
Freescale Semiconductor
Application Note

AN3002
Rev. 0, 10/2005

Table of Contents
1 ColdFire MCF523x and eTPU Advantages and

Features ..2
2 Target Motor Theory ..4
3 System Concept ..7
4 Software Design ..16
5 Implementation Notes42
6 Microprocessor Usage43
7 Summary and Conclusions45
8 References ..45

Permanent Magnet Synchronous
Motor Vector Control, Driven by
eTPU on MCF523x
Covers MCF523x and all eTPU-equipped Devices
by: Milan Brejl & Michal Princ

System Application Engineers
Roznov Czech System Center
This application note describes the design of a 3-phase
permanent magnet synchronous motor (PMSM) speed
and torque vector control drive based on Freescale’s
ColdFire MCF523x microprocessor. The application
design takes advantage of the enhanced time processing
unit (eTPU) module, which is used as a motor control
co-processor. The eTPU handles the motor control
processing, eliminating the microprocessor overhead for
other duties.

PMSMs are very popular in a wide array of applications.
Compared to a DC motor, the PMSM misses a
commutator, therefore it is more reliable than a DC
motor. The PMSM also has advantages when compared
to an AC induction motor. The PMSM generates the
rotor magnetic flux with rotor magnets, achieving higher
efficiency. Therefore, the PMSM is used in high-end
white goods (refrigerators, washing machines,
dishwashers, etc.), high-end pumps, fans, and in other
appliances that require high reliability and efficiency.

The concept of the application is to create a vector
control PMSM driver with optional speed closed-loop,
using a quadrature encoder. It serves as an example of a
PMSM vector control system design using a Freescale
© Freescale Semiconductor, Inc., 2005. All rights reserved.

ColdFire MCF523x and eTPU Advantages and Features
microprocessor with the eTPU. It also illustrates the usage of dedicated motor control eTPU functions that
are included in the AC motor control eTPU function set.

This application note also includes basic motor theory, system design concept, hardware implementation,
and microprocessor and eTPU software design, including the FreeMASTER visualization tool.

Figure 1. Using the M523xEVB, 33395 Evaluation Motor Board, and MCG BLDC Motor

1 ColdFire MCF523x and eTPU Advantages and
Features

1.1 ColdFire MCF523x Microprocessor
The MCF523x family is composed of highly-integrated, 32-bit microprocessors based on the V2 ColdFire
core. It features a 16- or 32-channel eTPU, 64 Kbytes of internal SRAM, a 2-bank SDRAM controller, four
32-bit timers with DMA request capability, a 4-channel DMA controller, up to two CAN modules, three
UARTs, and a queued SPI. The MCF523x family has been designed for general purpose industrial control
applications. It is also a high-performance upgrade for users of the MC68332.
Permanent Magnet Synchronous Motor Vector Control, Driven by eTPU on MCF523x, Rev. 0

Freescale Semiconductor2

ColdFire MCF523x and eTPU Advantages and Features
This 32-bit device is based on the version 2 ColdFire reduced instruction set computer (RISC) core,
operating at a core frequency of up to 150 MHz and a bus frequency of up to 75 MHz. On-chip modules
include the following:

• V2 ColdFire core with an enhanced multiply-accumulate unit (EMAC) providing 144 Dhrystone
2.1MIPS @ 150 MHz

• eTPU with 16 or 32 channels, 6 Kbytes of code memory, and 1.5 Kbytes of data memory with
eTPU debug support

• 64 Kbytes of internal SRAM
• External bus speed of half the CPU operating frequency (75-MHz bus @ 150-MHz core)
• 10/100 Mbps bus-mastering Ethernet controller
• 8 Kbytes of configurable instruction/data cache
• Three universal asynchronous receiver/transmitters (UARTs) with DMA support
• Controller area network 2.0B (FlexCAN module)

— Optional second FlexCAN module multiplexed with the third UART
• Inter-integrated circuit (I2C) bus controller
• Queued serial peripheral interface (QSPI) module
• Hardware cryptography accelerator (optional)

— Random number generator
— DES/3DES/AES block cipher engine
— MD5/SHA-1/HMAC accelerator

• 4-channel, 32-bit direct memory access (DMA) controller
• 4-channel, 32-bit input capture/output compare timers with optional DMA support
• 4-channel, 16-bit periodic interrupt timers (PITs)
• Programmable software watchdog timer
• Interrupt controller capable of handling up to 126 interrupt sources
• Clock module with phase locked loop (PLL)
• External bus interface module including a 2-bank synchronous DRAM controller
• 32-bit, non-multiplexed bus with up to 8 chip select signals that support page-mode Flash

memories

For more information, refer to Reference 1.

1.2 eTPU Module
The eTPU is an intelligent, semi-autonomous co-processor designed for timing control, I/O handling,
serial communications, motor control, and engine control applications. It operates in parallel with the host
CPU. The eTPU processes instructions and real-time input events, performs output waveform generation,
and accesses shared data without the host CPU’s intervention. Consequently, the host CPU setup and
service times for each timer event are minimized or eliminated.
Permanent Magnet Synchronous Motor Vector Control, Driven by eTPU on MCF523x, Rev. 0

Freescale Semiconductor 3

Target Motor Theory
The eTPU has up to 32 timer channels, in addition to having 6 Kbytes of code memory and 1.5 Kbytes of
data memory that store software modules downloaded at boot time, and can be mixed and matched as
needed for any application.

The eTPU provides more specialized timer processing than the host CPU can achieve. This is partially due
to the eTPU implementation, which includes specific instructions for handling and processing time events.
In addition, channel conditions are available for use by the eTPU processor, thus eliminating many
branches. The eTPU creates no host CPU overhead for servicing timing events.

For more information, refer to Reference 7.

2 Target Motor Theory

Permanent magnet AC (PMAC) machines provide automotive actuator designers with a unique set of
features and capabilities. There are two principal classes of permanent magnet AC machines: sinusoidally
excited machines or permanent magnet synchronous motors (PMSM), and trapezoidaly excited machines
or brushless DC (BLDC) motors. The difference is that while stator windings of trapezoidal PMAC
machines are concentrated into a narrow-phase pole, the windings of a sinusoidal machine are typically
distributed over multiple slots in order to approximate a sinusoidal distribution. These differences in
construction are reflected in their corresponding motion characteristics as well: the first type of PMAC
provides sinusoidal back-electromotive force (back-EMF) generation, while the second type provides
trapezoidal back-EMF.

PMSM machines have the unique advantages of unsurpassed efficiency and power density characteristics,
which are primarily responsible for their wide appeal. On the other hand, PMSM machines are
synchronous, which certainly requires accompanying power electronics, but they also provide the basis for
achieving high-quality actuator control. The torque ripple associated with sinusoidal PMAC (PMSM)
machines is generally less than that developed in trapezoidal machines, one reason sinusoidal motors are

Figure 2. Permanent Magnet AC Machine - Cross Section

Stator

Stator winding
(in slots)

Shaft

Rotor

Air gap

Permanent magnets
Permanent Magnet Synchronous Motor Vector Control, Driven by eTPU on MCF523x, Rev. 0

Freescale Semiconductor4

Target Motor Theory
preferred in high-performance motion control applications, such as electro-mechanical braking. This
application note targets the PMSM only.

2.1 Digital Control of PMSM
For the common 3-phase PMSM motor, a standard 3-phase power stage is used (see Figure 3). The power
stage utilizes six power transistors that operate in complementary mode.

