
Freescale Semiconductor
Application Note

AN2891
Rev. 0, 11/2004
Handling Multiple Interrupts on the
MAC7100 Microcontroller Family
Brian LaPonsey
32-Bit Embedded Controller Division
East Kilbride, Scotland
Table of Contents
1 Abstract ...1
2 Objective..2
3 Background ...2
4 ARM7TDMI-S Core ..3
5 Exceptions...5
6 Interrupt Handling..8
7 The MAC7100 Interrupt Controller Module11
8 Simple Interrupt Handlers..................................14
9 Nested Interrupts...18
10 Example Projects ..22
11 Conclusion and Further Reading24

A Notes on The Example Source Code................27
This application note discusses concepts and methods for
servicing interrupt requests from multiple sources on the
MAC7100 family of microcontrollers.

1 Abstract
The concept of asynchronous interrupts is introduced
briefly, followed by a discussion of mode switching and
the banked register structure of the ARM7TDMI-S™
core. The normal interrupt request (IRQ) and fast
interrupt request (FIQ) exception types are introduced,
with details of how the core responds to an IRQ signal.
The differences between FIQ and IRQ are discussed.

A method for interrupt handling using a vector service
routine with a jump table is presented. This leads into a
discussion of the features of the MAC7100 Interrupt
Controller (INTC) module. Several of the INTC registers
and their purposes are explained, with example strategies
for classifying interrupt sources into IRQ or FIQ types.
The concepts of priority selection and masking are
covered in detail.

A simple vector service routine (VSR) written in C is
presented as an introductory example, with a discussion
© Freescale Semiconductor, Inc., 2004. All rights reserved.

Objective
of the limitations involved in writing such a routine in a high-level language. The construction and use of
a jump table is covered in greater detail than before, with an example. The problem of context saving is
discussed, including the complications that arise when using non-standard C language to save the scratch
registers. An equivalent VSR written in assembler is presented which works around these issues, with each
assembler statement’s purpose explained in detail.

The topic of nested interrupts is introduced with an explanation of what they are, why they are used, and
the added complexities involved with their implementation. The additional machine state information that
must be saved before enabling nested interrupts is discussed in detail. A reentrant vector service routine is
presented with assembler source code and detailed explanatory notes.

Three example projects to illustrate the developed concepts are presented in increasing order of
complexity. Detailed notes on the most critical source code files are included in Appendix A.

2 Objective
This application note will discuss the details of using the ARM7TDMI-S core architecture and instruction
set in conjunction with the MAC7100 Interrupt Controller module to efficiently handle interrupt
processing. Examples will be provided with increasing levels of complexity, explaining at each level the
steps necessary to effectively manage the interrupt environment and processor context. The reader should
gain an understanding of the fundamentals of handling multiply-nested interrupt requests effectively on
the MAC7100 device family.

It is assumed that the reader will have some prior experience in embedded system programming, and will
be familiar with the ARM v4T architecture. These topics will be reviewed briefly, but a more in-depth
treatment is available from the reference materials listed in the last section.

Example software is written for the GNU compiler and assembler. These examples are used only to
illustrate the concepts developed in the document, and are neither expected nor intended to be incorporated
as-written into a commercial product. System designers are encouraged to evaluate these examples and
modify them accordingly, in order to satisfy the requirements of a particular application.

3 Background
The MAC7100 and its successors provide a cost-effective solution for the embedded designer requiring
32-bit performance with the option of using the compact 16-bit Thumb instruction set.

An embedded controller such as the MAC7100 must be able to respond quickly to changing input signals
from its environment. In a highly-integrated System-on-Chip design, many such signals can be generated
asynchronously by peripheral modules such as communications controllers, analog inputs or digital I/O.

Rather than constantly polling all the active peripherals to see if any require service, it is far more efficient
to have each peripheral notify the core when attention is required. Under these circumstances, the core
needs the ability to set aside its current task and handle these events as they occur. An event such as this
is called an interrupt, and on the MAC7100, interrupts can be generated by over 200 different sources.

The MAC7100 family integrates a hardware interrupt controller (INTC) module to allow the core to
handle these events. The Interrupt Controller (INTC) Module supports 64 interrupt sources organized as
Handling Multiple Interrupts on the MAC7100 Microcontroller Family, Rev. 0

Freescale Semiconductor2

ARM7TDMI-S Core
16 priority levels, and defines a unique vector number for each source. Automatic hardware-implemented
masking relieves the core of some of the work needed to support priority-based nesting of interrupts.

4 ARM7TDMI-S Core

4.1 Processor Modes
The ARM7TDMI-S core of the MAC7100 family is an implementation of the ARM v4T architecture. For
details of the ARM v4T, its programming model and instruction set, please refer to the ARM Architecture
Reference Manual.

The core of the MAC7100 has seven operating modes (see Table 1), and its programming model changes
depending on which operating mode the core is in at the time. Six of these are collectively known as
privileged modes, and are intended for servicing exceptions and accessing protected system resources. The
operating mode switches automatically into one of these privileged modes when an exception occurs.

The state of the lowest 5 bits in the Current Program Status Register (CPSR) define the mode (see
Figure 1). The mode changes automatically in response to an exception signal, but it also can be altered
under software control by manually modifying the contents of this field. There are only seven valid modes
on the ARM v4T architecture, so care should be taken to use only the bit combinations shown in Table 1.
Failure to do so will place the processor in an unrecoverable state.

