
Freescale Semiconductor
Application Note

Document Number: AN3317
Rev. 0, 10/2006

Contents

Introduction . 1
IIC Overview . 1
IIC Master Application . 2
Basic States. 3
IIC Bus Transfer . 4

ppendix A . 5
ppendix B . 10

IIC Master on the MC9RS08KA2
by: Inga Harris

East Kilbride, Scotland
1 Introduction
The IIC (inter-integrated circuit) protocol is a 2-wire
serial communication interface implemented in
numerous microcontrollers and peripheral devices.
Many microcontroller units (MCUs) do not have an IIC
module, yet they must communicate with 2-wire or IIC
devices. These MCUs are usually “master on IIC.”

This application note describes a method of
communicating on an IIC bus by controlling digital
input/output (I/O) pins. This “bit banged” method can
execute on any Freescale MCU through the standard
digital I/O pins; however, this document uses the
MC9RS08KA2 as an example.

2 IIC Overview
IIC is a 2-wire communications link requiring a clock
line (SCL) and a data line (SDA) to communicate. The
frequency of the IIC clock can go up to 100kHz for
standard mode and up to 400kHz for fast mode.

1
2
3
4
5
A
A

© Freescale Semiconductor, Inc., 2006. All rights reserved.

IIC Master Application
An IIC bus has both a master device and a slave device attached to it. A master initiates a transfer,
generates a clock signal (SCL), and terminates the transfer. The master device also addresses a slave
device. IIC provides a solution for multiple masters on the same bus. This bus also provides some error
checking by using acknowledgment bits during byte transfer.

3 IIC Master Application
The application presented in this document illustrates a basic example of the IIC specification. It is not
intended to implement all the features of an IIC bus. It provides only the basic functionality required to
transmit from a master device to a slave device through a 2-wire interface. The advantage of this method
is it uses standard digital I/O pins available on any Freescale MCU.

This application provides the following functionality:
• 7-bit addressing mode of IIC slave device
• Single master transmitter
• Serial clock frequency of approximately 160 kHz
• Multiple data bytes within a serial transfer
• Acknowledgment polling of error checking

By controlling two digital pins, a designer can simulate an IIC transfer message. These I/O pins should be
open drain. If the I/O pins are high-density complementary metal oxide semiconductor (CMOS) and not
open drain, some safeguards must be implemented. A series resistor should connect the CMOS output pin
and receiver input pin. If the two devices attempt to output conflicting logic levels, this provides some
current limiting.

Another consideration is supporting a logic high level for any open-drain receiver pins. You can use a
pull-up resistor at the receiver’s open drain pin to passively pull up to the supply voltage when the pin is
not actively driven low. Carefully choose this pull-up resistor so that when the master pin drives low, a
valid VIL level presents to the IIC receiver pin.

Figure 1 illustrates how to connect digital I/O pins between IIC master and slave devices.

Figure 1. The IIC Bus Connect

SLAVE

SCL

SDA

VDD

R1

22 kΩ

VDD

R4
22 kΩ

MASTER

SCL

SDA R2

1 kΩ

1 kΩ

R3
IIC Master on the MC9RS08KA2, Rev. 0

Freescale Semiconductor2

Basic States
When the SCL and SDA I/O pins of the master and slave devices are open drain, you can omit the resistors
R1 and R2.

Specific stages defined by the states of the SCL and SDA wires compose an IIC transfer. The inactive state
of the IIC bus happens while both SCL and SDA lines are in the high logic level. Figure 2 shows the timing
between the clock (SCL) and data (SDA) lines under the START and STOP conditions; Figure 3 shows
the timing between SCL and SDA lines during the data transfer. Figure 4 shows the timing of the
acknowledge impulse sent by the slave device after it receives all eight bits of the transferred byte.

4 Basic States
Characteristics of the basic states:

— Falling edge on SDA line while the SCL is held in the high logic level indicates START
condition.

— Rising edge on SDA line while the SCL is held in the high logic level indicates STOP
condition.

— Data on the SDA line can change only if the SCL line is in the low logic level
— Data on the SDA line is valid and is transferred through the IIC bus between devices when the

SCL line is in the high logic level
— Low logic level on the SDA line indicates acknowledge bit (ACK), while the SCL line is the

ninth pulse from the byte transfer. The slave device usually generates the ACK bit. The master
produces the ACK bit only if the “multiple read function” occurred.