Figure 3. 3-Phase BLDC Power Stage

The inverter consists of three half-bridge units where the upper and lower switches are controlled
complimentarily, meaning when the upper one is turned on, the lower one must be turned off, and vice
versa. Because the power device’s turn-off time is longer than its turn-on time, some dead time must be
inserted between turning off one transistor of the half-bridge and turning on its complementary device. The
output voltage is mostly created by the pulse width modulation (PWM) technique. The 3-phase voltage
waves are shifted 120o to one another; thus a 3-phase motor can be supplied.

2.2 Vector Control of PMSM
Vector control is an elegant method of controlling the permanent magnet synchronous motor (PMSM),
where field-oriented theory is used to control space vectors of magnetic flux, current, and voltage. It is
possible to set up the co-ordinate system to decompose the vectors into an electro-magnetic field generat-
ing part and a torque generating part. Then the structure of the motor controller (vector control controller)
is almost the same as for a separately excited DC motor, which simplifies the control of the PMSM. This
vector control technique was developed to achieve the same excellent, dynamic performance of the
PMSM.
As explained in Figure 4, the choice has been made of a widely used current control with an inner position
closed loop. In this method, the decomposition of the field generating part and torque generating part of
the stator current allows separate control of the magnetic flux and the torque. In order to do so, we need to

Q1

PWM_Q5

Q6Q4

C1

Phase_C

PWM_Q1

PWM_Q4

PWM_Q3

Phase_B

GND

Q2

UDCB

PWM_Q2

Phase_A

Q3

PWM_Q6

Q5
Permanent Magnet Synchronous Motor Vector Control, Driven by eTPU on MCF523x, Rev. 0

Freescale Semiconductor 5

Target Motor Theory
set up the rotary co-ordinate system connected to the rotor magnetic field. This co-ordinate system is
generally called the ‘d-q reference co-ordinate system.’ For more information, refer to Reference 13.

Figure 4. PMSM Vector Control Current Loop Block Diagram

2.3 Quadrature Encoder
The PMSM motor application uses the quadrature encoder for rotor position sensing. The quadrature
encoder output consists of three signals. Two phases, A and B, represent the rotor position, and an index
pulse defines the zero position. All quadrature encoder signals are depicted in Figure 5.

Figure 5. Quadrature Encoder Output Signals

2.3.1 Position Alignment
Since the quadrature encoder does not give the absolute position, we need to know the exact rotor position
before the motor is started. One possible and very easily implemented method is the rotor alignment to a

alpha

beta

D
C

-B
us

R
ip

pl
e

E
lim

in
at

io
nu_alpha

u_beta

In
ve

rs
e

P
ar

k
Tr

an
sf

or
m

u_q_lin

u_d_lin

D
ec

ou
pl

in
g

i_alpha

i_betaP
ar

k
Tr

an
sf

or
m

si
n_

th
et

a

co
s_

th
et

a
i_q

u_q

u_d

i_d_required

i_d

C
la

rk
e

Tr
an

sf
or

m

i_a

i_c

Sin
Cos

i_q_required
PI

i_d

i_q

u_dc_busPMSMVC

PI

i_b

position_counterscalingtheta

omega_actual

Feed
Forward

one revolution

position counter values

Phase A

Phase B

Index

19
98

19
99

0 1 2 19
98

19
99

0 1 2
Permanent Magnet Synchronous Motor Vector Control, Driven by eTPU on MCF523x, Rev. 0

Freescale Semiconductor6

System Concept
predefined position. The motor is powered by a defined static voltage pattern and the rotor aligns to the
predefined position. This alignment is done during the motor start up.

3 System Concept

3.1 System Outline
The system is designed to drive a 3-phase PMSM. The application meets the following performance
specifications:

• Voltage control of a PMSM using quadrature encoder HEDS-5640 A06
• Targeted at ColdFire MCF523x evaluation board (M523xEVB), 33395 evaluation motor board

(power stage), and MCG PMSM (IB23810)
• Control technique incorporates:

— PMSM vector control with optional speed-closed loop
— Both directions of rotation
— 4-quadrant operation
— Rotor alignment to the start position
— Minimum speed of 10 RPM
— Maximum speed of 1000 RPM (limited by power supply)

• Manual interface (start/stop switch, up/down push button control, LED indication)
• FreeMASTER control interface (speed set-up, speed control/torque control choice)
• FreeMASTER monitor

— FreeMASTER graphical control page (required speed, required torque, actual motor speed,
actual torque, start/stop status, fault status)

— FreeMASTER control scope (observes required and actual speeds and torques, applied
voltage)

— Detail description of all eTPU functions used in the application (monitoring of channel
registers and all function parameters in real time)

• DC bus over-current fault protection

3.2 Application Description
A standard system concept is chosen for the motor control function (see Figure 6). The system
incorporates the following hardware:

• Evaluation board M523xEVB
• 33395 evaluation motor board
• MCG PMSM (IB23810)
Permanent Magnet Synchronous Motor Vector Control, Driven by eTPU on MCF523x, Rev. 0

Freescale Semiconductor 7

System Concept
• Quadrature encoder (HEDS-5640 A06)
• Power supply 9V DC, 2.7Amps

The eTPU module runs the main control algorithm. The 3-phase PWM output signals for a 3-phase inverter
are generated, using the vector control algorithm according to feedback signals from the quadrature
encoder, actual values of phase currents, and the input variable values provided by the microprocessor
CPU. The phase currents are sampled by the external analog-to-digital converter connected to the QSPI
peripheral. The transfer of phase current samples from the QSPI to eTPU DATA RAM is provided by the
CPU, because a DMA transfer is not applicable here.

Figure 6. System Concept

The system processing is distributed between the CPU and the eTPU, which both run in parallel.

The CPU performs the following tasks:
• Periodically scans the user interface (ON/OFF switch, up and down buttons, FreeMASTER).

Based on the user input, it handles the application state machine and calculates the required speed
or torque, which is passed to the eTPU.

• Periodically reads application data from eTPU DATA RAM in order to monitor application
variables.

• In the event of an over-current fault, immediately the PWM outputs are temporarily disabled by
the eTPU hardware. Then, after an interrupt latency, the CPU disables the PWM outputs
permanently and displays the fault state.

• Periodically, with a period of 50us, the CPU transfers AD converter result queue received by
QSPI into eTPU DATA RAM.

PMSM
Motor
Drive

eTPU

GPIO

enable/disable
PWM signalsApplication

State Machine

over-current interrupt

ON/OFF
switch
status

CPU Hardware
9 12V DC÷

ON/OFF

DOWN

UP

U
A

R
TFreeMASTER

Remote Control

G
P

IO

Fault
Signal

ADC
Trigger

AD Converter

Power StagePWM

Signals

PMSM
motor

Shaft Encoder
Signals
Permanent Magnet Synchronous Motor Vector Control, Driven by eTPU on MCF523x, Rev. 0

Freescale Semiconductor8

System Concept
The eTPU performs the following tasks:
• Six eTPU channels (PWMF) are used to generate PWM output signals.
• Three eTPU channels (QD) are used to process quadrature encoder signals.
• One eTPU channel (BC) is used for controlling the DC-bus break.
• One eTPU channel (ASAC) is used to trigger the external AD converter and preprocess the

sampled values.
• One eTPU channel (GPIO) is used to generate an interrupt to the CPU when the over-current fault

signal activates.
• One eTPU channel (PWMMAC) is internally used to synchronize the PWM outputs and calculate

space vector modulation, based on applied motor voltage vector Alpha-Beta coordinates.
• One eTPU channel (SC) is internally used to calculate the actual motor speed and control a

speed-closed loop in case of speed vector control. The actual motor speed is calculated based on
the QD position counter and QD last edge time. The required speed is provided by the CPU and
passed through a ramp. The speed PI control algorithm processes the error between the required
and actual speed. The PI controller output is passed to the PMSMVC eTPU function as a newly
corrected value of the required motor torque.

