworth filter using the QEDesign Lite software.

Use the procedure introduced in Section 3.1, “FIR Filter,” or Section 3.2, “IIR Filter Design.” Input your 
parameters, then click “OUTPUT” -> ”Create Filter Coefficients File.” A file will be generated. 

3.3.1 Example Coefficients in IIR Output File

This is the contents of the IIR filter output file. It lists the filter type, the filter parameters that the user has 
input, and the IIR coefficients generated by QEDesign Lite.
FILTER COEFFICIENT FILE
IIR DESIGN
FILTER TYPE                 LOW PASS

y n( ) a1 y n 1–( ) a2 y n 2–( ) b0 x n( ) b1 x n 1–( ) b2 x n 2–( )×+×+×+×+×=

Y z( ) H z( ) X z( )×
b0 b1 z 1– b2 z 2–×+×+

1 a1 z 1– a2 z 2––×–×–
-------------------------------------------------------- X z( )×= =

W z( ) X z( )

1 a1 z 1– a2 z 2–×–×–
-----------------------------------------------------=

Y z( ) b0 b1z 1– b2z 2–+ +( ) W z( )×=

w n[ ] x n[ ] a1w n 1–[ ] a2w n 2–[ ]+ + 2.0 x n[ ]
2.0

----------
a1
2.0
------- w n 1–[ ]

a2
2.0
------- w n 2–[ ]×+×+⎝ ⎠

⎛ ⎞×= =

y n[ ] 2.0
b0
2.0
------- w n[ ]

b1
2.0
------- w n 1–[ ]

b1
2.0
------- w n 2–[ ]×+×+×⎝ ⎠

⎛ ⎞×=
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ANALOG FILTER TYPE          BUTTERWORTH
PASSBAND RIPPLE IN -dB        -.3000E+01
STOPBAND RIPPLE IN -dB        -.1000E+02
PASSBAND CUTOFF FREQUENCY   0.500000E+02 HERTZ
STOPBAND CUTOFF FREQUENCY   0.100000E+03 HERTZ
SAMPLING FREQUENCY          0.100000E+04 HERTZ
FILTER DESIGN METHOD: BILINEAR TRANSFORMATION
FILTER ORDER            2    2h
NUMBER OF SECTIONS      1    1h
NO. OF QUANTIZED BITS  16   10h
QUANTIZATION TYPE - FRACTIONAL FIXED POINT
COEFFICIENTS SCALED FOR CASCADE FORM II
         -3 FFFFFFFD     /* shift count for overall gain */
      21096     5268     /* overall gain                 */
          1        1     /* shift count for section  1 values */
       4097     1001     /* section  1 coefficient B0 */
       8194     2002     /* section  1 coefficient B1 */
       4097     1001     /* section  1 coefficient B2 */
      25567     63DF     /* section  1 coefficient -A1*/
     -10502 FFFFD6FA     /* section  1 coefficient -A2*/
  0.1250305175781250E+00 3FC0010000000000 0.25006104E+00 /* section  1 B0 */
  0.2500610351562500E+00 3FD0010000000000 0.50012207E+00 /* section  1 B1 */
  0.1250305175781250E+00 3FC0010000000000 0.25006104E+00 /* section  1 B2 */
  0.7802429199218750E+00 BFE8F7C000000000 0.15604858E+01 /* section  1 -A1*/
  -.3204956054687500E+00 3FD4830000000000 -.64099121E+00 /* section  1 -A2*/

3.3.2 Explanation of the IIR Coefficients

This section details the IIR coefficients and the overall gain of the IIR filter.

The gain of the filter varies with the frequency. The overall gain is the gain of the filter in all frequency 
ranges, so the maximum gain of the filter can be one if we divide the actual filter gain by the overall gain 
of the filter.

According to the overall gain parameter:
-3 FFFFFFFD     /* shift count for overall gain */
21096     5268     /* overall gain */ 

The overall gain of the IIR filter is 1/(21096×2–3/32768).

For the IIR coefficient:
          1        1     /* shift count for section  1 values */
       4097     1001     /* section  1 coefficient B0 */
       8194     2002     /* section  1 coefficient B1 */
       4097     1001     /* section  1 coefficient B2 */
      25567     63DF     /* section  1 coefficient -A1*/
     -10502 FFFFD6FA     /* section  1 coefficient -A2*/
  0.1250305175781250E+00 3FC0010000000000 0.25006104E+00 /* section  1 B0 */
  0.2500610351562500E+00 3FD0010000000000 0.50012207E+00 /* section  1 B1 */
  0.1250305175781250E+00 3FC0010000000000 0.25006104E+00 /* section  1 B2 */
  0.7802429199218750E+00 BFE8F7C000000000 0.15604858E+01 /* section  1 -A1*/
  -.3204956054687500E+00 3FD4830000000000 -.64099121E+00 /* section  1 -A2*/

For the shift count of the IIR coefficient parameters:
1        1     /* shift count for section  1 values */
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In the filter coefficient file, the IIR coefficients are scaled down by a factor of 2ShiftCount. In this case, the 
IIR coefficients are scaled down by a factor of two.

The IIR coefficients are these values:

B0 = 4097 × 21 = 8194 or 8194/32768=0.25

B1 = 8194 × 21 = 16388 or 16388/32768=0.5

B2 = 4097 × 21 = 8194 or 8184/32768=0.25

A1 = 25567 × 21 = 51134 or 51134/32768=1.56
(this cannot be expressed as a fixed-point value because it is greater than one)

A2 = –10502 × 21 = –21004 or –21004/32768 = –0.640991

3.3.3 Transfer Function of the IIR Filter

3.3.3.1 IIR Transfer Function

The transfer function is

Eqn. 42

3.3.3.2 IIR Transfer Function Gain

For a transfer function, the gain changes with frequency. But for the above low-pass Butterworth filter, the 
overall gain parameter of the filter can be taken at the DC component, because the amplitude versus 
frequency curve of a Butterworth filter decreases monotonically.

The normalized frequency of the DC component w=0, so z=exp(jw)=1. Therefore we can compute the gain 
of the filter with z=1.

The gain of the filter at the DC component is the same as in Equation 42, which computes as
(0.250061 + 0.500122×1+0.250061×1)/(1–1.560486+0.640991)=1.00024/0.08051
=1/0.080490=12.424

For a step input function, if the value is x, the output value of the filter will converge to 12.424x after the 
interim process is finished.

The user hopes that the gain of the filter is 1 — thus, QEDesign Lite will give an overall gain and 
corresponding shift count specification, which can be used to scale down the filter output. In the above 
low-pass Butterworth filter, the overall gain is 21906, and the shift count for overall gain is –3. Hence, the 
scale is

21096× 2-3=21096/8=2637

If we express the scale as a fixed-point data type, the value is 2637/32767=0.08048, which exactly 
equals 1/12.424.