Condition
Code Flags

Control
Bits

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N Z C V Reserved I F T MODE

N
eg

at
iv

e
or

 L
es

s-
T

ha
n

Z
er

o

C
ar

ry
, B

or
ro

w
 o

r
E

xt
en

d

O
ve

rf
lo

w

IR
Q

 D
is

ab
le

F
IQ

 D
is

ab
le

T
hu

m
b

S
ta

te

Mode Bits

Figure 1. Current Program Status Register (CPSR)
Handling Multiple Interrupts on the MAC7100 Microcontroller Family, Rev. 0

Freescale Semiconductor 3

ARM7TDMI-S Core
4.2 Banked Registers
The ARM7TDMI-S core implements 31 general-purpose registers, but only 16 of these are visible in User
or System mode. The registers are organized into partially overlapping banks, and it depends on the
operating mode which subset of these registers is accessible. Registers R0-R7 are always accessible, so
these are said to be unbanked. If a program accesses an unbanked register, this access will always be to the
same physical location no matter what the mode.

R8 to R14 are banked registers, implying that there is more than one occurrence of a register by that name.
The actual physical location referred to by the name depends on the processor’s operating mode at the time.
Registers R8-R12 each have two banked versions, one for use in FIQ mode and the other for use in all
other operating modes. To avoid confusion, the FIQ versions are usually referred to as R8_fiq - R12_fiq
when it is necessary to distinguish them from the normal register set.

Registers R13 and R14 are also banked, and they each have six physical versions. One version is used for
User and System mode, and the remaining five are reserved for use in each of the exception modes. To
distinguish the versions from each other, it is customary to use the naming convention as described below,
with the correct mode suffix corresponding to the exception type:

• usr (User and System mode)
• svc (Supervisor)
• abt (Abort)
• und (Undefined)
• irq (IRQ)
• fiq (FIQ)

Table 1. CPSR[MODE] Field Definitions

Mode CPSR[4:0] Description

User 10000 The least-privileged operating mode, useful when an operating system needs to restrict a running
program’s access to certain system resources. Many control and status registers on the MAC7100
family’s peripherals are write-protected by default in user mode.

FIQ 10001 Fast Interrupt Request mode is used for time-critical events that must be handled as quickly as
possible. High-speed communications reception or DMA access are examples of these.

IRQ 10010 Normal Interrupt Request mode is provided for general-purpose interrupt handling.

Supervisor 10011 Supervisor mode is intended as a protected mode for use by the operating system, and is the mode
entered by the processor at reset.

Abort 10111 Abort mode is provided to implement virtual memory and protected memory schemes. This mode
can be entered through a data abort (memory abort on data access) or prefetch abort (memory
abort on instruction fetch).

Undef 11011 Undefined instruction mode is useful for software emulation of coprocessor functions.

System 11111 A privileged mode similar to Supervisor, but without the ability to access the banked registers. This
provides an additional level of security when the operating system needs to perform system-related
tasks, but does not want to incur the risk of accidentally corrupting the machine state preserved in
the banked registers.
Handling Multiple Interrupts on the MAC7100 Microcontroller Family, Rev. 0

Freescale Semiconductor4

Exceptions
Register R13 in all modes is normally used as a stack pointer, or SP. There are six banked versions of the
SP, so it is important to initialize each one to a valid memory location at startup time. Failure to do so can
result in some strange errors if exceptions occur, usually ending in a data abort when the banked SP tries
to access memory from an undefined address.

Register R14 is used to hold subroutine return addresses, so it is sometimes called the link register (LR).

Register R15 is unbanked, and is also called the program counter. One unusual feature of the ARM architecture
is that the program counter (PC) can be read and written just like any other general purpose register.

The CPSR (see Figure 1) is visible in all operating modes. Each exception mode has a Saved Program
Status Register (SPSR) that is used to store the original CPSR contents at the time an exception occurs.
User and System mode do not have access to a banked SPSR, because these modes cannot be entered by
an exception.

Table 2 shows the entire register set, with each operating mode’s programming model represented by a
single vertical column.

5 Exceptions
An exception is a request for some action that is out of the ordinary, one that does not follow the normal
program flow. Exceptions on the MAC7100 are caused by sources external to the core, and require a
change in the normal sequence of execution. In essence, exception handling is a control mechanism

Table 2. ARM7TDMI-S Core Programming Model

User System Supervisor Abort Undef IRQ FIQ

R0 R0 R0 R0 R0 R0 R0

R1 R1 R1 R1 R1 R1 R1

R2 R2 R2 R2 R2 R2 R2

R3 R3 R3 R3 R3 R3 R3

R4 R4 R4 R4 R4 R4 R4

R5 R5 R5 R5 R5 R5 R5

R6 R6 R6 R6 R6 R6 R6

R7 R7 R7 R7 R7 R7 R7

R8 R8 R8 R8 R8 R8 R8_fiq 1

R9 R9 R9 R9 R9 R9 R9_fiq 1

R10 R10 R10 R10 R10 R10 R10_fiq 1

R11 R11 R11 R11 R11 R11 R11_fiq 1

R12 R12 R12 R12 R12 R12 R12_fiq 1

R13 R13 R13_svc 1

NOTES:
1. This is an alternative register specific to the exception mode, which replaces the normal register used by

User or System mode.