• One eTPU channel (PMSMVC) is internally used to calculate the current vector control closed
loop. It takes the values of actual phase currents from ASDC, the actual rotor position from QD,
and the actual motor speed from SC. The phase currents are transferred to Alpha-Beta and D-Q
coordinate system, using Clark and Park transformations. One PI control algorithm processes the
error between the required and actual D-current, and another one processes the error between the
required and actual Q-current. The required value of the D-current, which is the flux controlling
current, is set to zero. The required value of the Q-current, which is the torque controlling current,
is either set directly by the CPU (torque vector control) or provided by the SC output (speed
vector control). The PI controller outputs create the motor applied voltage vector in a D-Q
coordinate system. It is transformed back to Alpha-Beta coordinate system and passed to PWM
generator.

3.2.1 User Interface
The application is interfaced by the following:

• ON/OFF switch on M523xEVB
• Up/down buttons on M523xEVB or

FreeMASTER running on a PC connected to the M523xEVB via an RS232 serial cable

The ON/OFF switch affects the application state and enables and disables the PWM phases. When the
switch is in the off position, no voltage is applied to the motor windings. When the ON/OFF switch is in
the on position, the motor speed can be controlled either by the up and down buttons on the M523xEVB,
or by the FreeMASTER on the PC. The FreeMASTER also displays a control page, real-time values of
application variables, and their time behavior using scopes.

FreeMASTER software was designed to provide an application-debugging, diagnostic, and demonstration
tool for the development of algorithms and applications. It runs on a PC connected to the M523xEVB via
Permanent Magnet Synchronous Motor Vector Control, Driven by eTPU on MCF523x, Rev. 0

Freescale Semiconductor 9

System Concept
an RS232 serial cable. A small program resident in the microprocessor communicates with the
FreeMASTER software to return status information to the PC and process control information from the
PC. FreeMASTER software executing on a PC uses part of Microsoft Internet Explorer as the user
interface.

Note that FreeMASTER version 1.2.31.1 or higher is required. The FreeMASTER application can be
downloaded from http://www.freescale.com. For more information about FreeMASTER, refer to
Reference 6.

3.3 Hardware Implementation and Application Setup

Figure 7. Connection of Application Parts

As previously stated, the application runs on the MCF523x family of ColdFire microprocessors using the
following:

• M523xEVB
• 33395 evaluation motor board
• 3-phase MCG PMSM (IB23810)
Permanent Magnet Synchronous Motor Vector Control, Driven by eTPU on MCF523x, Rev. 0

Freescale Semiconductor10

System Concept
• Quadrature encoder (HEDS-5640 A06)
• Power supply, 9-12V DC, minimum 2.7Amps

Figure 7 shows the connection of these parts. All system parts are documented according to references.

3.3.1 ColdFire MCF523x Evaluation Board (M523xEVB)
The EVB is intended to provide a mechanism for customers to easily evaluate the MCF523x family of
ColdFire microprocessors. The heart of the evaluation board is the MCF5235; all other M523x family
members have a subset of the MCF5235 features and can therefore be fully emulated using the MCF5235
device.

The M523xEVB is fitted with a single 512K x 16 page-mode Flash memory (U19), giving a total memory
space of 2 Mbytes. Alternatively, a footprint is available for upgrading flash to a 512K x 32 page-mode
Flash memory (U35), doubling the memory size to 4 Mbytes.

For more information, refer to Reference 2.

Table 1 lists all M523xEVB jumper settings used in the application.

Table 1. M523xEVB Jumper Settings

Jumper Setting Jumper Setting Jumper Setting Jumper Setting

JP1
JP2
JP3
JP4
JP5
JP6
JP7
JP8
JP9

1 2
1-2
1 2
1-2

1 2-3
1-2 3
1 2-3
1-2 3
1 2-3

JP20
JP21
JP22
JP23
JP24
JP25
JP26
JP27
JP28
JP29

1 2-3
1 2-3
1 2-3
1 2-3
1 2-3
1-2 3
1-2 3
1-2
1-2
1-2

JP40
JP41
JP42
JP43
JP44
JP45
JP46
JP47
JP48
JP49

1-2
1-2
1-2
1-2
1-2
1-2
1-2
1-2
1-2
1-2

JP60
JP61
JP62
JP63
JP64

1-2
1-2
1 2
1 2

1 2-3

DIP1
DIP2
DIP3
DIP4
DIP5
DIP6
DIP7
DIP8
DIP9

DIP10
DIP11
DIP12

ON
ON
ON
ON
ON
ON
OFF
ON
ON
ON
OFF
ON

JP10
JP11
JP12
JP13
JP14
JP15
JP16
JP17
JP18
JP19

1 2-3
1 2-3
1 2-3
1 2-3
1 2-3
1 2-3
1 2-3
1 2-3
1 2-3
1 2-3

JP30
JP31
JP32
JP33
JP34
JP35
JP36
JP37
JP38
JP39

1-2
1 2-3
1-2 3
1-2
1-2

1-2 3
1-2 3
1-2
1-2
1-2

JP50
JP51
JP52
JP53
JP54
JP55
JP56
JP57
JP58
JP59

1-2 3
1-2 3
1-2 3
1 2
1 2
1 2

1-2 3
1-2
1-2
1-2
Permanent Magnet Synchronous Motor Vector Control, Driven by eTPU on MCF523x, Rev. 0

Freescale Semiconductor 11

System Concept
3.3.2 Flashing the M523xEVB
The CFFlasher utility can be used for programming code into the Flash memory on the MCF523xEVB.
Check for correct setting of switches and jumpers: SW7-6 on, SW7-7 off, JP64 2-3, (JP31 2-3). The
flashing procedure is as follows:

1. Run Metrowerks CodeWarrior for ColdFire and open the project. Choose the simple_eflash target
and compile the application. A file simple_eflash.elf.S19, which will be loaded into Flash memory,
is created in the project directory bin.

2. Run the CFFlasher application, click on the “Target Config” button. In the Target Configuration
window, select the type of board as M523xEVB and the BDM Communication as PE_LPT (see
Figure 8). Click OK to close the window.

3. Go to the Program section by clicking the “Program” button. Select the simple_eflash.elf.S19 file
and check the “Verify after Program” option (see Figure 9). Finally, press the “Program” button at
the bottom of the window to start loading the code into the Flash memory.

4. If the code has been programmed correctly, remove the BDM interface and push the RESET
button on the M523xEVB. The application should now run from the Flash.

The CFFlasher application can be downloaded from http://www.freescale.com/coldfire.