Figure 2. START and STOP Conditions on IIC Bus

SDA

SCL

START STOP
IIC Master on the MC9RS08KA2, Rev. 0

Freescale Semiconductor 3

IIC Bus Transfer
Figure 3. SCL Versus SDA Timing on IIC Bus

Figure 4. Acknowledge Bit Timing on IIC Bus

5 IIC Bus Transfer
The START condition (START bit) produced by the master device initiates the data transfer through the
IIC bus. The device address byte, with its most significant bit (MSB) first, follows the start bit. The least
significant bit (LSB) in the device address byte can be high or low, depending on whether it is a “read” or
“write” operation.

With all bytes transferred on the IIC bus, a ninth clock cycle gives an acknowledgment. The SDA line is
read during this ninth clock cycle by the master and signifies whether the byte is acknowledged. The
receiver drives the SDA line low during the ninth clock cycle if it acknowledges the byte transmission.

Any number of data bytes can follow the address byte, each composed of eight data bits and a ninth
acknowledge bit. To end a transfer, a STOP condition imposes on the IIC bus. A rising edge on SDA, while
SCL line is held high, indicates the Stop condition.

NOTE:
To avoid unwanted conditions, the software must transition the SDA pin
only while the SCK line is held low.

DATA
STABLE

DATA
STABLE

DATA
CHANGE

SDA

SCL

DATA OUT

START ACKNOWLEDGE

1 8 9SCL

DATA IN
IIC Master on the MC9RS08KA2, Rev. 0

Freescale Semiconductor4

IIC Bus Transfer
This application requires some software overhead, but is somewhat interruptible as the IIC bus is
completely synchronous. A more automated timing source, such as a free-running counter or real-time
interrupt, could create an implementation that requires less software overhead.

Appendix A
The code shows how a MC9RS08KA2 microcontroller can connect to an IIC peripheral. The software
continuously sends a write command, ramping the digital value from $00 to $FF and back down
again.Using the DEMO9RS08KA2 board, the SCL signal is approximately 160kHz.

;***
; RS08IICMaster.ASM
;***
; Copyright (C) 2006 Freescale Semiconductor, Inc.
; All Rights Reserved
;**
;
; Description: User Code for MC9RS08KA2
; Bit Bashed IIC Master for MC9RS08KA2
; Tested on DEMO9RS08KA2
; ---
;
; Engineer : Inga Harris
; Date : 21/06/06
;
; Notes:
; ***
; * THIS CODE IS ONLY INTENDED AS AN EXAMPLE OF CODE FOR THE *
; * CODEWARRIOR COMPILER AND HAS ONLY BEEN GIVEN A MIMIMUM *
; * LEVEL OF TEST. IT IS PROVIDED 'AS SEEN' WITH NO GUARANTEES *
; * AND NO PROMISE OF SUPPORT. *
; ***
;
; Freescale reserves the right to make changes without further notice to any
; product herein to improve reliability, function, or design. Freescale does
; not assume any liability arising out of the application or use of any
; product, circuit, or software described herein; neither does it convey
; any license under its patent rights nor the rights of others. Freescale
; products are not designed, intended, or authorized for use as components
; in systems intended for surgical implant into the body, or other
; applications intended to support life, or for any other application in
; which the failure of the Freescale product could create a situation where
; personal injury or death may occur. Should Buyer purchase or use Freescale
; products for any such intended or unauthorized application, Buyer shall
; indemnify and hold Freescale and its officers, employees, subsidiaries,
; affiliates, and distributors harmless against all claims costs, damages,
; and expenses, and reasonable attorney fees arising out of, directly or
; indirectly, any claim of personal injury or death associated with such
; unintended or unauthorized use, even if such claim alleges that Freescale
; was negligent regarding the design or manufacture of the part. Freescale
; and the Freescale logo* are registered trademarks of Freescale Ltd.