H z( )
b0 b1 z 1– b2 z 2–×+×+

1 a1 z 1– a2 z 2–×–×–
-------------------------------------------------------- 0.250061 0.500122 z 1– 0.250061 z 2–×+×+

1 1.560486 z 1– 0.640991 z 2–×+×–
-----------------------------------------------------------------------------------------------------------==
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For a filter whose gain is not 1, the user must pay attention to the saturation issue in real-time filtering by 
using a DSP chip:

• Scale down the input sequence using the scale value given above. If the user has scaled down the 
input sequence, it is unnecessary to scale down the filter output. It needs to be scaled down only 
once.

• Set the SAT bit in the DSP56F800 and DSP56800/E core. When saturation is enabled, the IIR 
function will return the maximum or minimum fractional values if overflow or underflow occurs 
during the calculation of each output element.

3.3.3.3 Pole Point Calculation

We can get the pole point from this equation:

So p1 = 0.78 +j0.18
and p2 = 0.78 –j0.18

3.3.3.4 Establishing Coefficient Array in PE

Firstly, QEDesign Lite designs the filter according to specifications the user defines, and gives a cascade 
filter of biquad coefficients as in Equation 43.

Eqn. 43

For the input vector of biquadratic coefficients, the coefficients can be organized in an array as shown 
below, where the subscript i designates the i-th biquad polynomial (0 ≤ i < n): const IirCoefs []=

{(a1,0)/2 (a2,0)/2 (b0,0)/2 (b1,0)/2 (b2,0)/2... (a1,i)/2 (a2,i)/2 (b0,i)/2 (b1,i)/2 (b2,i)/2...
(a1,n)/2 (a2,n)/2 (b0,n)/2 (b1,n)/2 (b2,n)/2……}

For example, using the coefficients generated in the filter coefficient file, you can declare a coefficient 
array.
Frac16 IirCoefs[] = {  0xD6FA, //{-a1/2 section 1}
  0x63DF, //{-a2/2 section 1}
  0x1001, //{+b0/2 section 1}
  0x2002, //{+b1/2 section 1}
  0x1001}; //{+b2/2 section 1}

Because there is only one biquad polynomial, IIR coefficients consist of only five items. If there are two 
biquad polynomials, the IIR coefficients will consist of ten items.

3.4 How to Call the IIR API Function
There are two methods to initialize the IIR structure. One is to use the DFR1_dfr16IIRInit() API function 
to initialize the IIR filter structure parameters and allocate memory statically. The other is to use the 

z2 1.560486 z 0.640991+×– 0=

H z( )
b10 b11 z 1– b12 z 2–×+×+

1 a11 z 1– a12 z 2–×–×–
---------------------------------------------------------------

b20 b21 z 1– b22 z 2–×+×+

1 a21 z 1– a22 z 2–×–×–
---------------------------------------------------------------×=
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dfr16IIRCreate() API function to initialize the IIR filter structure parameters and allocate memory 
dynamically.

3.4.1 IIR Filter Implementation Using Static Memory Allocation

This section explains how to call DFR1_dfr16IIRInit() and allocate memory statically.
1. Declare a history array to save temporary variables.

For an IIR filter, we must allocate memory to save the old values of an output sequence. For a 
two-order IIR filter, assume the output sequence is y[k]. We must save y[k–1] and y[k–2] in 
temporary history array variables. The size of the history array must be BIQUAD_NUMBER × 
FILT_STATES_PER_BIQ.

2. Declare an array to save IIR filter coefficients.
These constants are declared by the Processor Expert software in dfr16.h:
#define FILT_STATES_PER_BIQ 2 //the order of an IIR filter
#define FILT_COEF_PER_BIQ 5

This is the code for a two-order IIR filter.
#define BIQUAD_NUMBER  1 // the number of biquad polynomial
#define NUM_SAMPLES_IIR 100 /*Number of incoming samples */
#define HISTORY_BUFFER_SIZE BIQUAD_NUMBER  *FILT_STATES_PER_BIQ
#define IIR_COEF_LENGTH BIQUAD_NUMBER*FILT_COEF_PER_BIQ
Const Frac16 IirCoefs[] = {  0xD6FA, //{-a1/2 section 1}
  0x63DF, //{-a2/2 section 1}
  0x1001, //{+b0/2 section 1}
  0x2002, //{+b1/2 section 1}
  0x1001}; //{+b2/2 section 1}

Frac16 history[ HISTORY_BUFFER_SIZE * sizeof(Frac16)];
Frac16 iirCoefArray[IIR_COEF_LENGTH* sizeof(Frac16)];
/* IIR Structures */
dfr16_tIirStruct Iir;
dfr16_tIirStruct *pIir = &Iir;
Frac16* pIirCoefs;
Frac16 x[NUM_SAMPLES_IIR]; //input data sequence before filter
Frac16 zIIR[NUM_SAMPLES_IIR]; //output data sequence after filter
Result res; //Result data type is alias of int

main()
{
 /*** Processor Expert internal initialization. DON'T REMOVE THIS CODE!!! ***/
  PE_low_level_init();
  /*** End of Processor Expert internal initialization.                    ***/

pIir -> pC=( Frac16 *)&iirCoefArray[0];
pIirCoefs =( Frac16 *)&IirCoefs[0];
pIir -> pHistory =( Frac16 *)&history[0];
/* Initialize the IIR filter */
DFR1_dfr16IIRInit(pIir,pIirCoefs,sizeof(IirCoefs)/(sizeof(Frac16)*FILT_COEF_PER_BIQ));
/*Run the IIR filter (C version) */
res = DFR1_dfr16IIR(pIir, x, zIIR, NUM_SAMPLES_IIR);
}
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3.4.2 IIR Filter Implementation Using Dynamic Memory Allocation

This section explains how to call DFR1_ dfr16IIRCreate() and allocate memory dynamically.

The user must declare a pointer of dfr16_tIirStruct structure type so that the dfr16IIRCreate(Frac16 *pC, 
UInt16 nbiq) function can initialize the pointer. The PC pointer must point to the array of IIR coefficients; 
the nbiq parameter is the number of biquad polynomials; the return value of the API function is the 
dfr16_tIirStruct type pointer.

This application note uses the code given in this section to implement an IIR filter.

The code generates a step input response of the IIR filter, so the input sequence is a constant sequence. The 
pZ array is used to save the result of the filter.

The constant coeff_IIR_83_gain is the reciprocal of the filter’s overall gain and is expressed by the Frac16 
data type. (Because the filter overall gain is greater than 1, the reciprocal of the filter overall gain can be 
expressed by a Frac16 data type.) We scale down the input sequence by the coeff_IIR_83_gain so that the 
filter output cannot saturate.