Figure 8. CFFlasher Target Configuration Window
Permanent Magnet Synchronous Motor Vector Control, Driven by eTPU on MCF523x, Rev. 0

Freescale Semiconductor12

http://www.freescale.com/coldfire

System Concept
Figure 9. CFFlasher Program Window

3.3.3 Setting Over-current Level
The over-current fault signal is connected to the eTPU output disable pin (LETPUODIS) that handles
eTPU hardware faults, along with the proper eTPU configuration. This connection is part of M523xEVB1.
In order to enable handling of the fault by software, the fault signal, available on the LETPUODIS pin,
must be connected to eTPU channel 4, which runs the GPIO function and generates an interrupt request to
the CPU in the case of a fault. This connection must be done manually. Connect pin 6 (LETPUODIS) with
pin 16 (ETPUCH4) on the eTPU header (see Figure 10).

The over-current level is set by trimmer R41 on M523xEVB (see Figure 11). Reference 3 describes what
voltage the trimmer defines for the over-current comparator. Follow the steps below to set the over-current
level up properly without measuring the voltage:

1. Connect all system parts according to Figure 7, connect pin 16 with pin 40 on the eTPU header.
Now the over-current interrupt is disabled. The over-current fault is handled by hardware only.

2. Download and start the application.
3. Turn the ON/OFF switch ON. Using the Up and Down buttons, set the required speed to the

maximum.
4. Adjust the R41 trimmer. You can find a level from which the red LED starts to light and the motor

speed starts to be limited. Set the trimmer level somewhat higher, so that the motor can run at the
maximum speed.

5. Turn the ON/OFF switch OFF.

1. When the eTPU is configured for 32-channels, LTPUODIS is applicable to channels 0-15. When the ethernet is enabled (SW11
on), the function of LTPUODIS then changes to channels 0-7 and UTPUODIS thus controls channels 8-15.
Therefore the UTPUODIS must be tied to LTPUODIS to enable the application to work when ethernet is enabled.
Permanent Magnet Synchronous Motor Vector Control, Driven by eTPU on MCF523x, Rev. 0

Freescale Semiconductor 13

System Concept
6. Connect pin 16 with pin 6 on the eTPU header. This enables the over-current interrupt. Both
hardware and software handle the over-current fault.

7. Turn the ON/OFF switch ON. Using the Up and Down buttons, set the required speed to the
maximum.
If the application goes to the fault state during the acceleration, adjust the R41 trimmer level
somewhat higher, so that the motor can get to the maximum speed.

Figure 10. Connection Between LETPUODIS and ETPUCH4 on the eTPU Header

Figure 11. Over-current Level Trimmer on the M523xEVB (R41)

3.3.4 33395 Evaluation Motor Board
The 33395 evaluation motor board is a 12-volt, 8-amp power stage, which is supplied with a 40-pin ribbon
cable. In combination with the M523xEVB, it provides an out-of-the-box software development platform
Permanent Magnet Synchronous Motor Vector Control, Driven by eTPU on MCF523x, Rev. 0

Freescale Semiconductor14

System Concept
for small brushless DC motors. The power stage enables sensing a variety of feedback signals suitable for
different motor control techniques. It measures all three-phase currents, the DC-bus voltage, and the
back-EMF voltages with zero cross sensing. The DC-bus current is also reconstructed from the three-phase
currents. All the analog signals are adapted to be directly sampled by the A/D converter. This single-board
power stage contains an analog bridge gate driver circuitry, sensing and control circuitry, power
N-MOSFET transistors, DC-bus break chopper, as well as various interface connectors for the supply and
the motor.

Figure 12. 33395 Evaluation Motor Board

For more information, refer to Reference 3.

3.3.5 PMSM with Quadrature Encoder
The used motor is a low-voltage MCG PMSM (IB23810). The motor characteristics in Table 2 apply to
operation at 25°C.

Table 2. MCG PMSM (IB23810) Characteristics

Characteristic Tolerance Units Value

Max. operating speed MAX. R.P.M. 5000

Continuous torque MAX. LC 20

Peak torque MAX. LC 60

Continuous current MAX. A 2.0

Peak current MAX. A 5.9

Torque sensitivity ±10% LC/A 11.4
Permanent Magnet Synchronous Motor Vector Control, Driven by eTPU on MCF523x, Rev. 0

Freescale Semiconductor 15

Software Design
• eTPU
— eTPU block diagram
— eTPU timing

Figure 13. eTPU Project Structure

CPU Code

eTPU Function
Source Code,

compiled by
ByteCraft
ETPU_C etpuc.h etpuc_common.h

Code Generated
by eTPU
Compiler

etpu_<func>_auto.h Etpu_set4.h

etpuc_<func>.c Etpuc_set4.c

etpu_util.c/.h

etpu_struct.h

Standard eTPU
Utilities

etpu_<func>.c/.heTPU Function
API

etpu_app_<app_name>.c/.heTPU
Application API

<user_app>_etpu_gct.c/.h
User eTPU

Initialization
Code

User Application main.c
Initialization Methods:
my_system_etpu_init();
my_system_etpu_start();

Run-Time
Methods

Run-Time
Methods

AN2942-
2945SW
AN2970-
2973SW

generated
by eTPU
GCT

the only
code
written by
the user

AN3000-
3002SW

A
N

28
64

S
W

A
N

29
68

S
W

Software Level Source Code Files Origin

eTPU Code

User written code
Freescale supplied code

Generated code
ByteCraft supplied code
Permanent Magnet Synchronous Motor Vector Control, Driven by eTPU on MCF523x, Rev. 0

Freescale Semiconductor 17

Software Design
The CPU software uses several ready-to-use Freescale software drivers. The communication between the
microprocessor and the FreeMASTER on PC is handled by software included in fmaster.c/.h files.
The eTPU module uses the general eTPU utilities, eTPU function interface routines (eTPU function API),
and eTPU application interface routines (eTPU application API). The general utilities, included in the
etpu_util.c/.h files, are used for initialization of global eTPU module and engine settings. The eTPU
function API routines are used for initialization of the eTPU channels and interfacing each eTPU function
during run-time. An eTPU application API encapsulates several eTPU function APIs. The use of an eTPU
application API eliminates the need to initialize each eTPU function separately and handle all eTPU
function initialization settings, ensuring correct cooperation of eTPU functions.

4.1 CPU Software Flowchart

Figure 14. CPU Software Flowchart

After reset, the CPU software initializes interrupts and pins. The following CPU processing is incorporated
in two periodical timer interrupts, one periodical eTPU channel interrupt, one periodical QSPI interrupt,
and two fault interrupts.

4.1.1 Initialization of Interrupts and Pins
The initialization of timer 3, eTPU channel 4 and 7 interrupts, QSPI interrupt, and the eTPU global
exception interrupt, together with initialization of the GPIO and LETPUODIS pins, is done by the
InitInterruptsAndPins function.

RESET

Initialize interrupts and pins

wait

RESET

Initialize interrupts and pins

wait

Read ON/OFF switch status
Handle application state machine

Service Up/Down buttons and Status LED
Read application data structure

Timer 3 Interrupt

Read ON/OFF switch status
Handle application state machine

Service Up/Down buttons and Status LED
Read application data structure

Timer 3 Interrupt

Handle overcurrent fault

Fault Interrupt

Handle overcurrent fault

Fault Interrupt

FreeMaster Dispatcher

FreeMaster Timer Interrupt

FreeMaster Dispatcher

FreeMaster Timer Interrupt

FreeMaster Recorder

eTPU Channel Interrupt

FreeMaster Recorder

eTPU Channel Interrupt

Handle eTPU global exception

eTPU Global Exception Interrupt

Handle eTPU global exception

eTPU Global Exception Interrupt
Transfer external AD converter result
queue, received by QSPI, from QSPI

to eTPU DATA RAM

QSPI Interrupt
Permanent Magnet Synchronous Motor Vector Control, Driven by eTPU on MCF523x, Rev. 0

Freescale Semiconductor18

Software Design
4.1.2 Timer 3 Interrupt Service Routine
The timer 3 interrupt is handled by the timer3_isr function. The following actions are performed
periodical, in timer3_isr:

• Read the ON/OFF switch status.
• Handle the application state machine. The application state diagram is described in detail below.
• Service the Up and Down buttons and the status LED by the ApplicationButtonsAndStatusLed

function.
• Read the data structure through the eTPU application API routine.

fs_etpu_app_pmsmesvc1_get_data (see 4.3).