R13_abt 1 R13_und 1 R13_irq 1 R13_fiq 1

R14 R14 R14_svc 1 R14_abt 1 R14_und 1 R14_irq 1 R14_fiq 1

PC PC PC PC PC PC PC

CPSR CPSR CPSR CPSR CPSR CPSR CPSR

SPSR_svc 1 SPSR_abt 1 SPSR_und 1 SPSR_irq 1 SPSR_fiq 1
Handling Multiple Interrupts on the MAC7100 Microcontroller Family, Rev. 0

Freescale Semiconductor 5

Exceptions
designed to deal with these situations. When viewed from this perspective, exceptions are not errors; they
are requests for extra-ordinary service.

5.1 Exception Types
The ARM7TDMI-S core in the MAC7100 supports five types of exceptions:

• Fast interrupt requests (FIQ)
• Normal interrupt requests (IRQ)
• Memory aborts
• Attempted execution of undefined instructions
• Software interrupt instructions (SWI)

This application note will focus on IRQ and FIQ interrupt requests, because they are closely linked to the
functioning of the MAC7100 Interrupt Controller module. Information about the other exception types and
their uses can be found in the ARM Architecture Reference Manual, and from application notes available
on the web and other sources.

5.2 IRQ: Normal Interrupt Requests
The ARM7TDMI-S core architecture provides two types of interrupt requests. The purpose of these is to
allow an external peripheral to notify the core that it requires service. The first interrupt type is the Normal
Interrupt Request, or IRQ. If an IRQ request is received by core, the current task will be suspended in order
to service the request.

The aim of recognizing an interrupt is to allow the core to redirect the program flow to a routine that
handles the situation, but this must be done in a manner that is transparent to the main program. In order
to achieve this transparency, several items of the current context must be carefully saved. These items are
referred to as the machine state, and will be restored after the interrupt handler completes. The first parts
of the machine state that the core preserves in reaction to an exception are the PC and the CPSR.

In the case of a normal interrupt request, the banked “_irq” versions of the link register (R14_irq) and
SPSR_irq are used for this purpose:

R14_irq := PC+4 (save return link)
SPSR_irq := CPSR (save CPSR before exception)

The symbol := means “is replaced by,” and is used throughout this document. Note that the Link Register is
replaced by PC+4, the address of the next instruction to be executed plus 4. This is a result of the ARM v4T
architecture’s 3-stage pipeline, and is explained more fully in the ARM Architecture Reference Manual.

Once the LR and CPSR are saved, the processor state can then safely be modified to facilitate interrupt
handling. First, the processor is placed in ARM (32-bit instruction) state, and the mode is changed to
enable the banked registers:

CPSR[4:0] := 0b10010 (enter IRQ mode)
CPSR[5] := 0 (put processor into ARM state)
Handling Multiple Interrupts on the MAC7100 Microcontroller Family, Rev. 0

Freescale Semiconductor6

Exceptions
The core then disables the recognition of further IRQ signals to avoid unintentional nesting, which would
destroy the saved processor context. FIQs are left enabled during IRQ handling to allow nesting of FIQ
over IRQ handlers:

CPSR[7] := 1 (disable further IRQ requests)

Finally, the program flow is vectored to the memory address associated with IRQ exceptions. Execution
continues at 0x0018 with the “_irq” banked register set enabled. 1

PC := 0x0018 (redirect flow to exception vector)

At this point, the program flow will enter a section of code to preserve any additional machine state necessary
to restore the context later. The source of the interrupt must be identified, and whatever actions appropriate
to handle it must be taken. After the IRQ handler has finished, it must restore the machine state and return
control to the main program, which will continue undisturbed from the point at which it was interrupted.

Returning from an IRQ handler is slightly more problematic because of the banked registers and mode
switching. The original, pre-exception CPSR must be restored from the SPSR_irq where it was saved.
Doing this before restoring the PC would change the operating mode, making the saved PC in its banked
link register (R14_irq) inaccessible.

If instead, the program counter is restored before the CPSR, this would return the program flow to its
original point of execution with the CPSR in a corrupted state.

In short, both operations must take place, but neither can be done first. The solution is that they must take
place simultaneously, and the ARM7TDMI-S core architecture has special instructions to accomplish this.

There are two ways to restore both the CPSR and PC simultaneously:

 • use a data-processing instruction with the S bit set and the PC as the destination

 • use a Load Multiple instruction that loads the PC, with the S bit set

The practice of using these special instructions to construct a working interrupt handler will be described
in Section 8.2.

5.3 FIQ: Fast Interrupt Requests
The second type of interrupt signal available on the ARM v4T architecture is the Fast Interrupt Request,
or FIQ. The FIQ works in much the same way as the IRQ, with the difference that in FIQ mode, there are
five additional banked registers available for processing. See Table 2. These extra banked registers provide
enough space so that a carefully-written FIQ handler can execute its assigned task entirely within the FIQ
register set, R8_fiq - R14_fiq.

In this case, the FIQ handler would not disturb any part of the machine state except the FIQ state itself.
Without the requirement to preserve any of the context, the FIQ handler can proceed with a substantially
reduced CPU overhead, allowing FIQ exceptions to be serviced very quickly.