Frac16 IirCoefs[] is the coefficient array of the IIR filter.

The pointer dfr16_tIirStruct *pIIR is a struct pointer without initialization, which must be initialized by 
the dfr16IIRCreate() function.

Frac16 *pC is a pointer, and points to the IIR coefficient array.

UInt16 n is the input data sequence length and nbiq is the number of biquad polynomials.

If memory is allocated dynamically, the user must modify the link command file. In the next section, we 
will explain how to change the link command file.
#define STEP_VALUE0 0.3

Frac16 stepWave[]=
{

FRAC16(STEP_VALUE0),
FRAC16(STEP_VALUE0),
FRAC16(STEP_VALUE0),

…………
}

Frac16 pZ[100];

const Frac16 coeff_IIR_83_gain = 2637; //{overall gain of the filter = 21096/8}

Frac16 IirCoefs[] = {  0xD6FA, //{-a1/2 section 1}
  0x63DF, //{-a2/2 section 1}
  0x1001, //{+b0/2 section 1}
  0x2002, //{+b1/2 section 1}
  0x1001}; //{+b2/2 section 1}
dfr16_tIirStruct *pIIR;
Frac16 *pC;
Result res;
Frac16 *pX;
UInt16 n, nbiq;
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extern Result dfr16IIRC_Fixed(dfr16_tIirStruct *pIIR, Frac16 *pX, Frac16 *pZ, UInt16 n);

void main(void)
{

unsigned int i;
  /*** Processor Expert internal initialization. DON'T REMOVE THIS CODE!!! ***/
  PE_low_level_init();
  /*** End of Processor Expert internal initialization.                    ***/

pC=&IirCoefs[0];
nbiq=1;
pX=&stepWave[0];
n=100;
for(i=0; i<n; i++)
{

pX[i] = mult(coeff_IIR_83_gain,pX[i]);
}
pIIR = dfr16IIRCreate (pC, nbiq);
if(pIIR==NULL) asm(debug)
res = dfr16IIRC_Fixed(pIIR, pX, pZ, n);
asm(nop);

asm(nop); //set break point here
dfr16IIRDestroy (pIIR);
return;
}

Both the “Result” data type and macro “FRAC16()” are defined in port.h in PE, which is listed here:
typedef int            Result;
#define FRAC16(x) ((Frac16)((x) < 1? ((x) >= -1 ? (x)*0x8000 : 0x8000) : 0x7FFF))

3.5 Modify the Link Command File for Dynamic Memory Allocation
The DSP56F805 linker command file here is generated by CodeWarrior for DSP56800/E version 8.1, then 
modified. The internal data RAM of the DSP56F805 device is from X:0x0000 to X:0x0800. The .x_Data 
section memory size is reduced from 0x7C0 to 0x4C0; the .xDynamic section is added by the user 
manually, and the data memory space from 0x0500 to 0x0800 is allocated for this section; the LENGTH 
of the section is 0x300 in MEMORY{}.

In Mem1.c file, we use the void MEM1_Init(void) function to initialize the dynamic memory. In this 
function, two structures, mem_sState and mem_sPartition, have been defined in advance. The variable 
InitialState with a mem_sState structure type is used to save the dynamic memory characteristic 
parameters. The variables defined in the link command file are used to initialize the variable InitialState. 
All variables defined in the linker command file are prefixed by F. For example, the FmemEXbit variable 
defined in the link command file is actually the memEXbit variable, which can be accessed in any function 
as a global variable. If the user uses the link command file given below, the variable InitialState with a 
mem_sState structure data type is initialized using this code in the void MEM1_Init(void) function.
InitialState.EXbit = memEXbit;
  InitialState.numExtPartitions = memNumEMpartitions;
  InitialState.numIntPartitions = memNumIMpartitions;
  InitialState.extPartitionList = (mem_sPartition*)&memEMpartitionAddr;
  InitialState.intPartitionList = (mem_sPartition*)&memIMpartitionAddr;
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After the above code is executed, the InitialState will be:
• InitialState.EXbit = 0
• InitialState.numExtPartitions = 0
• InitialState.numIntPartitions = 1
• InitialState.extPartitionList = 0
• InitialState.intPartitionList = 0x0da; //the pointer pointing to a mem_sPartition data structure that 

saves the internal dynamic memory address and data length

Therefore:
• InitialState.intPartitionList -> partitionAddr = 0x0500
• InitialState.intPartitionList -> partitionSize = 0x0300

Note that the variables defined in the link command file are saved in flash and copied to RAM by 
application code. Thus the dynamic memory characteristic parameters become nonvolatile and the DSP 
can retrieve the dynamic memory address and size in standalone running mode.
typedef struct
{
  UInt16                 EXbit;
  UInt16                 numExtPartitions;
  UInt16                 numIntPartitions;
  const mem_sPartition * intPartitionList;
  const mem_sPartition * extPartitionList;
} mem_sState
and 
typedef struct
{
  void *    partitionAddr;
  UInt16    partitionSize;
} mem_sPartition

mem_sState InitialState;

void MEM1_Init(void)
{
  mem_sState InitialState;
                                       /* These variables are defined in linker.cmd */
  extern UInt16 memEXbit;
  extern UInt16 memNumEMpartitions;
  extern UInt16 memNumIMpartitions;
  extern char * memIMpartitionAddr;
  extern char * memEMpartitionAddr;

  InitialState.EXbit = memEXbit;
  InitialState.numExtPartitions = memNumEMpartitions;
  InitialState.numIntPartitions = memNumIMpartitions;
  InitialState.extPartitionList = (mem_sPartition*)&memEMpartitionAddr;
  InitialState.intPartitionList = (mem_sPartition*)&memIMpartitionAddr;
  memInitialize(&InitialState);
}

In this application, the link command file is modified as shown below. The lines that are bold/italic must 
be added by the programmer. 
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MEMORY {
 # I/O registers area for on-chip peripherals
 .x_Peripherals (RW)   : ORIGIN = 0x0C00, LENGTH = 0
        .x_CoreRegs    (RW)   : ORIGIN = 0xFF80, LENGTH = 0
        # List of all sections specified in the "Build options" tab
        #Internal vector boot area.
        .p_Interruptsboot  (RWX) : ORIGIN = 0x00008000, LENGTH = 0x0004
        .p_Interrupts  (RWX) : ORIGIN = 0x00000000, LENGTH = 0x00000080
        .p_Code  (RWX) : ORIGIN = 0x00000080, LENGTH = 0x00007D80
        .x_Data  (RW) : ORIGIN = 0x00000040, LENGTH = 0x000004C0
        .xDynamic(RW) :ORIGIN = 0x00000500, LENGTH = 0x00000300