4.1.3 QSPI Interrupt Service Routine
The QSPI interrupt is handled by the qspi_isr function. A queue of data received by QSPI from external
AD converter is copied to eTPU DATA RAM. Then, QSPI is reinitialized to transfer a command to the
external AD converter. This transfer is executed by DMA from eTPU.

4.1.4 FreeMASTER Interrupt Service Routine
The FreeMASTER interrupt service routine is called fmasterDispatcher. This function is implemented in
fmaster.c.

4.1.5 eTPU Channel Interrupt Service Routine
This interrupt, which is raised every PWM period by the PWMMAC eTPU function running on eTPU
channel 7, is handled by the etpu_ch7_isr function. This function calls fmasterRecorder, implemented in
fmaster.c, enabling the recording of application variable time courses with a PWM-period time resolution.

4.1.6 Fault Interrupt Service Routine
The over-current fault interrupt, which is raised by the GPIO eTPU function running on eTPU channel 4,
is handled by the etpu_ch4_isr function. The following actions are performed in order to switch the motor
off:

• Reset the required speed/torque.
• Disable the generation of PWM signals.
• Switch the Fault LED on.
• Enter APP_STATE_MOTOR_FAULT.
• Set FAULT_OVERCURRENT.

4.1.7 eTPU Global Exception Interrupt Service Routine
The global exception interrupt is handled by the etpu_globalexception_isr function. The following
situations can cause this interrupt assertion:
Permanent Magnet Synchronous Motor Vector Control, Driven by eTPU on MCF523x, Rev. 0

Freescale Semiconductor 19

Software Design
• Microcode global exception is asserted.
• Illegal instruction flag is asserted.
• SCM MISC flag is asserted.

The following actions are performed in order to switch the motor off:
• Reset the required speed.
• Disable the generation of PWM signals.
• Enter APP_STATE_GLOBAL_FAULT.
• Based on the eTPU global exception source, set FAULT_MICROCODE_GE,

FAULT_ILLEGAL_INSTR, or FAULT_MISC.

4.2 Application State Diagram

Figure 15. Application State Diagram

The application state diagram consists of seven states (see Figure 15). After reset, the application goes first
to APP_STATE_INIT. Where the ON/OFF switch is in the OFF position, the APP_STATE_STOP follows,
otherwise the APP_STATE_MOTOR_FAULT is entered and the ON/OFF switch must be turned OFF to
get from APP_STATE_MOTOR_FAULT to APP_STATE_STOP. Then the cycle between
APP_STATE_STOP, APP_STATE_ENABLE, APP_STATE_RUN, and APP_STATE_DISABLE can be
repeated, depending on the ON/OFF switch position. APP_STATE_ENABLE and
APP_STATE_DISABLE states are introduced in order to ensure the safe transitions between the
APP_STATE_STOP and APP_STATE_RUN states. Where the over-current fault interrupt is raised (see

ON/OFF switch
moved OFF

APP_STATE_ENABLEAPP_STATE_ENABLE

APP_STATE_RUNAPP_STATE_RUN

APP_STATE_
MOTOR_FAULT
APP_STATE_

MOTOR_FAULT

APP_STATE_DISABLEAPP_STATE_DISABLE

APP_STATE_STOPAPP_STATE_STOP

reset

APP_STATE_INITAPP_STATE_INIT

ON/OFF switch
moved OFF

ON/OFF switch
moved ON

APP_STATE_
GENERAL_FAULT

APP_STATE_
GENERAL_FAULT

ON/OFF switch
moved OFF

over-current
fault interrupt
Permanent Magnet Synchronous Motor Vector Control, Driven by eTPU on MCF523x, Rev. 0

Freescale Semiconductor20

Software Design
red line on Figure 15), the APP_STATE_MOTOR_FAULT is entered. This fault is cleared by moving the
ON/OFF switch to the OFF position and thus entering the APP_STATE_STOP. Where the eTPU global
exception interrupt is raised (see gray line on Figure 15), the APP_STATE_GLOBAL_FAULT is entered.
The global fault is cleared by moving the ON/OFF switch to the OFF position and thus entering the
APP_STATE_INIT.

The following paragraphs describe the processing in each of the application states.

4.2.1 APP_STATE_INIT
This state is passed through only. It is entered either after a reset, or after the
APP_STATE_GLOBAL_FAULT. Perform the following actions to initialize (re-initialize) the application:

• Call my_system_etpu_init routine for eTPU module initialization.
• Get eTPU functions DATA RAM addresses for FreeMASTER.
• Get the addresses of channel configuration registers for FreeMASTER.
• Initialize QSPI and ADC.
• Set ASAC polarity to pulse high.
• Initialize DMA3.
• Initialize the UART for FreeMASTER.
• Initialize FreeMASTER.
• Call my_system_etpu_start routine for eTPU Start. At this point, the CPU and the eTPU

run in parallel.
• Depending on the ON/OFF switch position, enter APP_STATE_STOP or

APP_STATE_MOTOR_FAULT.

4.2.1.1 Initialization and Start of eTPU Module
The eTPU module is initialized using the my_system_etpu_init function. Later, after initialization
of all other peripherals, the eTPU is started by my_system_etpu_start. These functions use the
general eTPU utilities and eTPU function API routines. Both the my_system_etpu_init and
my_system_etpu_start functions, included in pmsmesvc1_etpu_gct.c file, are generated by
the eTPU graphical configuration tool. The eTPU graphical configuration tool can be downloaded from
http://www.freescale.com/etpu. For more information, refer to Reference 16.

The my_system_etpu_init function first configures the eTPU module and motor settings. Some of
these settings include the following:

• Channel filter mode = two-sample mode
• Channel filter clock = etpuclk div 2

The input signals (from quadrature encoder) are filtered by channel filters. The filter settings
guarantee minimum delay of input transition recognition.

• TCR1 source = etpuclk div 2
Permanent Magnet Synchronous Motor Vector Control, Driven by eTPU on MCF523x, Rev. 0

Freescale Semiconductor 21

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=eTPU
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=eTPU
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=eTPU

Software Design
• TCR1 prescaler = 1
The TCR1 internal eTPU clock is set to its maximum rate of 37.5 MHz (at a 150-MHz system
clock), corresponding to the 27ns resolution of generated PWM signals.

After configuring the module and engine settings, the my_system_etpu_init function initializes the
eTPU channels.