;**
; Macro to manage nested Subroutine entry code
;**
ENTRY_CODE: MACRO
IIC Master on the MC9RS08KA2, Rev. 0

Freescale Semiconductor 5

IIC Bus Transfer
 SHA
 STA pcBUFFER+(2*(\1))
 SHA
 SLA
 STA pcBUFFER+(2*(\1))+1
 SLA
 ENDM

;**
; Macro to manage nested Subroutine exit code
;**
EXIT_CODE: MACRO
 SHA; this line can be removed if Accumulator contents are no longer needed
 LDA pcBUFFER+2*(\1)
 SHA
 SLA; this line can be removed if Accumulator contents are no longer needed
 LDA pcBUFFER+2*(\1)+1
 SLA
 ENDM

; Include derivative-specific definitions
 INCLUDE 'derivative.inc'

; export symbols
 XDEF _Startup, main
 ; we export both '_Startup' and 'main' as symbols. Either can
 ; be referenced in the linker.prm file

MAXlevel EQU 1 ; Nesting depth for subroutine macro
PTAPE2 EQU 2 ; Pull Up Resistor bit location for RESET pin
CLKST EQU 2 ; Bit Location of Clock mode status bit in
 ; ICS Status and Control Register

;***
; Emulated IIC lines on Port A
; Need a clock (SCL) and data (SDA)
;***
SCL EQU 0 ; Bit Location of Serial Clock Pin in PortA
SDA EQU 4 ; Bit Location of Serial Data Pin in PortA

;***
; Variables to be held in RAM
;***
_RAMStart:
BitCounter RMB 1 ; Used to count bits in a Tx
Value RMB 1 ; Used to store data value
Direction RMB 1 ; Indicates increment(1) or decrement(0)
pcBUFFER DS.W MAXlevel ; Buffer for return address of nested subroutine macro

;***
; Start of program code
;***
_Startup:
main:
 JSR L0_init
 ; use following lines if using reset default settings
 ;mov #HIGH_6_13(SOPT), PAGESEL
IIC Master on the MC9RS08KA2, Rev. 0

Freescale Semiconductor6

IIC Bus Transfer
 ;mov #$00, MAP_ADDR_6(SOPT) ; disable COP

 ; initialise variables
 CLR BitCounter
 CLR Value
 CLR Direction ; count down

 ;Set up parallel ports
 LDA #$11 ; PTA0 and PTA4
 STA PTAD ; as high
 STA PTADD ; and outputs

 ;set up interrupt for Wait instruction
 BSET KBISC_KBIE,KBISC ; enable KBI
 BSET KBIPE_KBIPE1,KBIPE ; on pin 7, SW0, falling edge

;***
; Loop to ramp up and down the data value sent
;***
DataLoop:
 WAIT ; Wait command for debugging purposes
 ;to allow user to see the code working a KBI on SW0 is used
 ;for each loop itteration
 BSET KBISC_KBACK,KBISC ; clear flag
 LDA Direction ; inc or dec
 BEQ GoUp

 ;GoDown:
 LDA Value
 BNE GoDown2 ; decrement
 CLR Direction ; change direction if needed
 BRA SendIICStartBit

 GoDown2:
 DEC Value ; decrement data value
 BRA SendIICStartBit

 GoUp:
 LDA Value
 CMP #$FF ; increment
 BNE GoUp2
 INC Direction ; change direction if needed
 BRA SendIICStartBit

 GoUp2:
 INC Value ; increment data value
 BRA SendIICStartBit

;***
; Main Loop to send the message
; Start Bit + Address + Command + Data + Stop Bit + Wait for Ack
;***
SendIICStartBit: ; Send Start Condition
 BCLR SDA,PTAD
 JSR IICBitDelay ; Start Condition is defined as a falling egde
 BCLR SCL,PTAD ; on SDA while SCL is high
IIC Master on the MC9RS08KA2, Rev. 0

Freescale Semiconductor 7

IIC Bus Transfer

SendAddress:
 LDA #$78 ; Arbitrary Slave Device address (7bit)
 ASLA ; Align address
 JSR L0_IICTxByte ; send the 8 Bit Address

 LDA #$00 ; Command Byte for Slave Device
 JSR L0_IICTxByte ; Send the 8-bit Command