The ability of an FIQ routine to reliably begin execution within a well-defined time window is further
enhanced by the fact that the recognition of a normal IRQ does not disable FIQ signals. An FIQ request
always overrides all IRQ servicing, regardless of priority, ensuring that the FIQ receives immediate service.

1. This includes the R13_irq (stack pointer), so it is important to have initialized this banked register to a valid memory location
in the system start-up routine.
Handling Multiple Interrupts on the MAC7100 Microcontroller Family, Rev. 0

Freescale Semiconductor 7

Interrupt Handling
6 Interrupt Handling
Figure 2 shows the sequence of events triggered when an IRQ exception interrupts a running program.

Figure 2. Basic Interrupt Handling Process Flow

6.1 Trampoline
All of the steps prior to entering the interrupt handler are performed by the core automatically in response
to the assertion of an IRQ signal. These actions are defined by the core architecture, and are taken
independently of any software. On the ARM7TDMI-S, exceptions are always vectored to a specific
location in a block of memory beginning at 0x0000 containing the exception vectors.

Table 3. ARM7TDMI-S Core Exception Table

Vector Address Interrupt Source Interrupt Type

0x0000 Reset Reset
0x0004 Undef Undefined instruction
0x0008 SWI Software Interrupt
0x000C Prefetch Abort Abort
0x0010 Data Abort Abort
0x0018 IRQ Normal Interrupt
0x001C FIQ Fast Interrupt

Main Program Flow Hardware Interrupt Service Flow

Normal execution
“Freescale Sem...”

PIT: times out, asserts interrupt

INTC: If PIT is unmasked, then
set IPR bit and signal the core

ARM7 Core: If IRQs are
enabled, save context and
execute IRQ exception vector:
1. Finish current instruction
2. LR_irq 1 := return link
3. SPSR_irq 1 := CPSR
4. CPSR[4:0] := 0X10010
5. CPSR[5] := 0
6. CPSR[7] := 1
7. PC := 0x0018

Trampoline: jump to VSR

VSR: Save remaining context,
identify IRQ source, jump to ISR:
1. Save scratch registers and LR
2. Get IRQ source
3. SLMASK 1 := CLMASK
4. Save return link
5. Jump to ISR via jump table

ISR: Clear PIT flag, handle PIT

VSR: Restore context, return
(special form):
1. CLMASK := SLMASK
2. Restore scratch registers, LR
3. Use SUBS command to return

ARM7 Core: Restore context:
1. CPSR := SPSR_irq
2. PC := LR_irq

(both occur simultaneously)

Normal execution
“...iconductor, Incorporated”

Note:
1. This object is being overwritten, and thus must be preserved to support nested interrupts.
Handling Multiple Interrupts on the MAC7100 Microcontroller Family, Rev. 0

Freescale Semiconductor8

Interrupt Handling
As can be seen from Table 3, an IRQ exception will always be vectored to address 0x0018. Whatever the
contents of that word, they will be fetched and executed. It is up to the programmer to ensure that all of
the exception vectors contain valid instructions.

A single word of memory isn’t enough space to do any useful amount of processing, so typically an
instruction is placed there to load the PC with another address, redirecting the flow elsewhere. This
instruction is sometimes referred to as a trampoline.

It is common practice with ARM7 core-based systems for the trampoline to make an indirect jump using
a short table of addresses. This table is customarily placed in memory immediately adjacent to the
trampolines. 2 It contains the addresses of service routines that are designed to handle the exception
vectors, so these are usually referred to as vector service routines, and the table as a VSR table.

6.2 Vector Service Routine
Each VSR, if implemented, must identify the cause of the exception and branch to an appropriate function
to deal with the situation. Some extremely simple vector service routines are shown in the
__vector_service section of Figure 3. These are merely trap functions that branch back to
themselves. In other words, most of the VSRs in this example have not actually been implemented.

The only VSR that has been implemented in this example (other than the reset handler) is the one for IRQ
exceptions. Notice that the __VSR_table in Figure 3 does not contain the address of the IRQ_trap
function shown here. Instead, it contains the address of another function called vsr_IRQ. Assuming
vsr_IRQ is a real vector service routine, its purpose will be to identify the cause of the interrupt and
dispatch an appropriate interrupt service routine (ISR) to handle it.

In the simple situation where there is only one active interrupt source, the vsr_IRQ routine might also do
the job of servicing the interrupt. There is no need to spend time identifying the source, if only one source
is active. In this case, the VSR and ISR would be the same.

In a small application where there are a handful of interrupt sources, vsr_IRQ might be a test that looks
sequentially at each source to see if it needs service. In larger systems like the MAC7100, there are far too
many potential interrupt sources for this to be a viable strategy. A different technique must be employed,
not only to simplify the code but also to ensure that each interrupt service routine can be dispatched in the
same number of clock cycles as all the others.

2. On some systems, FIQ response is optimized by placing the entire FIQ handler at address 0x001C. This removes the need
for an intermediate vector service routine, and the main FIQ handler begins execution as soon as the FIQ signal is received.
In this case, the table of vector addresses would come after the FIQ handler.
Handling Multiple Interrupts on the MAC7100 Microcontroller Family, Rev. 0

Freescale Semiconductor 9

Interrupt Handling
Figure 3. Exception Vectors, VSR Table, and Trap Functions

One popular method for solving this is for vsr_IRQ to use a jump table. If the interrupt source can be
resolved into a unique number, that number can be used as an index into a table of function pointers. This
allows the VSR to calculate a jump to the correct ISR without the need to test each source individually.
What is needed is an efficient way to get that source number, and this is one of the services provided by
the MAC7100 Interrupt Controller (INTC).