        .x_CWRegisters  (RW) : ORIGIN = 0x00000030, LENGTH = 0x00000010

        #Other memory segments
        .x_internal_ROM  (RW)  : ORIGIN = 0x00001000, LENGTH = 0x1000
        .p_internal_RAM  (RWX) : ORIGIN = 0x00007E00, LENGTH = 0x0200
}
KEEP_SECTION { interrupt_vectorsboot.text }
KEEP_SECTION { interrupt_vectors.text }
SECTIONS {
        .interrupt_vectorsboot :
        {
          F_vector_addr = .;
          # interrupt vectors boot area
          * (interrupt_vectorsboot.text)
        } > .p_Interruptsboot

        .interrupt_vectors :
        {
          # interrupt vectors
          * (interrupt_vectors.text)
        } > .p_Interrupts
        .Data_xROM :
        {
              * (.rodata)
              # save address for ROM data we will copy to RAM
              __xROM_data_start =.;
        } > .x_internal_ROM
        .ApplicationCode 
        {
              F_Pcode_start_addr = .;
              # .text sections
              OBJECT (F_EntryPoint, Cpu.c) # The function _EntryPoint have to be placed at the 
beginning of the code
                                       # section for proper functionality of the serial bootloader.
              * (.text)
              * (rtlib.text)
              * (startup.text)
              * (fp_engine.text)
              * (user.text)

              F_Pbss_start_addr = .;
              _P_BSS_ADDR = .;
              F_Pbss_length = . - _P_BSS_ADDR;
              F_Pcode_end_addr = .;
        } > .p_Code
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        .ApplicationData :  AT(__xROM_data_start)
        {
              __xRAM_data_start =.;
              * (fp_state.data)
              * (rtlib.data)
              * (.data.char)        # used if "Emit Separate Char Data Section" enabled
              * (.data)
              _EX_BIT = 0;
              # Internal Memory Partitions (for mem.h partitions)
              _NUM_IM_PARTITIONS = 1;
              # External Memory Partition (for mem.h partitions)
              _NUM_EM_PARTITIONS = 0;
              FmemEXbit = .;
              WRITEH(_EX_BIT);
              FmemNumIMpartitions = .;
              WRITEH(_NUM_IM_PARTITIONS);
              FmemNumEMpartitions = .;
              WRITEH(_NUM_EM_PARTITIONS);
              FmemIMpartitionAddr = .;
              WRITEH(ADDR(.xDynamic));
              FmemIMpartitionSize = .;
              WRITEH(SIZEOF(.xDynamic) / 2);
              FmemEMpartitionAddr = 0;
              WRITEH(0);
              FmemEMpartitionSize = .;
              WRITEH(0);
              __xRAM_data_end =.;
              __data_size = __xRAM_data_end - __xRAM_data_start;
              # .bss sections
              * (rtlib.bss.lo)
              * (rtlib.bss)
              . = ALIGN(4);
              F_Xbss_start_addr = .;
              _START_BSS = .;
              * (.bss.char)         # used if "Emit Separate Char Data Section" enabled
              * (.bss)
              _END_BSS   = .;
              F_Xbss_length = _END_BSS - _START_BSS;
              /* Setup the HEAP address */
              . = ALIGN(4);
              _HEAP_ADDR = .;
              _HEAP_SIZE = 0x00000100;
              _HEAP_END = _HEAP_ADDR + _HEAP_SIZE;
              . = _HEAP_END;
              /* SETUP the STACK address */
              _min_stack_size = 0x00000200;
              _stack_addr = _HEAP_END;
              _stack_end  = _stack_addr + _min_stack_size;
              . = _stack_end;
              /* EXPORT HEAP and STACK runtime to libraries */
              F_heap_addr   = _HEAP_ADDR;
              F_heap_end    = _HEAP_END;
              F_Lstack_addr = _HEAP_END;
              F_StackAddr = _HEAP_END;
              F_StackEndAddr = _stack_end - 1;
              # runtime code __init_sections uses these globals:
              F_Ldata_size     = __data_size;
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              F_Ldata_RAM_addr = __xRAM_data_start;
              F_Ldata_ROM_addr = __xROM_data_start;
              F_xROM_to_xRAM   = 0x0001;
              F_pROM_to_xRAM   = 0x0000;
              F_start_bss   = _START_BSS;
              F_end_bss     = _END_BSS;
              __DATA_END=.;
        } > .x_Data

        # peripheral registers
        FCoreIO = ADDR(.x_CoreRegs);   /* Core registers */
}
} 

3.6 How to Call the FIR API Function
After getting FIR coefficients from QEDesign Lite, users can call the FIR API function to implement the 
filter provided by Processor Expert.

According to the convolution formula, to get one set of output data y(n), we need the h(n) series and the 
history of input x(n).

To compute y(n), Processor Expert defines the structure dfr16_tFirStruct as:
typedef struct dfr16_sFirStruct {
 Frac16   * pC;                 /* Coefficients for the filter */
 Frac16   * pHistory;           /* Memory for the filter history buffer */
 UWord16    Private[6];
} dfr16_tFirStruct

In the above structure, the PC pointer points to the FIR coefficient array. The pHistory pointer points to a 
temporary array to save the history of the input data sequence. The private array is private data.

3.6.1 FIR Filter Implementation Using Static Memory Allocation

We must declare a variable with the dfr16_tFirStruct data type before calling the API function to 
implement the FIR filter. There are two methods to initialize and allocate memory for the dfr16_tFirStruct 
structure type variable. One is to statically allocate memory for the variable with the dfr16_tFirStruct 

y n( ) h k( ) x n k–( )×

k 0=

N 1–

∑=

h(0), h(1), h(2), h(3),………….h(N–1)

x(m), x(m–1), x(m–2), x(m–3),………….x(m–N+1)

y(n) = h(0) × x(n) + h(1) × x(n–1) + h(2) × x(n–2) + h(3) × x(n–3) + ... + h(N–1) × x(n–N+1)
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structure data type; the other is to use it to dynamically allocate memory for the variable. From a functional 
perspective, they operate in the same way to allocate memory for a variable with a structure data type.

Here is how the user will statically allocate memory for the dfr16_tFirStruct structure type.
1. Define a variable with the dfr16_tFirStruct type as dfr16_tFirStruct fir.
2. Statically allocate two arrays to save the coefficients and the input series x(n) history.

— Frac16 firCoefArray[FIR_COEF_LENGTH * sizeof(Frac16)]
— Frac16 history[FIR_COEF_LENGTH * sizeof(Frac16)] /*unaligned */

3. Define a Frac16 type pointer, Frac16 *pFirCoefs, so that the start address of the coefficient array 
can be given to the pointer variable.