• Channel 1 - quadrature decoder (QD) - phase A channel
Channel 2 - quadrature decoder (QD) - phase B channel
Channel 3 - quadrature decoder (QD) - index channel
Channel 4 - general purpose I/O (GPIO)
Channel 5 - speed controller (SC)
Channel 6 - PMSM vector control (PMSMVC)
Channel 7 - PWM master for AC motors (PWMMAC)
Channel 8 - PWM full range (PWMF) - phase A - base channel
Channel 9 - PWM full range (PWMF) - phase A - complementary channel
Channel 10 - PWM full range (PWMF) - phase B - base channel
Channel 11 - PWM full range (PWMF) - phase B - complementary channel
Channel 12 - PWM full range (PWMF) - phase C - base channel
Channel 13 - PWM full range (PWMF) - phase C - complementary channel
Channel 14 - analog sensing for AC motors (ASAC)
Channel 15 - break controller (BC).

These eTPU channels are initialized by the fs_etpu_app_pmsmesvc1_init eTPU
application API function (see 4.3). The application settings are as follows:
— PWM phases-type is full range complementary pairs
— PWM frequency 20 kHz
— PWM dead-time 500ns
— Motor speed range 1 400 RPM
— Motor speed minimum 5 RPM
— DC-bus voltage 9V
— Number of motor pole pairs 2
— Speed controller update frequency 5 kHz
— Speed PI controller parameters:

Controller gain is 1.
Integral time constant is 1ms.
The controller parameters were experimentally tuned.

— Ramp parameters:
300ms to ramp up from zero to the maximum speed.
Permanent Magnet Synchronous Motor Vector Control, Driven by eTPU on MCF523x, Rev. 0

Freescale Semiconductor22

Software Design
— D-current PI controller parameters:
Controller gain is 1.
Integral time constant is 500µs.
The controller parameters were experimentally tuned.

— Q-current PI controller parameters:
Controller gain is 1.
Integral time constant is 500µs.
The controller parameters were experimentally tuned.

— Motor electrical constant 8.4V/kRPM
— Motor induction 6.32mH
— Number of quadrature encoder position counter increments per one revolution 2000.
— Range AD converter sampling phase currents corresponds to 1.947A.
— Break controller mode - PWM-based breaking signal is generated in case of over-voltage.
— Break control signal polarity is active high.
— DC-bus voltage level, at which break control signal is ON, is 130% of the nominal DC-bus

voltage.
— DC-bus voltage level, at which break control signal is OFF, is 110% of the nominal DC-bus

voltage.
— ASAC function triggers A/D converter on high-low edge (applies only during AD converter

initialization, then this option is changed).
— Phase currents and DC-bus voltage measurement time, including A/D conversion time and

transfer time, is 15µs.
— p_ASAC_result_queue pointer contains the address to eTPU DATA RAM, where the result

queue is transferred.
— The samples in result queue are shifted left by 12 bits to achieve bit alignment corresponding

to 24-bit fractional format, which is used by eTPU functions.
— Phase A current sample offset within ASAC_result_queue is 2.
— Phase B current sample offset within ASAC_result_queue is 4.
— Phase C current sample offset within ASAC_result_queue is 6.
— DC-bus voltage sample offset within ASAC_result_queue is 0.
— ASAC EWMA filter time constant is 200µs for phase currents.
— ASAC EWMA filter time constant is 1ms for DC-bus voltage.

• Channel 4 - general purpose I/O (GPIO)
This eTPU channel is initialized by the fs_etpu_gpio_init API function. The setting is:
— Channel priority: high

The my_system_etpu_start function first applies the settings for the channel interrupt enable and
channel output disable options, then enables the eTPU timers, thus starting the eTPU.
Permanent Magnet Synchronous Motor Vector Control, Driven by eTPU on MCF523x, Rev. 0

Freescale Semiconductor 23

Software Design
Figure 16. eTPU Configuration Using the eTPU Graphical Configuration Tool

4.2.1.2 Initialization of FreeMASTER Communication
Prior to FreeMASTER initialization, it is necessary to set pointers to the eTPU functions’ DATA RAM
bases and configuration register bases. Based on these pointers, which are read by FreeMASTER during
the initialization, the locations of all eTPU function parameters and configuration registers are defined.
This is essential for correct FreeMASTER operation.
Permanent Magnet Synchronous Motor Vector Control, Driven by eTPU on MCF523x, Rev. 0

Freescale Semiconductor24

Software Design
FreeMASTER consists of software running on a PC and on the microprocessor, connected via an RS-232
serial port. A small program resident in the microprocessor communicates with the FreeMASTER on the
PC in order to return status information to the PC, and processes control information from the PC. The
microprocessor part of FreeMASTER is initialized by two functions: iniFmasterUart and fmasterInit. Both
functions are included in fmaster.c, which automatically initializes the UART driver and installs all
necessary services.

4.2.2 APP_STATE_STOP
In this state, the PWM signals are disabled and the motor is off. The motor shaft can be rotated by hand,
which enables the user to explore the functionality of the quadrature decoder (QD) eTPU function, watch
variables produced by the QD, and see QD signals in FreeMASTER.

When the ON/OFF switch is turned on, the application goes through APP_STATE_ENABLE to
APP_STATE_RUN.

4.2.3 APP_STATE_ENABLE
This state is passed through only. The following actions are performed in order to switch the motor drive
on:

• Reset the required speed.
• Enable the generation of PWM signals by calling the fs_etpu_app_pmsmesvc1_enable

application API routine. This routine also performs the motor alignment.

If the PWM phases are successfully enabled, the GPIO eTPU function is configured as input and interrupt
on rising edge, and it enters APP_STATE_RUN mode. If the PWM phases are not successfully enabled,
the application state does not change.

4.2.4 APP_STATE_RUN
In this state, the PWM signals are enabled and the motor is on. The required motor speed or torque can be
set using the Up and Down buttons on the M523xEVB or by using FreeMASTER. The latest value is
periodically written to the eTPU.

When the ON/OFF switch is turned off, the application goes through APP_STATE_DISABLE to
APP_STATE_STOP.

4.2.5 APP_STATE_DISABLE
This state is passed through only. The following actions are performed in order to switch the motor drive
off:

• Reset the required speed/torque.
• Disable the generation of PWM signals.

If PWM phases were successfully disabled, APP_STATE_STOP is entered. If PWM phases are not
successfully disabled, the application state remains the same.
Permanent Magnet Synchronous Motor Vector Control, Driven by eTPU on MCF523x, Rev. 0

Freescale Semiconductor 25

Software Design
4.2.6 APP_STATE_MOTOR_FAULT
This state is entered after the over-current fault interrupt service routine. The application waits until the
ON/OFF switch is turned off. This clears the fault and the application enters the APP_STATE_STOP.

4.2.7 APP_STATE_GLOBAL_FAULT
This state is entered after the eTPU global exception interrupt service routine. The application waits until
the ON/OFF switch is turned off. This clears the fault and the application enters the APP_STATE_INIT.

4.3 eTPU Application API
The eTPU application API encapsulates several eTPU function APIs. The eTPU application API includes
CPU methods which enable initialization, control, and monitoring of an eTPU application. The use of
eTPU application API functions eliminates the need to initialize and set each eTPU function separately,
and ensures correct cooperation of the eTPU functions. The eTPU application API is device-independent
and handles only the eTPU tasks.

Abbreviated application names shorten the eTPU application names:
• Motor type (DCM = DC motor, BLDCM = brushless DC motor, PMSM = permanent magnet

synchronous motor, ACIM = AC induction motor, SRM = switched reluctance motor, SM =
stepper motor)

• Sensor type (H = Hall sensors, E = shaft encoder, R = resolver, S = sincos, X = sensorless)
• Control type (OL = open loop, PL = position loop, SL = speed loop, CL = current loop, SVC =

speed vector control, TVC = torque vector control)

Based on these definitions, the PMSMESVC1 is an abbreviation for ‘PMSM with quadrature encoder and
speed vector control’ eTPU motor-control application. As there can be several applications like this, the
number 1 denotes the first such application in order.