 LDA Value ; Send value to Slave Device
 JSR L0_IICTxByte ; Send the Value

 JSR IICStopBit ; Send Stop Condition

 JSR IICBitDelay ; Wait a Bit
 BRA DataLoop ; Repeat with next Value

;***
; Peripheral Initialization
;***
L0_init:
 ENTRY_CODE 0
;CONFIGURES SYSTEM CONTROL
 MODE: EQU 0 ; MODE=0 Background Mode, MODE=1 Run Mode
 IFNE MODE
 mov #HIGH_6_13(SOPT), PAGESEL
 mov #$01, MAP_ADDR_6(SOPT) ; Disables COP and enables RESET (PTA2) pin
 mov #$38, PTADD ; Configures PTA3, PTA4 and PTA5 as output
 ELSE
 mov #HIGH_6_13(SOPT), PAGESEL
 mov #$03, MAP_ADDR_6(SOPT) ; Disables COP and enables BKGD (PTA3) and RESET (PTA2) pins
 mov #$30, PTADD ; Configures PTA4 and PTA5 as output
 ENDIF

;CONFIGURES CLOCK (FEI Operation Mode)
 mov #HIGH_6_13(NV_ICSTRM),PAGESEL
 lda MAP_ADDR_6(NV_ICSTRM)

 sta ICSTRM ; Sets
trimming value

 clr ICSC1 ; Selects FLL as clock source and disables it in stop mode
 clr ICSC2 ; ICSOUT = DCO output frequency

wait_clock:
 brset CLKST,ICSSC,wait_clock ; Waits until FLL is engaged

;CONFIGURES TIMER
 mov #$70, MTIMSC ; Enables interrupt, stops and resets timer counter
 mov #$05, MTIMCLK ; Selects fBUS as reference clock (8 MHz)
 ; with prescaler = 32 (increments timer counter every 4 us)
;CONFIGURES ACMP
 clr ACMPSC ; Selects analog comparator between ACMP+ and ACMP-
 ; Comparation in output falling edge (ACMP+ < ACMP-)
;CONFIGURES I/O CONTROL PORT
 mov #HIGH_6_13(PTAPE), PAGESEL
 bset PTAPE2, MAP_ADDR_6(PTAPE) ; Enables pullup in RESET (PTA2) pin
 clr PTAD ; Clears PTA port
 EXIT_CODE 0
 rts
IIC Master on the MC9RS08KA2, Rev. 0

Freescale Semiconductor8

IIC Bus Transfer

;***
; IICTxByte
; Transmit the byte in A to the SDA pin
; A not restored on return
; Must be careful to change SDA values only when SCL is low
; otherwise a stop or start could be implied
;***
L0_IICTxByte:
 ENTRY_CODE 0
 ;initialise variable
 LDX #$08
 STX BitCounter

IICNextBit:
 ROLA ; Shift MSB in to carry
 BCC SendLow ; Send Low or high bit

SendHigh:
 BSET SDA,PTAD ; Set the data bit value
 JSR IICSetUpDelay ; Give some time for data setup
 BSET SCL,PTAD ; Clock it in
 JSR IICBitDelay ; Wait
 BRA IICTxCont ; Continue

SendLow:
 BCLR SDA,PTAD ; Set the data bit value
 JSR IICSetUpDelay ; Give some time for data setup
 BSET SCL,PTAD ; Clock it in
 JSR IICBitDelay ; Wait

IICTxCont:
 BCLR SCL,PTAD ; Restore Clock to Low State
 DEC BitCounter ; Decrement the bit counter
 BEQ IICAckPoll ; Last Bit?
 BRA IICNextBit

IICAckPoll:
 BSET SDA,PTAD
 BCLR SDA,PTADD ; set SDA as input
 JSR IICSetUpDelay
 BSET SCL,PTAD ; Clock the line to get Ack
 JSR IICBitDelay
 BRCLR SDA,PTAD,IICAck ; Look for Ack from Slave device
 BSR IICNoAck
IICAck:
 BCLR SCL,PTAD ; Restore clock line
 BSET SDA,PTADD ; SDA back as output
 EXIT_CODE 0
 RTS

;**
; No Ack received from slave device
; Some error action can be performed here
; For this example we just restore the bus
;**
IICNoAck:
IIC Master on the MC9RS08KA2, Rev. 0

Freescale Semiconductor 9

IIC Bus Transfer
 BCLR SCL,PTAD ; Restore clock line
 BSET SDA,PTADD ; SDA back as output
 RTS