4. Call the DFR1_dfr16FIRInit() API function to initialize the variable with the dfr16_tFirStruct 
structure data type.

5. Call DFR1_dfr16FIR() to implement the digital filter.

The user can filter either one sample or a block of samples at a time.

In real-time filtering, this is the general scenario: the system consists of an ADC, a DSP, and a DAC. After 
the ADC samples new data which can generate an interrupt, the DSP can enter the ADC interrupt service 
routine (ISR), then read the sample and implement the digital filter. Then it can output the digital filter 
output to the DAC.

This is an FIR example for either block data filtering or single-sample data filtering, developed under 
Processor Expert and CodeWarrior for DSP56800/E version 7.3.

In the example, the on-chip ADC is used to sample an external analog signal. In the ISR of the end-of-scan 
routine of the on-chip ADC of DSP56F80x, a boolean data type flag, variable adc_flag, is set to indicate 
that a new sample is available. The DSP polls the flag in the main function. When it detects that the flag 
value represents “true,” the DSP will clear the flag and implement the FIR digital filter.
#define FIR_COEF_LENGTH 10 /*Number of filter taps */
#define NUM_SAMPLES 150 /*Number of incoming samples */
#define CEF(x) x*32767
//#define BLOCK 
const int FirCoefs[]=
{
-1953,-1435,1006,4646,7904,9207,7904,4646,1006,-1435,-1953   
};

dfr16_tFirStruct fir;
Frac16 *pFirCoefs;
Frac16 firCoefArray[FIR_COEF_LENGTH * sizeof(Frac16)];
Frac16 history[FIR_COEF_LENGTH * sizeof(Frac16)]; /*unaligned */
//#ifndef BLOCK
bool adc_flag=FALSE; 
Frac16 sample0;
Frac16 filter_result0;
//#endif

void main(void)
{

  /*** Processor Expert internal initialization. DON'T REMOVE THIS CODE!!! ***/
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  PE_low_level_init();
  /*** End of Processor Expert internal initialization.                    ***/

AD1_EnableIntTrigger();

  /* Write your code here */
    /* Initialize FIR filter */

fir.pC =(Frac16 *)&firCoefArray[0];
fir.pHistory =(Frac16 *)&history[0];
pFirCoefs =(Frac16 *)&FirCoefs[0];
DFR1_dfr16FIRInit((dfr16_tFirStruct*)&fir,pFirCoefs,FIR_COEF_LENGTH); 

//sizeof(FirCoefs)/sizeof(Frac16));
// dfr16FIRHistory(pFir,&x[0]); //fill the pipeline,
// DFR1_dfr16FIR((dfr16_tFirStruct*)&fir, &x[0], &z1[0], NUM_SAMPLES);

asm(nop); //set break here
asm(nop);

  while(1)
  {
  #ifndef BLOCK
  if(adc_flag)
  {
  DFR1_dfr16FIR((dfr16_tFirStruct*)&fir, &sample0, &filter_result0, 
1);
  adc_flag=FALSE;
  }
  #endif
  }

}

3.6.2 FIR Filter Implementation Using Dynamic Memory Allocation

In dynamic memory allocation, the variable with the struct dfr16_tFirStruct data type is allocated memory 
space during run-time rather than before the code is executed.

The firCreat() API function dynamically initializes and allocates memory to the variable with the 
dfr16_tFirStruct data structure, which is used by FIR to preserve the filter’s state values. To optimize the 
performance of the FIR, firCreate() allocates the dfr16_tFirStruct.pC buffer to hold the FIR filter 
coefficients.

Next, firCreate() allocates the buffer dfr16_tFirStruct.pHistory to save the past history of input x(n) data 
elements required by the FIR filter computation. Its length is the tap number of the FIR filter–1. The 
firCreate() function tries to allocate this history buffer aligned on a kbit boundary, where k = log102(N) 
and N is the FIR tap number, so that FIR can achieve maximum efficiency using modulo addressing of 
pFIR’s history buffer.

After the dfr16_tFirStruct structure and its component buffers have been allocated, the user can call the 
FIR filter, dfr16FIRC().

The dfr16_tFirStruct is defined in dfr16.h as:
typedef struct dfr16_sFirStruct {
 Frac16   * pC;                 /* Coefficients for the filter */
 Frac16   * pHistory;           /* Memory for the filter history buffer */
 UWord16    Private[6];
} dfr16_tFirStruct
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Use this procedure to implement the FIR filter using dynamic memory allocation:
1. Design the FIR filter using QEDesign Lite and get the FIR coefficients according to the steps 

described in Section 3.1, “FIR Filter.”
2. Create a project and add the beans DSP_Func_DFR by selecting SW -> DSP Function&Math 

Library -> Digital Signal Processing Library -> DSP_Func_DFR in the Processor Expert menu.
3. Add the DSP_MEM bean by selecting SW -> DSP Function&Math Library -> Memory Manager 

-> DSP_MEM.
4. Select Processor Expert -> Generate code… All the files will be generated automatically.
5. In the main function, define a constant array as a global array to save the FIR coefficients — for 

example, const int FirCoefs[]={ –1953,–1435,…….}. The array will be saved in flash because of 
the prefix “constant,” and a copy is created in internal or external RAM.

6. Define a dfr16_tFirStruct type pointer, such as dfr16_tFirStruct* pFir, so that the user can initialize 
the structure using the dfr16FIRCreate() API function.

7. Define a Frac16 type pointer to point to the FIR coefficient array, such as Frac16 
*pFirCoefs=(Frac16 *)&FirCoefs[0].

8. Initialize the dfr16_tFirStruct type pointer using the dfr16FIRCreate() API function in main, such 
as pFir = dfr16FIRCreate (pFirCoefs, FIR_COEF_LENGTH).

9. To perform block filtering, use this function:
dfr16FIRC((dfr16_tFirStruct*)pFir, x, z11,NUM_SAMPLES) — x and z11 are arrays with Frac16 
data type. To use a single-sample data filter, use 
dfr16FIRC((dfr16_tFirStruct*)pFir,&sig_x,&sig_z11,1). Here, sig_x and sig_z11 are Frac16 data 
type single variables.

10. Modify the linker command file to allocate the memory for the above structure. The dynamic 
memory start address and size must be saved into flash for the DSP to allocate memory in 
standalone mode.