Before discussing the design of a real VSR and the details of an ISR, it would be useful first to investigate
the INTC module and some of the services it can provide to help implement these routines.

.code 32
.section ".vectors","ax"
.global __vectors

__vectors: /* trampoline via table-jump to VSRs */
ldr pc, reset_addr /* 0x0000 - reset vector */
ldr pc, UNDEF_addr /* 0x0004 - undefined instr. vector */
ldr pc, SWI_addr /* 0x0008 - sftw interrupt vector */
ldr pc, PABORT_addr /* 0x000C - prefetch abort vector */
ldr pc, DABORT_addr /* 0x0010 - data abort vector */
.word 0x0 /* 0x0014 - unused vector */
ldr pc, IRQ_addr /* 0x0018 - IRQ vector */
ldr pc, FIQ_addr /* 0x001C - FIQ vector */

.global __VSR_table
__VSR_table:
reset_addr: .word reset /* reset handler -- see crt0.S */
UNDEF_addr: .word UNDEF_trap /* unimplemented -- see below */
SWI_addr: .word SWI_trap /* unimplemented -- see below */
PABORT_addr: .word PABORT_trap /* unimplemented -- see below */
DABORT_addr: .word DABORT_trap /* unimplemented -- see below */
IRQ_addr: .word vsr_IRQ /* the only real VSR - see crt0.S */
FIQ_addr: .word FIQ_trap /* unimplemented -- see below */

.global __vector_service
__vector_service:
UNDEF_trap: b UNDEF_trap /* trap here on UNDEF exception */
SWI_trap: b SWI_trap /* trap here on SWI exception */
PABORT_trap: b PABORT_trap /* trap here on PABORT exception */
DABORT_trap: b DABORT_trap /* trap here on DABORT exception */
IRQ_trap: b IRQ_trap /* this trap is not used */
FIQ_trap: b FIQ_trap /* trap here on FIQ exception */
Handling Multiple Interrupts on the MAC7100 Microcontroller Family, Rev. 0

Freescale Semiconductor10

The MAC7100 Interrupt Controller Module
7 The MAC7100 Interrupt Controller Module
MAC7100 family of devices implement one Interrupt Controller Module. The purpose of the INTC is to
organize, prioritize and control interrupt requests, and to increase overall system performance by reducing
the time necessary to identify their sources. The INTC provides a number of hardware support services
that help to implement advanced interrupt handling. See Chapter 10 of the MAC7100 Microcontroller
Family Reference Manual (MAC7100RM).

7.1 INTC Features
The INTC supports 64 interrupt requests, maps them into 16 priority levels, and signals the ARM7TDMI-S
core when a properly enabled, unmasked request is active. Each of the 64 sources has an interrupt control
register (ICRn) that allows the designer to specify this mapping, linking the source number with the
user-defined priority level.

The INTC also associates a unique vector number with each interrupt source. It provides the ability to
mask individual interrupt sources according to the programmer’s requirements. Hardware-assisted
masking according to user-defined priority provides a substantial performance boost when nested interrupt
servicing is part of the design.

Interrupt Force Registers provide the ability to generate interrupts within software for functional or debugging
purposes, and Interrupt Pending Registers provide a map of active requests waiting to be processed.

7.2 The INTC Module Configuration Register (ICONFIG)
A highly-programmable module such as the INTC must be configured with the application’s requirements
in mind. The first step in this process usually involves the decision of how to classify the various priorities
of interrupt into two main categories: IRQ and FIQ. This classification is made in the ICONFIG register. See
Figure 4 and Section 10.5.1.4, “INTC Module Configuration Register (ICONFIG)” in the MAC7100RM.

Fast interrupts benefit from a total of seven banked registers, five more than the other exception modes.
Fully utilizing these can substantially reduce the time it takes to respond to an interrupt request. The FIQ
banked registers are not used by the main program, so they don’t have to be saved and restored in an effort
to preserve the context.

If the designer never expects to have more than one interrupt signal active at once, there is little reason to
use the IRQ type. In this case, the ICONFIG[FIQDEF] field would be filled with zeroes. This maps all
priority levels to the FIQ type, causing the INTC to always send an FIQ signal to the core when there is a
pending request.

7 6 5 4 3 2 1 0

R 0 0

E
M

A
S

K FIQDEF

W

Reset 1 0 1 0 0 0 0 0

Reg Addr INTC Base + 0x001B

Figure 4. INTC Interrupt Configuration Register (ICONFIG)
Handling Multiple Interrupts on the MAC7100 Microcontroller Family, Rev. 0

Freescale Semiconductor 11

http://www.freescale.com/files/32bit/doc/ref_manual/MAC7100RM.pdf#page=177

The MAC7100 Interrupt Controller Module
Another common situation is when there are many active interrupt sources, but one source sends requests
at a much higher frequency than the others. In this case, it might make sense to program FIQDEF so that
priorities 0-14 are mapped as IRQ, but priority 15 is an FIQ. Setting the high-frequency source to priority
15 allows the core to preempt any IRQ service routine to handle the FIQ request immediately.