;**
; A Stop Bit is defined as a rising edge on SDA While SCL is high
;**
IICStopBit:
 BCLR SDA,PTAD
 BSET SCL,PTAD
 BSET SDA,PTAD
 RTS

;**
; Provide some data set up time to allow SDA to stabilise in slave
; device. Completely arbitrary.
;**
IICSetUpDelay:
 NOP
 NOP
 RTS

;**
; Provide time to allow bit to stabilise in slave
; device. Completely arbitrary.
;**
IICBitDelay:
 NOP
 NOP
 NOP
 NOP
 NOP
 RTS

Appendix B
The code also allows an introduction on how to write nested subroutines with the stack-less RS08 core
using macros and careful “level control.” A quick tutorial on the necessity of this and how it works appears
in a little more detail than in the RS08QRUG.

The RS08 core has no stack and therefore has lost the ability to inherently cope with nested subroutine
calls. The addition of the Shadow Program Counter (SPC) enables software to overcome this issue.

Table 1. Subroutine Command

HC(S)08 RS08

BSR Function
JSR Function

Push current PC on to stack
Load PC with address of function

Store PC in SPC
Load address of function into PC

RTS Pull return address from stack and
set PC

Copy SPC to PC
IIC Master on the MC9RS08KA2, Rev. 0

Freescale Semiconductor10

IIC Bus Transfer
Negligible difference occurs in calling a subroutine on HC(S)08 and RS08, but the lack of stack causes
problems when calling a subroutine from a subroutine. (See Figure 5)

When calling a subroutine, the PC saves to the SPC before the jump to subroutine executes. On returning
from a subroutine the PC loads from the saved return address on the SPC. However, when calling a
subroutine from a subroutine, the current PC stores in the SPC overwriting the PC, that would have
returned the program to the initial entry point. This means that the CPU can no longer go back to the main
program as illustrated in the first program-flow diagram. By using a macro and a clear subroutine level
system in your software to manage subroutine nesting, this issue overcomes as shown in the second
program-flow diagram.

Figure 5. Nested Subroutine on RS08

Assembly - Macro Code
;**
; Macro to manage nested Subroutine entry code
;**
ENTRY_CODE: MACRO
 SHA
 STA pcBUFFER+(2*(\1))
 SHA
 SLA
 STA pcBUFFER+(2*(\1))+1
 SLA
 ENDM

Instruction 1

Instruction 2

JSR addr10

Instruction 8

addr10 Instruction 3

Instruction 4

JSR addr20

Instruction 5

Instruction 6

RTS

RTS

addr20

PC -> SPC
addr10 -> PC

PC -> SPC
addr20 -> PC

SPC
-> PC

Instruction 7

Instruction 1

Instruction 2

JSR addr10

Instruction 8

addr1 Instruction 3

Instruction 4

JSR addr20

Instruction 5

Instruction 6

RTS

RTS

addr2

PC -> SPC
addr10 -> PC

+ Entry Code
Macro

PC -> SPC
addr20 -> PC

SPC
-> PC

Instruction 7

SPC
-> PC

+ Exit Code
Macro
IIC Master on the MC9RS08KA2, Rev. 0

Freescale Semiconductor 11

IIC Bus Transfer
;**
; Macro to manage nested Subroutine exit code
;**
EXIT_CODE: MACRO
 SHA ; this line can be removed if Accumulator contents are no longer needed
 LDA pcBUFFER+2*(\1)
 SHA
 SLA ; this line can be removed if Accumulator contents are no longer needed
 LDA pcBUFFER+2*(\1)+1
 SLA
 ENDM

The macro swaps the high-byte and then low-byte of the SPC with the accumulator. If the accumulator
contents are not needed in the exit macro, you can skip this step. The macro then stores (entry) or loads
(exit) the accumulator value into or from the pcBUFFER located in RAM in the position governed by the
subroutine level. The SPC returns to its original state with another swap command.