#define FIR_COEF_LENGTH 11 /*Number of filter taps */
#define NUM_SAMPLES 150 /*Number of incoming samples */
#define CEF(x) x*32767
#define BLOCK

Frac16 x[NUM_SAMPLES]=
{

CEF(0.5),
CEF(0.5),
CEF(0.5),
CEF(0.5),
CEF(0.5),
CEF(0.5),
CEF(0.5),
CEF(0.5),
CEF(0.5),
CEF(0.5),
CEF(0.5),

………….
}

Frac16 z11[NUM_SAMPLES];
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const int FirCoefs[]=
-1953,-1435,1006,4646,7904,9207,7904,4646,1006,-1435,-1953   
};

dfr16_tFirStruct* pFir;
Frac16 *pFirCoefs=(Frac16 *)&FirCoefs[0];
//Frac16 firCoefArray[FIR_COEF_LENGTH * sizeof(Frac16)];
//Frac16 history[FIR_COEF_LENGTH * sizeof(Frac16)]; /*unaligned */
//#ifndef BLOCK
extern void  dfr16FIRC (dfr16_tFirStruct *pFIR, Frac16 *pX, Frac16 *pZ, UInt16 n);
bool adc_flag=FALSE; 
Frac16 sample0;
Frac16 filter_result0;
void main(void)
{
  /*** Processor Expert internal initialization. DON'T REMOVE THIS CODE!!! ***/
  PE_low_level_init();
  /*** End of Processor Expert internal initialization.                    ***/

  /* Write your code here */
pFir = dfr16FIRCreate (pFirCoefs, FIR_COEF_LENGTH);
if(pFir==NULL) asm(debug);
dfr16FIRC((dfr16_tFirStruct*)pFir,x,z11,NUM_SAMPLES);
asm(nop);
asm(nop);

  for(;;) {}
}

4 FFT

4.1 FFT Implementation
This section explains how to implement a fast Fourier transformation (FFT) under the Processor Expert 
platform in the CodeWarrior tool.

An FFT can transform signals from the time domain to the frequency domain. Assume that the ADC 
samples an external analog signal at a fixed frequency Fs, and gets N points samples x(n).

Eqn. 44

The value of z(k) is the frequency component of discrete samples x[i]. In the frequency domain, z(k) 
corresponds to the actual frequency Fs × k/N and the frequency resolution is Fs/N. For example, suppose 
that Fs is 1000 Hz and the number of sample points N is 1024. Then the frequency resolution is 
Fs/N = 1000 Hz/1024 = 0.9765 Hz, and z(k) corresponds to the frequency 1000k/1024. For example, z(3) 
corresponds to the frequency 2.93 Hz. Because z(k) and z(N–k) are conjugate complex numbers, the FFT 
API function only gives z(k). The value of k ranges from 0 to N/2.

z k( ) scale x i[ ] 2π k
N
----×⎝ ⎠

⎛ ⎞ j 2πi k
N
----×⎝ ⎠

⎛ ⎞sin–cos⎝ ⎠
⎛ ⎞

i 0=

N 1–

∑×  0 k N
2
----≤ ≤;=
Digital Signal Processing and ADC/DAC for DSP56800/E, Rev.0

Freescale Semiconductor 35



FFT
This is the structure which is used to save the FFT output result:
typedef struct {
Frac16 z0; /* z[0] (real 16-bit fractional) */
Frac16 zNDiv2; /* z[n/2] (real 16-bit fractional) */
CFrac16 cz[1]; /* z[1] .. z[n/2 - 1] (complex 16-bit fractional)*/
} dfr16_sInplaceCRFFT;

NOTE
The remaining (N/2 – 2) locations for the cz[] buffer must be allocated by 
the user.

According to Equation 44, when we compute the DC component, k is equal to zero. In this case, 
cos(2πi×0/N)=1 and sin(2πi×0/N)=0.

Because the imaginary part of the complex z(0) is zero, z(0) is a real number.

Let’s compute the last item of z(k), z(N/2). In this case,

k = N/2

cos(2πi×(N/2)/N) = cos(πi) = –1 when i is an odd number

cos(2πi×(N/2)/N) = cos(πi) = +1 when i is an even number

sin(2πi×(N/2)/N) = 0 when i is any integer

so

Therefore z(0) and z(N/2) are real numbers instead of complex numbers, because their imaginary parts are 
zero.

To save memory, we declare z[0] as Frac16 z0 and z[N/2] as Frac16 zNDiv2. We declare other FFT results 
from z[1] to z[N/2–1] as complex CFrac16 cz[].

This is an example of computing FFT for 16 points:
#define NUMBER_SAMPLES 16
Frac16 pX_input[NUMBER_SAMPLES] = {
0x52ef,0x6d71,0x3a3e,0x4158,0x2a29,0x6bef,0x5133,0x54c0,\
0x783e,0x7bcb,0x1f49,0x22d5,0x4654,0x49e0,0x6d5e,0x70eb};

//CFrac16 Actual_op_16[NUMBER_SAMPLES]={20938, -1874,209, -230, 3136, 2138, -1084, 587, 569, 
-1875,\
//-1358, 1461, -234, -1095, -156, -1159};

z 0[ ] scale x i[ ]

i 0=

N 1–

∑×=

z N
2
---- scale x i[ ] πi( )cos×

i 0=

N 1–

∑×=
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Frac16 pX[NUMBER_SAMPLES];
Frac16 pZZ[NUMBER_SAMPLES];

void main(void)
{
    Int16 res, flag = 1;  /* 1 = Pass, 0 = Fail */
        UInt16 n=NUMBER_SAMPLES, options = FFT_SCALE_RESULTS_BY_N;
        Int16 i, j;
//        const CFrac16 *Actual_op;
        dfr16_sInplaceCRFFT *pZ;
        dfr16_tRFFTStruct *pRFFT;

  /*** Processor Expert internal initialization. DON'T REMOVE THIS CODE!!! ***/
  PE_low_level_init();
  /*** End of Processor Expert internal initialization.                    ***/

  /* Write your code here */

    pZ=(dfr16_sInplaceCRFFT*)pZZ;
            
         
                          for (i=0; i < n; i++)
                          {
                            pX[i] = pX_input[i];
                          }

                          
                          /* Call FFT Create function */
                          pRFFT = DFR1_dfr16RFFTCreate(NUMBER_SAMPLES, options);
                          if (pRFFT == NULL)
                          {
                          printf("pRFFT is NULL,memory allocation fail\n");
   asm(debug);
                          }
                          else
                          {
                          printf("dynamic memory allocation success\n");
         asm(nop);
                          }
                          
                res = DFR1_dfr16RFFT(pRFFT, &pX[0], pZ);
                asm(nop);
                asm(nop);
}

After running the code, the result of the FFT pZ={20938, –1874, 209, –230, 3136, 2138, –1084, 587, 569, 
–1875, –1358, 1461, –234, –1095, –156, –1159}.

Because the DSP56800/E is a fixed processor, we suggest selecting the option variable as 
FFT_SCALE_RESULTS_BY_N. Thus, the FFT result will be divided by the length of input samples N; 
the FFT result will not be greater than 1; and it can be represented by the Frac16 data type.