The PMSMESVC1 eTPU application API is described in the following paragraphs. There are five basic
functions added to the PMSMESVC1 application API. The routines can be found in the
etpu_app_pmsmesvc1.c/.h files. All PMSMESVC1 application API routines will be described in
order and are listed below:

• Initialization function:
int32_t fs_etpu_app_pmsmesvc1_init(
 pmsmesvc1_instance_t * pmsmesvc1_instance,
 uint8_t PWM_master_channel,
 uint8_t PWM_phaseA_channel,
 uint8_t PWM_phaseB_channel,
 uint8_t PWM_phaseC_channel,
 uint8_t QD_phaseA_channel,
 uint8_t QD_index_channel,
 uint8_t SC_channel,
 uint8_t BC_channel,
Permanent Magnet Synchronous Motor Vector Control, Driven by eTPU on MCF523x, Rev. 0

Freescale Semiconductor26

Software Design
 uint8_t PMSMVC_channel,
 uint8_t ASAC_channel,
 uint8_t PWM_phases_type,
 uint32_t PWM_freq_hz,
 uint32_t PWM_dead_time_ns,
 int32_t speed_range_rpm,
 int32_t speed_min_rpm,
 int32_t dc_bus_voltage_mv,
 uint8_t pole_pairs,
 uint32_t SC_freq_hz,
 int32_t SC_PID_gain_permil,
 int32_t SC_I_time_const_us,
 uint32_t SC_ramp_time_ms,
 int32_t PMSMVC_D_PID_gain_permil,
 int32_t PMSMVC_D_I_time_const_us,
 int32_t PMSMVC_Q_PID_gain_permil,
 int32_t PMSMVC_Q_I_time_const_us,
 int32_t PMSM_Ke_mv_per_krpm,
 int32_t PMSM_L_uH,
 uint32_t QD_pc_per_rev,
 int32_t phase_current_range_ma,
 uint8_t BC_mode,
 uint8_t BC_polarity,
 uint8_t BC_u_dc_bus_ON_perc,
 uint8_t BC_u_dc_bus_OFF_perc,
 uint8_t ASAC_polarity,
 uint24_t ASAC_measure_time_us,
 uint32_t *ASAC_result_queue,
 uint8_t ASAC_bit_shift,
 uint8_t ASAC_ia_queue_offset,
 uint8_t ASAC_ib_queue_offset,
 uint8_t ASAC_ic_queue_offset,
 uint8_t ASAC_u_dcbus_queue_offset,
 uint32_t ASAC_filter_time_constant_i_us,
 uint32_t ASAC_filter_time_constant_u_us);

• Change operation functions:
int32_t fs_etpu_app_pmsmesvc1_enable(
 pmsmesvc1_instance_t * pmsmesvc1_instance,
 uint8_t sc_configuration)

int32_t fs_etpu_app_pmsmesvc1_disable(
Permanent Magnet Synchronous Motor Vector Control, Driven by eTPU on MCF523x, Rev. 0

Freescale Semiconductor 27

Software Design
 pmsmesvc1_instance_t * pmsmesvc1_instance)

void fs_etpu_app_pmsmesvc1_set_speed_required(
 pmsmesvc1_instance_t * pmsmesvc1_instance,
 int32_t speed_required_rpm)

• Value return function:
void fs_etpu_app_pmsmesvc1_get_data(
 pmsmesvc1_instance_t * pmsmesvc1_instance,
 pmsmesvc1_data_t * pmsmesvc1_data)

4.3.1 int32_t fs_etpu_app_pmsmesvc1_init(...)
This routine is used to initialize the eTPU channels for the PMSM with quadrature encoder and torque
vector control application. This function has the following parameters:

• pmsmesvc1_instance (pmsmesvc1_instance_t*) - A pointer to pmsmesvc1_instance_t structure,
which is filled by fs_etpu_app_pmsmesvc1_init. This structure must be declared in the
user application. When there are more instances of the application running simultaneously, there
must be a separate pmsmesvc1_instance_t structure for each one.

• PWM_master_channel (uint8_t) - The PWM master channel number; 0-31 for ETPU_A, and
64-95 for ETPU_B.

• PWM_phaseA_channel (uint8_t) - The PWM phase A channel number; 0-31 for ETPU_A, and
64-95 for ETPU_B. In the case of complementary signal generation
(PWM_phases_type==FS_ETPU_APP_PMSMESVC1_COMPL_PAIRS), the complementary
channel is one channel higher.

• PWM_phaseB_channel (uint8_t) - The PWM phase B channel number; 0-31 for ETPU_A, and
64-95 for ETPU_B. In the case of complementary signal generation
(PWM_phases_type==FS_ETPU_APP_PMSMESVC1_COMPL_PAIRS), the complementary
channel is one channel higher.

• PWM_phaseC_channel (uint8_t) - The PWM phase C channel number; 0-31 for ETPU_A, and
64-95 for ETPU_B. In the case of complementary signal generation
(PWM_phases_type==FS_ETPU_APP_PMSMESVC1_COMPL_PAIRS), the complementary
channel is one channel higher.

• QD_phaseA_channel (uint8_t) - The quadrature decoder phase A channel number; 0-30 for
ETPU_A, and 64-94 for ETPU_B. The quadrature decoder phase A channel is one channel
higher.

• QD_index_channel (uint8_t) - The quadrature decoder index channel number; 0-31 for ETPU_A,
and 64-95 for ETPU_B.

• SC_channel (uint8_t) - The speed controller channel number; 0-31 for ETPU_A, and 64-95 for
ETPU_B.

• BC_channel (uint8_t) - The break controller channel number; 0-31 for ETPU_A, and 64-95 for
ETPU_B.
Permanent Magnet Synchronous Motor Vector Control, Driven by eTPU on MCF523x, Rev. 0

Freescale Semiconductor28

Software Design
• PMSMVC_channel (uint8_t) - The PMSM vector control function channel number; 0-31 for
ETPU_A, and 64-95 for ETPU_B.

• ASAC_channel (uint8_t) - The analog sensing for AC motors (ASAC) channel number; 0-31 for
ETPU_A, and 64-95 for ETPU_B.

• PWM_phases_type (uint8_t) - Determines the type of all PWM phases; should be assigned a
value of FS_ETPU_APP_PMSMESVC1_SINGLE_CHANNELS or
FS_ETPU_APP_PMSMESVC1_COMPL_PAIRS.