Figure 6. Entry Code Macro

$XX $YY $ZZ $00
Acc SPC H pcBUFFERSPC L

Level 0
SHA
STA pcBUFFER+(2*0)
SHA
SLA
STA pcBUFFER+(2*0)+1
SLA

$YY $XX $ZZ $00
$YY $XX $ZZ $YY
$XX $YY $ZZ $YY
$ZZ $YY $XX $YY
$ZZ $YY $XX $YY

$00
$00
$00
$00
$00
$ZZ

$00
$00
$00
$00
$00
$00

$00
$00
$00
$00
$00
$00

$00
$00
$00
$00
$00
$00

$00
$00
$00
$00
$00
$00

$XX $YY $ZZ $YY $ZZ $00 $00 $00 $00

$xx $xx $zz $00Level 1
SHA
STA pcBUFFER+(2*1)
SHA
SLA
STA pcBUFFER+(2*1)+1
SLA

$yy $xx $zz $00
$yy $xx $zz $YY
$xx $yy $zz $YY
$zz $yy $xx $YY
$zz $yy $xx $YY

$00
$00
$00
$00
$00
$ZZ

$00
$00
$yy
$yy
$yy
$yy

$00
$00
$00
$00
$00
$zz

$00
$00
$00
$00
$00
$00

$00
$00
$00
$00
$00
$00

$xx $yy $zz $YY $ZZ $yy $zz $00 $00

$AA $BB $CC $00Level 2
SHA
STA pcBUFFER+(2*2)
SHA
SLA
STA pcBUFFER+(2*2)+1
SLA

$BB $AA $CC $00
$BB $AA $CC $YY
$AA $BB $CC $YY
$CC $BB $AA $YY
$CC $BB $AA $YY

$00
$00
$00
$00
$00
$ZZ

$00
$00
$yy
$yy
$yy
$yy

$00
$00
$00
$00
$00
$zz

$00
$00
$BB
$BB
$BB
$BB

$00
$00
$00
$00
$00
$CC

$AA $BB $CC $YY $ZZ $yy $zz $BB $CC
IIC Master on the MC9RS08KA2, Rev. 0

Freescale Semiconductor12

IIC Bus Transfer
Figure 7. Exit Code Macro

Example of subroutine using the macro
L0_IICTxByte:
 ENTRY_CODE 0
 ;initialise variable
 LDX #$08
 STX BitCounter

IICNextBit:
 ROLA ; Shift MSB in to carry
 BCC SendLow ; Send Low or high bit

.

.

.

.

.

.
 BSR IICNoAck
IICAck:
 BCLR SCL,PTAD ; Restore clock line
 BSET SDA,PTADD ; SDA back as output
 EXIT_CODE 0
 RTS

Label the subroutine with the level so you can manage the level rules easily;
• Main program can call level 0,1,2…n

— Level 0 can call level 1,2…n
— Level 1 can call level 2,3…n

• Subroutines which do not call other subroutines do not need to use level macro
• Calling subroutines at same level would destroy the link

Acc SPC H pcBUFFERSPC L

$XX $AB $CDLevel 2
SHA
LDA pcBUFFER+(2*2)
SHA
SLA
LDA pcBUFFER+(2*2)+1
SLA $YY $ZZ $yy $zz $BB $CC

$AB $XX $CD
$BB $XX $CD
$XX $BB $CD
$CD $BB $XX
$CC $BB $XX
$XX $BB $CC

$YY $ZZ $yy $zz $BB $CC
$YY $ZZ $yy $zz $BB $CC
$YY $ZZ $yy $zz $BB $CC
$YY $ZZ $yy $zz $BB $CC
$YY $ZZ $yy $zz $BB $CC
$YY $ZZ $yy $zz $BB $CC

Acc SPC H pcBUFFERSPC L

$XX $AB $CDLevel 2
LDA pcBUFFER+(2*2)
SHA
LDA pcBUFFER+(2*2)+1
SLA $YY $ZZ $yy $zz $BB $CC

$BB $AB $CD
$AB $BB $CD
$CC $BB $CD
$CD $BB $CC

$YY $ZZ $yy $zz $BB $CC
$YY $ZZ $yy $zz $BB $CC
$YY $ZZ $yy $zz $BB $CC
$YY $ZZ $yy $zz $BB $CC

Acc contents saved

Acc contents lost
IIC Master on the MC9RS08KA2, Rev. 0

Freescale Semiconductor 13

Document Number: AN3317
Rev. 0
10/2006

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2006. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	2 IIC Overview
	3 IIC Master Application
	4 Basic States
	5 IIC Bus Transfer