To compare the FFT result computed by DSP with the result by the general FFT tools such as matlab, users 
must multiply the FFT result by N.
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4.2 FFT Results
The DSP56800/E is a fixed point processor, so it can only recognize decimal fraction numbers. Users can 
define a macro as shown below to transfer between the decimal fraction format and the Frac16 data format. 
Table 1 is the Frac16 data type format saved in memory.
#define CFF(x) (Frac16)(x * 32767.0)

For example, if Frac16 var = CEF(–0.25), then 0xE000 will be saved in memory for the variable var. In 
other words, var is expressed in two’s complement representation.

For the input sample array in the time domain:

Frac16 pX_input[NUMBER_SAMPLES] = {0x52EF, 0x6D71, 0x3A3E, 0x4158, 0x2A29, 0x6BEF, 
0x5133, 0x54C0, 0x783E, 0x7BCB, 0x1F49, 0x22D5, 0x4654, 0x49E0, 0x6D5E, 0x70EB}

the input array can be converted into decimal fraction format. For example, the first element is 
0x52EF/32768= 0.648.

So the pX_input array can be expressed as:

pX_input[NUMBER_SAMPLES]= {0.648, 0.855, 0.455, 0.510, 0.329, 0.843, 0.634, 0.662, 0.939, 0.967, 
0.244, 0.272, 0.549, 0.577, 0.854, 0.882}.

The DC component in the frequency domain will be the sum of all the elements in the input array, which 
is 10.223. If the sum is divided by the input sample number 16, we get the value of 0.6389 in decimal 
fraction format. If you represent the value in the Frac16 data type, the value is 20938 or 0x51CA.

Table 1. Frac16 Data Type Representation

Hexadecimal 
Representation

Integer Fraction

Binary Decimal Binary Decimal

0x7FFF 0111 1111 1111 1111. 32767 0.111 1111 1111 1111 0.9997

0x7000 0111 0000 0000 0000. 28672 0.111 0000 0000 0000 0.875

0x4000 0100 0000 0000 0000. 16384 0.100 0000 0000 0000 0.5

0x2000 0010 0000 0000 0000. 8192 0.010 0000 0000 0000 0.25

0x1000 0001 0000 0000 0000. 4096 0.001 0000 0000 0000 0.125

0x0000 0000 0000 0000 0000. 0 0.000 0000 0000 0000 0.0

0xC000 1100 0000 0000 0000. –16384 1.100 0000 0000 0000 –0.5

0xE000 1110 0000 0000 0000. –8192 1.110 0000 0000 0000 –0.25

0xF000 1111 0000 0000 0000. –4096 1.111 0000 0000 0000 –0.125

0x9000 1001 0000 0000 0000. –28672 1.001 0000 0000 0000 –0.875

0x8000 1000 0000 0000 0000. –32768 1.000 0000 0000 0000 –1.0
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For the FFT result array:

pZ={20938, –1874, 209, –230, 3136, 2138, –1084, 587, 569, –1875, –1358, 1461, –234, –1095, –156, 
–1159}

the fundamental component in the frequency domain is (209, –230), and it is (209/32768, –230/32768) = 
(0.00637,0.00702) as represented in the decimal fraction. Taking into consideration the scaling by N (here 
16), the actual value is (0.1019,0.1123).

4.3 General Code to Compute DFT for Comparison
This is the code used to compute the DFT. The code can be compiled and run on a PC.
//
//this source code is aimed at result comparison between DSP and PC
//calling Processor Expert API function, the result will be

#define NM 16
#define PI 3.1416

typedef struct
{

double real;
double image;

}complex;
double test;
float input[NM] = 
{0.648,0.855,0.455,0.510,0.329,0.843,0.634,0.662,0.939,0.967,0.244,0.272,0.549,0.577,0.854,0.
882}; 
complex output[NM];

int main()
{

//do FFT
int k,n;
test=sin(PI/6);
for(k=0; k<NM; k++)
{

output[k].real=0;
output[k].image=0;
for(n=0; n<NM;n++)
{

output[k].real=input[n]*cos((float)2*PI*k*n/NM)+output[k].real;

output[k].image=-1.0*input[n]*sin((float)2*PI*k*n/NM)+output[k].image;
}
printf("real=%lf,image=%lf\n",output[k].real,output[k].image);

}

printf("finish!\n");
return 0;
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5 DAC

5.1 DAC of the MC56F802x Family
The MC56F8000 family has a 12-bit DAC module. Its conversion rate can reach up to 0.5 million samples 
per second or 500 kHz, and the output signal ranges from GND to VDDA. The DAC can work in automatic 
mode or normal mode.

Figure 10. DAC Diagram of MC56F803x or MC56F802x

In automatic mode, for each external trigger, the DAC will add to or subtract a constant value saved in the 
STEP register automatically without DSP intervention. So the DAC can only output a linear signal, such 
as triangle, sawtooth, or square wave waveforms. If the user wants to generate a nonlinear signal such as 
a sine wave signal, the DAC must be set as in normal mode and the DAC output must be updated with DSP 
core intervention.

The DAC trigger signals can be from a timer, a PIT, or a PWM reload synchronization signal, depending 
on the device — refer to the system integration module (SIM) chapter of the data sheet or reference manual 
for each device. Figure 11 shows the trigger source register for the MC56F8036.

The field IPS1_DSYNC1 is used to select the alternate input source signal to the DAC1 SYNC input.
• 000 = PIT0 (internal) — Use programmable interval timer 0 output as DAC SYNC input (default)

Base+$19 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Read 0 0 0 0 0 0 0 0 0
IPS1_DSYNC1

0
IPS1_DSYNC0

Write

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 11. DAC Trigger Source Register
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• 001 = PIT1 (internal) — Use programmable interval timer 1 output as DAC SYNC input
• 010 = PIT2 (internal) — Use programmable interval timer 2 output as DAC SYNC input
• 011 = PWM SYNC (internal) — Use PWM reload synchronization signal as DAC SYNC input
• 100 = TA0 (internal) — Use timer A0 output as DAC SYNC input
• 101 = TA1 (internal) — Use timer A1 output as DAC SYNC input
• 11x = Reserved

The example below demonstrates how to use the on-chip DAC of the MC56F8037 to output a sine signal. 
In the interrupt service routine of the PIT, the DSP core updates the DAC data register.