FIQ requests are left enabled during IRQ handling. If the FIQ handler is carefully designed so that it uses
only the seven IRQ-mode banked registers, then it can nest on top of an IRQ handler without ever needing
to save or restore the context. This makes servicing the high-frequency FIQ source much more deterministic,
because the worst-case latency does not have to include waiting for the IRQ handler to return.

The EMASK bit in the ICONFIG register enables a hardware-masking capability that allows interrupts to
preempt other service routines of lower priority, even when the interrupt request is of the same type. This
situation will be discussed in Section 9, Nested Interrupts. This allow interrupt nesting without using the
FIQ type, leaving FIQ for other purposes. It is the responsibility of the system designer to ensure that
interrupt-driven, safety-critical tasks are executed in a timely manner.

7.3 The IRQ Interrupt Acknowledge Register (IRQIACK)
The INTC associates a unique number with each source. For sources classified as IRQs, this number is
available by reading the IRQ Interrupt Acknowledge Register (IRQIACK). As seen in Table 4, the
interrupt sources are numbered from 0-63.

The source number is necessary for the VSR to quickly identify the source of the interrupt request,
enabling it to compute an offset into the jump table that will redirect execution to the correct ISR (see
Figure 2). The IAVECT field always contains a value between 63 and 127, so subtracting 64 from this
value produces a source number between -1 and 63. A negative number indicates that the interrupt was
spurious, i.e. there were no interrupts pending at the time the IRQIACK was read.

Table 4. INTC Interrupt Source-to-ICRn Assignments

Interrupt Source
Assigned

ICRn
Interrupt Source

Assigned
ICRn

Interrupt Source
Assigned

ICRn
Interrupt Source

Assigned
ICRn

eDMA0 0 eDMA Error 16 CAN_C Err./WU 32 eMIOS5 48

eDMA1 1 MCM SWT 17 CAN_D MB 33 eMIOS6 49

eDMA2 2 CRG 18 CAN_D MB14 34 eMIOS7 50

eDMA3 3 PIT1 19 CAN_D Err./WU 35 eMIOS8 51

eDMA4 4 PIT2 20 I2C 36 eMIOS9 52

eDMA5 5 PIT3 21 DSPI_A 37 eMIOS10 53

eDMA6 6 PIT4 / RTI 22 DSPI_B 38 eMIOS11 54

eDMA7 7 VREG 23 eSCI_A 39 eMIOS12 55

eDMA8 8 CAN_A MB 24 eSCI_B 40 eMIOS13 56

eDMA9 9 CAN_A MB14 25 eSCI_C 41 eMIOS14 57

eDMA10 10 CAN_A Err./WU 26 eSCI_D 42 eMIOS15 58

eDMA11 11 CAN_B MB 27 eMIOS0 43 ATD_A, ATD_B 59

eDMA12 12 CAN_B MB14 28 eMIOS1 44 CFM 60

eDMA13 13 CAN_B Err./WU 29 eMIOS2 45 PIM 61

eDMA14 14 CAN_C MB 30 eMIOS3 46 IRQ 62

eDMA15 15 CAN_C MB14 31 eMIOS4 47 XIRQ 63
Handling Multiple Interrupts on the MAC7100 Microcontroller Family, Rev. 0

Freescale Semiconductor12

The MAC7100 Interrupt Controller Module
For the case in which several (or all) interrupt sources are classified as FIQ, there is an equivalent
FIQIACK register that provides the same services as the IRQIACK.

When an interrupt request from one of these sources is asserted, reading the IRQIACK register (see
Figure 5) will return the number of the source plus 64.

7.4 Setting the Priority of an Interrupt Source
The INTC provides the system designer with the ability to select a priority for each interrupt source. A bank
of 64 Interrupt Control Registers (ICRn) is provided for this purpose. These 8-bit registers are individually
assigned to each of the 64 interrupt sources as detailed in Table 4. The ICRn[LEVEL] field sets all priority
levels to zero at reset, but this field can be overwritten to change the priority of a given source. See Figure 6.

7.5 Unmasking an Interrupt Source
All interrupt sources are masked at reset. This means that if a peripheral module generates an interrupt
request, the Interrupt Controller will not transmit the request to the ARM7 core. The masking state for each
source is defined in the Interrupt Mask Registers (IMRH and IMRL). These 32-bit registers form a 64-bit
map to allow the request for each source to be masked or unmasked, depending on the state of each bit.

To simplify the process of setting and clearing these bits, two additional registers are provided. The Set
Interrupt Mask Register (SIMR) and the Clear Interrupt Mask Register (CIMR) provide a
memory-mapped mechanism to set or clear a given bit in the IMR{H,L} registers. The data value written
to the SIMR or CIMR causes the corresponding bit in the IMR{H,L} register to be set or cleared,
respectively. For example, to clear the masking for Channel 0 of the eMIOS module, (source 43), one
would write a value of 43 to the CIMR. This would cause IMR43 in the IMRH to be cleared.