• PWM_freq_hz (uint32_t) - The PWM frequency in Hz.
• PWM_dead_time_ns (uint32_t) - The PWM dead-time in ns.
• speed_range_rpm (int32_t) - The maximum motor speed in rpm.
• speed_min_rpm (int32_t) - The minimum (measurable) motor speed in rpm.
• dc_bus_voltage_mv (int32_t) - The DC-bus voltage in mV.
• pole_pairs (uint8_t) - The number of motor pole-pairs.
• SC_freq_hz (uint32_t) - The speed controller update frequency in Hz. The assigned value must be

equal to the PWM_freq_hz divided by 1, 2, 3, 4, 5, ...
• SC_PID_gain_permil (int32_t) - The speed PI controller gain in millesimals.
• SC_I_time_constant_us (int32_t) - The speed PI controller integral time constant in µs.
• SC_ramp_time_ms (uint32_t) - Defines the required speed ramp time in ms. A step change of the

required speed from 0 to speed_range_rpm is slowed down by the ramp to take the defined time.
• PMSMVC_D_PID_gain_permil (int32_t) - The D-current (flux controlling current) PI controller

gain in millesimals.
• PMSMVC_D_I_time_constant_us (int32_t) - The D-current (flux controlling current) PI

controller integral time constant in µs.
• PMSMVC_Q_PID_gain_permil (int32_t) - The Q-current (torque controlling current) PI

controller gain in millesimals.
• PMSMVC_Q_I_time_constant_us (int32_t) - The Q-current (torque controlling current) PI

controller integral time constant in µs.
• PMSM_Ke_mv_per_krpm (int32_t) - The motor electrical constant in mV/1000RPM.
• PMSM_L_uH (int32_t) - The motor induction in µH.
• QD_qd_pc_per_rev (uint32_t) - The number of QD position counter increments per one

revolution.
• phase current_range_ma (int32_t) - The maximum measurable phase current in mA.
• BC_mode (uint8_t) - The BC function mode; should be assigned a value of

FS_ETPU_APP_PMSMESVC1_BC_MODE_ON_OFF or
FS_ETPU_APP_PMSMESVC1_BC_MODE_PWM.

• BC_polarity (uint8_t) - The BC output polarity.; should be assigned a value of
FS_ETPU_APP_PMSMESVC1_BC_ON_HIGH or
FS_ETPU_APP_PMSMESVC1_BC_ON_LOW.
Permanent Magnet Synchronous Motor Vector Control, Driven by eTPU on MCF523x, Rev. 0

Freescale Semiconductor 29

Software Design
• BC_u_dc_bus_ON_perc (uint8_t) - The proportion between U_DC_BUS (above which the BC
output is ON) and the nominal U_DC_BUS, expressed in percentage (usually about 130%).

• BC_u_dc_bus_OFF_perc (uint8_t) - The proportion between U_DC_BUS (below which the BC
output is OFF) and the nominal U_DC_BUS, expressed in percentage (usually about 110%).

• ASAC_polarity (uint8_t) - The polarity to assign to the ASAC function; should be assigned a
value of FS_ETPU_APP_PMSMESVC1_ASAC_PULSE_HIGH or
FS_ETPU_APP_PMSMESVC1_ASAC_PULSE_LOW.

• ASAC_measure_time_us (uint24_t) - Time from the first (triggering) edge to the second edge, at
which the result queue is supposed to be ready in the DATA_RAM (in us). This value depends on
the A/D conversion time and DMA transfer time.

• ASAC_result_queue (uint32_t *) - Pointer to the result queue in eTPU DATA RAM. Result queue
is an array of 16-bit words that contains the measured values.

• ASAC_bit_shift (uint8_t) - Defines how to align data from the result queue into fract24 (or int24).
This parameter should be assigned a value of:
FS_ETPU_APP_PMSMESVC1_ASAC_SHIFT_LEFT_BY_8,
FS_ETPU_APP_PMSMESVC1_ASAC_SHIFT_LEFT_BY_10,
FS_ETPU_APP_PMSMESVC1_ASAC_SHIFT_LEFT_BY_12, or
FS_ETPU_APP_PMSMESVC1_ASAC_SHIFT_LEFT_BY_16.

• ASAC_ia_queue_offset (uint8_t) - Position of the phase A current sample in the result queue.
Offset is defined in bytes.

• ASAC_ib_queue_offset (uint8_t) - Position of the phase B current sample in the result queue.
Offset is defined in bytes.

• ASAC_ic_queue_offset (uint8_t) - Position of the phase C current sample in the result queue.
Offset is defined in bytes.

• ASAC_u_dcbus_queue_offset (uint8_t) - Position of the DC-bus voltage sample in the result
queue. Offset is defined in bytes.

• ASAC_filter_time_constant_i_us (uint32_t) - The time constant of an exponentially-weighted
moving average (EWMA) filter that applies when processing the phase current samples, in us.

• ASAC_filter_time_constant_i_us (uint32_t) - The time constant of an EWMA filter that applies
when processing the DC-bus voltage samples, in us.

4.3.2 int32_t fs_etpu_app_pmsmesvc1_enable(...)
This routine is used to enable the generation of PWM signals, align the motor to the start position and reset
position counter, initialize measurement of analog values, and start the vector control loop and the speed
controller. This function has the following parameters:

• pmsmesvc1_instance (pmsmesvc1_instance_t*) - A pointer to pmsmesvc1_instance_t structure,
which is filled by fs_etpu_app_pmsmesvc1_init.
Permanent Magnet Synchronous Motor Vector Control, Driven by eTPU on MCF523x, Rev. 0

Freescale Semiconductor30

Software Design
• sc_configuration (uint8_t) - The required configuration of the SC; should be assigned a value of
FS_ETPU_APP_PMSMESVC1_SPEED_LOOP_OPENED or
FS_ETPU_APP_PMSMESVC1_SPEED_LOOP_CLOSED.
If the speed loop is opened, the motor is controlled by torque; if closed, the motor is controlled by
speed.

4.3.3 int32_t fs_etpu_app_pmsmesvc1_disable
(pmsmesvcl1_instance_t * pmsmesvc1_instance)

This routine is used to disable the generation of PWM signals and stop the vector control loop and the
speed controller. This function has the following parameter:

• pmsmesvc1_instance (pmsmesvc1_instance_t*) - A pointer to pmsmesvc1_instance_t structure,
which is filled by fs_etpu_app_pmsmesvc1_init.

4.3.4 void fs_etpu_app_pmsmesvc1_set_speed_required(...)
This routine is used to set the required motor speed. This function has the following parameters:

• pmsmesvc1_instance (pmsmesvc1_instance_t*) - A pointer to pmsmesvc1_instance_t structure,
which is filled by fs_etpu_app_pmsmesvc1_init.

• speed_required_rpm (int32_t) - The required motor speed in rpm.
If the speed loop is opened (sc_configuration has been set to
FS_ETPU_APP_PMSMESVC1_SPEED_LOOP_OPENED in
fs_etpu_pmsmesvc1_enable(...)), the required speed value is passed directly to the
speed controller output, which is the required motor torque. In this case, the required motor speed
in RPM, as a fraction of the speed range in RPM, corresponds to the required motor torque, as a
fraction of the maximum motor torque.

4.3.5 void fs_etpu_app_pmsmesvc1_get_data(...)
This routine is used to get the application state data. This function has the following parameters:

• pmsmesvc1_instance (pmsmesvc1_instance_t*) - A pointer to pmsmesvc1_instance_t structure,
which is filled by fs_etpu_app_pmsmesvc1_init.

• pmsmesvc1_data (pmsmesvc1_data_t*) - A pointer to pmsmesvc1_data_t structure of application
state data, which is updated.

4.4 eTPU Block Diagram
The eTPU functions used in the PMSM vector control drive are located in the AC motor-control set of
eTPU functions (set4 - AC motors). The eTPU functions within the set serve as building blocks for various
AC motor-control applications. The following paragraphs describe the functionality of each block.
Permanent Magnet Synchronous Motor Vector Control, Driven by eTPU on MCF523x, Rev. 0

Freescale Semiconductor 31

	Permanent Magnet Synchronous Motor Vector Control, Driven by eTPU on MCF523x
	1 ColdFire MCF523x and eTPU Advantages and Features