The code outputs a sine table synchronized by the PIT.
/* Including used modules for compiling procedure */
#include "Cpu.h"
#include "PIT3.h"
#include "DAC2.h"
/* Include shared modules, which are used for whole project */
#include "PE_Types.h"
#include "PE_Error.h"
#include "PE_Const.h"
#include "IO_Map.h"
#define SINE_TABLE_LENGTH 20
Unsigned int sine_table[SINE_TABLE_LENGTH]={0x4001,0x53c6,0x659a,0x73bd,0x7ccc,0x7fe3,
0x7cb4,0x738f,0x655a,0x537a,0x3fb0,0x2bed,0x1a22,0xc0e,0x313,0x12,0x357,0xc90,0x1ad5,0x2cbf
};
unsigned int temp;
void main(void)
{
  /* Write your local variable definition here */

  /*** Processor Expert internal initialization. DON'T REMOVE THIS CODE!!! ***/
  PE_low_level_init();
  /*** End of Processor Expert internal initialization.                    ***/
  setRegBit(DAC0_CTRL,FORMAT); //
  setReg(INTC_IPR5,0x3000);
  setRegBit(SIM_PCE1,PIT0); //enable PIT0 clock 
  setReg(SIM_PCE0,0x1000);
  setReg(SIM_IPS1,0x0000);

__EI0();
//set 

  /* Write your code here */

  for(;;) {}
}
Interrupt service routine of PIT:
/* END PIT_8037_PE */
/*
** ###################################################################
**
**     This file was created by UNIS Processor Expert 2.98 [03.79]
**     for the Freescale MC56800 series of microcontrollers.
**
** ###################################################################
*/
#pragma interrupt saveall
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void PIT_ISR()
{

static index=0;
temp=sine_table[index];
index++;
if(index>(SINE_TABLE_LENGTH-1)) index=0;
asm(nop);
asm(nop);
//writting a sine table to DAC
setReg(DAC0_DATA,temp);
getReg(PIT0_CTRL);
clrRegBit(PIT0_CTRL,PRF); 

}

5.2 Class D Amplifier
It is possible for the PWM module to function as a DAC, so the PWM is widely used in many applications 
such as motor control, switch mode power supply, and audio power stage output.

In the DSP56F800 and MC56F8300 families, most chips have an embedded PWM module.

To save power, the power amplifier must operate completely in switching mode — class D. Normally, the 
amplifier has efficiency higher than 90 percent, and over 90 percent of the power is delivered to the load. 
In fact, a Class D amplifier works as a power DAC and can be used to realize high output power. The Class 
D amplifier is based on an analog technique for pulse width modulation (PWM).

Figure 12. Class D Amplifier Block Diagram

In Figure 12, the power stage consists of a transistor, MOSFET or IGBT, which works in cutoff or 
saturation mode. The power devices consume less power in these modes than in amplifier mode, so the 
power efficiency increases. The low-pass filter is a passive filter and cuts frequency components that 
exceed the maximum frequency of the input signal.

When we use the PWM as a DAC, the two equivalent specifications — resolution and sample cycle — are 
implicit. Here, we discuss how to compute the two specifications, resolution and sample cycle. Figure 13 
shows the signals of the PWM module in the DSP56800/E family.
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Figure 13. PWM Waveform

The PWM module is driven by the IP_BUS clock.

In Figure 13, the PWM cycle can be viewed as a DAC sample cycle. When the PWM is treated as a DAC, 
the PWM duty cycle denotes the power of the PWM, which ranges from zero to the value saved in the 
PWM modulo register.

The PWM output frequency is (IP_BUS clock frequency) / (2 × PWM modulo register) in center-aligned 
mode.

Regarding the PWM resolution, we can express it in equivalent bits to the DAC resolution. The PWM 
resolution can be expressed as resolution bit = log2(PWM Counter Modulo Register Value).

The PWM output frequency and resolution are not independent. The relationship is:

2Resolution Bits × (PWM output frequency) = IP_BUS clock frequency / 2 in center-alignment mode.

6 Conclusion
This application note introduces the features of the DSP56800/E devices and their on-chip ADC, lists the 
ADC specification, and provides the circuit of the voltage reference for the on-chip ADC. It also 
demonstrates how to design FIR and IIR filters using the QEDesign Lite software, and how to implement 
those filters using the function which Processor Expert provides after the user enters the coefficients. It 
also gives examples for implementing the FIR/IIR filter and the FFT. Finally, it illustrates how to compute 
the PWM frequency and resolution, and gives an example for the DAC of the MC56F803x family.

Modulus = 4
PWM Value = 2
Dead Time = 1

PWM0 Generator

PWM1 Generator
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Appendix A  IIR Filter Code
Result  dfr16IIRC_Fixed(dfr16_tIirStruct *pIIR, Frac16 *pX, Frac16 *pZ, UInt16 n)
{

UInt16   i, j, nbiq;
Frac16 * pCoefs;
Frac16   w0,w1,w2;
Frac16      xn;
Frac32   Acc,long_xn;

if (n > PORT_MAX_VECTOR_LEN)
{

return FAIL;
}
for(i = 0; i < n; i++)  /* Sample loop */
{

/* initialize total and setup pointer to walk through coefficients */
pCoefs = pIIR -> pC;
Acc = 0;

xn = shr(*pX++,1);  /* x'[n] = x[n]/2 */

pIIR -> pNextHistoryAddr = pIIR ->pHistory;

for (j = 0; j < pIIR->nbiq; j++)    /* States Loop */
{

w1 = *(pIIR -> pNextHistoryAddr++);
w2 = *(pIIR -> pNextHistoryAddr--);

Acc = L_mult(*pCoefs++,w1);   /* a1*w1 */
Acc = L_mac(Acc,*pCoefs++,w2); /* a2*w2 */

long_xn = L_deposit_h(xn);
Acc = L_add(long_xn,Acc); /* Acc = x[n] + a1*w[n-1] + a2*w[n-2] */
Acc = L_shl(Acc,1);       /* w'[n] = 2*Acc */
w0 = round(Acc);

Acc = L_mult(*pCoefs++,w0);    /* b0 * w0 */
Acc = L_mac(Acc,*pCoefs++,w1);  /* b1 * w1 */
Acc = L_mac(Acc,*pCoefs++,w2); /* b2 * w2 */
         
*(pIIR -> pNextHistoryAddr++) = w0;
*(pIIR -> pNextHistoryAddr++) = w1;

xn = round(Acc); /* = y'[n] (=y[n]/2), becomes x'[n] for next biquad */

}

*pZ++ = L_shl(xn,1); /* y[n] = 2*y'[n] */
}
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pIIR->pNextHistoryAddr = pIIR -> pHistory;

return PASS;
}

Appendix B  References
• 56F8300 Peripheral User Manual — MC56F8300UM
• 56F80xx/56F81xx Technical Data Sheet — specific to the device you’re implementing

(The order number for the document is exactly the same as the device number, for example, 
MC56F8037.)

• MC56F800E Reference Manual — MC56F800ERM
• QEDesign Lite online help
• Processor Expert online help
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