7 6 5 4 3 2 1 0

R IAVECT

W

Reset 0 0 1 1 1 1 1 1

Reg Addr INTC Base + 0x00EC

Figure 5. INTC IRQ Acknowledge Register (IRQIACK)

7 6 5 4 3 2 1 0

R 0 0 0 0 LEVEL

W

Reset — — — — 0 0 0 0

Reg Addr INTC Base + 0x0040 + n

Figure 6. INTC Interrupt Control Registers (ICRn)
Handling Multiple Interrupts on the MAC7100 Microcontroller Family, Rev. 0

Freescale Semiconductor 13

Simple Interrupt Handlers
8 Simple Interrupt Handlers

8.1 A Basic Vector Service Routine in C
A VSR would ordinarily be written in assembly language because of the greater control afforded by the
assembler’s precise syntax. Identifying the source and dispatching the ISR must be done as quickly and
efficiently as possible, and assembler is usually the best tool to use to satisfy these requirements.

Some C compilers do however provide a limited amount of support for ARM7 core interrupt handling. If
the application does not use nested interrupts, it is sometimes possible to use special compiler keywords
to allow the source-identification and ISR-dispatch to be accomplished in a single C-source file. An
example of this is shown in Figure 7.

Figure 7. IRQ Vector Service Routine

Notice that the function prototype for vsr_IRQ uses some non-standard syntax. For the GCC compiler,
the keywords:

__attribute__ ((interrupt ("IRQ")))

are used to warn the compiler that the vsr_IRQ routine is not a standard C function, and must be treated
differently. The reason for this special treatment will be discussed in Section 8.2.

The vsr_IRQ has one local variable, a signed integer called source, that is used to receive the interrupt
source number. It is signed because the IRQIACK register might contain a 63, and subtracting 64 from it
could yield a negative number. It is an integer because the compiler will make more efficient use of a 32-bit
quantity in the ARM7TDMI-S core 32-bit register set.

After vsr_IRQ identifies the source of the interrupt request, its remaining task is to dispatch a handler
by calculating a jump to the correct function. If the jump table has been constructed correctly, the
statement:

#define INTC_CLMASK(*(volatile unsigned char *) 0xFC04801E))
#define INTC_SLMASK(*(volatile unsigned char *) 0xFC04801F))
#define INTC_IRQIACK(*(volatile unsigned char *) 0xFC0480EC))

extern void (* jumptab[64])(void);
void vsr_IRQ (void) __attribute__ ((interrupt ("IRQ")));

void vsr_IRQ (void)
{
 int source = INTC_IRQIACK - 64;

 if (source >= 0) /* ignore spurious IRQs */
 jumptab[source](); /* jump to correct ISR */

 INTC_CLMASK = INTC_SLMASK; /* restore CLMASK from SLMASK */
 return;
}

Handling Multiple Interrupts on the MAC7100 Microcontroller Family, Rev. 0

Freescale Semiconductor14

Simple Interrupt Handlers
 if (source >= 0) /* ignore spurious IRQs */
 jumptab[source](); /* jump to correct ISR */

will accomplish exactly that. Control is passed to the function whose address is contained in the function
pointer at that table entry. The jump table begins at jumptab[0], so a negative source number (i.e. a
spurious interrupt) is ignored and vsr_IRQ just returns, having done nothing. A partial jump table for
the MAC7100 family is shown in Figure 8. 3

Figure 8. MAC7100 Jump Table (partial)

Figure 7 also shows the current level mask being restored from its saved location in the SLMASK register just
before the VSR returns. If the EMASK bit in the ICONFIG register is left in its default state (set), then the value
of CLMASK is automatically copied to SLMASK when the IRQIACK value is read. The current level mask
must be restored to its former state, or else further interrupt signals of the same priority will be masked.

Although the EMASK bit can be cleared to avoid this, it is perhaps better to highlight the function of
CLMASK in order to be aware of its capabilities. Hardware masking is one of the ways the MAC7100
Interrupt Controller helps to implement nested interrupts, which will be discussed in Section 9.

8.2 Special Considerations When Using C
Recall from Section 5.2 that when returning from an IRQ handler, the original CPSR and PC must be
restored simultaneously from their saved locations in the banked register set, through the use of special
machine instructions. These instructions are not normally generated by the compiler as return statements
from an ordinary C function, so the compiler must be informed when this special treatment is necessary.

Another thing to consider is that compilers for ARM7TDMI-S core-based devices do not preserve every
register used by a function. It is assumed that r0-r3 and r12 are scratch registers. These registers are not
required by the ARM-Thumb Procedure Call Standard (ATPCS) to be saved on the stack, and the compiler
considers their contents to be unchanging only between function calls, not across them.

This is fine when a compiler is producing code for a sequential flow of execution in which functions are
called, and they return in a well-behaved and predictable fashion. But this is not the case when interrupts
come into the picture. The difference with interrupts is that a vector service routine like the one in Figure 7
is never called. Because the compiler has no record of the VSR being called, it is unaware that the scratch
registers are not safe storage locations.

3. Note that later variants in the MAC7100 family may contain a different number of interrupt sources, so the jump table would
need to be modified in that case.

#include "isr.h" /* function prototypes for ISRs */

void (* jumptab[64])(void) =
{
 &isr_eDMA0, /* 0 0x000 */
 &isr_eDMA1, /* 1 0x004 */
...
 &isr_XIRQ /* 63 0x0FC */
};
Handling Multiple Interrupts on the MAC7100 Microcontroller Family, Rev. 0

Freescale Semiconductor 15

Simple Interrupt Handlers
From the main program’s point of view, the contents of any scratch registers used by vsr_IRQ might
change unexpectedly at any time. That is why a VSR must save the scratch registers too, even though this
is not required by the ATPCS, and it must restore them when it returns control to the main program.

Because of this, the vsr_IRQ routine must be identified to the compiler as being a special case. Many
compiler vendors have implemented new syntax for making this distinction. Some use keywords like
“__attribute__” or “__irq”.

Others use pragmas such as:
#pragma TRAP_PROC
 ...

Some even wrap the function in pragmas to indicate the beginning and end:
#pragma interrupt
 ...
#pragma interrupt off

The point is that if you are going to write your interrupt handler entirely in C, you must be aware of the
distinction between it and a normal C function, and you must know how to inform your compiler when the
rules for procedure calls need to be modified. If you intend your source code to be portable between
compiler vendors, this can cause real maintenance problems. This is why many embedded systems
designers prefer to write these special routines in pure assembler instead of C.

8.3 A Simple VSR Written in Assembly Language
An example VSR written in assembler is shown in Figure 9. The VSR is entered with the processor in
ARM state, in IRQ mode with the IRQ banked registers active. The scratch registers are saved in line 1,
because it is guaranteed that the procedure being targeted by the table jump will not preserve them. R4_irq
is also preserved in the same statement, to be used as non-volatile storage for the INTC base address.

The IRQ-mode Link Register is also preserved in the same statement in line 1. This is necessary because
the table-jump requires a back link to return, but the LR_irq already contains the return address from the
vsr_IRQ routine itself. If LR_irq is overwritten, vsr_IRQ cannot return to the main program, so a copy
of the LR_irq must be saved and restored later.

The contents of the IRQIACK register are read in lines 2 and 3, leaving the base address of the INTC
module in the non-volatile R4_irq to be used again after the table jump returns.

The subs instruction in line 4 subtracts 64 from the IRQIACK value to produce the interrupt source
number. Setting the S-bit in this instruction causes the ARM7 core to write the condition code flags for
later use (See Figure 1). The state of CPSR[N] allows the conditional execution of the next three
instructions using the “execute-if-plus” encoding. 4

Line 5 moves the address of the jump table into R3_irq. The Program Counter is saved into the Link
Register in line 6 to create a return point for the jump. Note that the program counter actually corresponds
to the currently executing instruction + 8 due to the three-stage pipeline of the ARM7 core, so saving the
current PC creates a back link that will return to line 8 when the jump returns.

4. The order of the statements in this routine could be rearranged to avoid pipeline stalls. This additional level of optimization is
beyond the scope of this document.
Handling Multiple Interrupts on the MAC7100 Microcontroller Family, Rev. 0

Freescale Semiconductor16

Simple Interrupt Handlers
The next instruction in line 7 modifies the PC by loading the contents of the correct jump table entry, 5
calculated by multiplying the source number by four. This is what triggers the jump, but the statement is
only executed on the condition that the result of the subtraction in line 4 was positive or zero. This is how
the vsr_IRQ routine is able to ignore spurious interrupt requests.

Figure 9. A Simple (Non-Reentrant) Vector Service Routine

Notice that this example assumes that the jump table is located at 0x40000000. This address was chosen
because it is the bottom of internal RAM on the MAC7100 family, and also because it is a quick number
to load into a register on the ARM7 core. In practice, the jump table could be located anywhere in memory
on a four-byte boundary. The table doesn’t have to be at 0x40000000; it just makes things a little easier
for this example.

5. It is of course up the programmer to ensure that this entry contains the address of the correct ISR.

#define INTC_SLMASK 0x1F /* offsets from INTC base addr */
#define INTC_CLMASK 0x1E
#define INTC_IRQIACK 0xEC

vsr_IRQ:
/* enter in ARM state, IRQ mode */
/* pre-IRQ CPSR saved in SPSR_irq, PC+4 saved in LR_irq */

1. stmfd sp!, {r0-r4, r12, lr} /* save registers on IRQ stack */
2. ldr r4, .__INTC_base /* base addr of register space */

/* LR_irq, working and scratch registers are now saved on IRQ stack */
/* base address of INTC is in r4 */
/* all other regs are non-volatile and will be preserved downstream */

3. ldrb r2, [r4, #INTC_IRQIACK] /* r2 := IRQIACK */
4. subs r2, r2, #64 /* r2 := IRQ source number */
5. movpl r3, #0x40000000 /* address of jump table */
6. movpl lr, pc /* prepare link for branch */
7. ldrpl pc, [r3, r2, lsl #2] /* jump to correct ISR */

/* r4 survives the table jump */
8. ldrb r2, [r4, #INTC_SLMASK] /* r2 := SLMASK (old CLMASK) */
9. strb r2, [r4, #INTC_CLMASK] /* restore old CLMASK from r2 */
10. ldmfd sp!, {r0-r4, r12, lr} /* restore registers from stack */
11. subs pc, lr, #4 /* return from exception */
Handling Multiple Interrupts on the MAC7100 Microcontroller Family, Rev. 0

Freescale Semiconductor 17

Nested Interrupts
8.4 The Interrupt Service Routine
An ISR is just a normal procedure called by the VSR, and it looks and works just like any other procedure
that takes no arguments and returns no values. It does not require any special keywords to compile it, and
the compiler is unaware that this particular ISR is executed in IRQ mode using the IRQ register bank.

The ISR will have a number of tasks to perform in order to service the interrupt. These operations will be
specific to each application, so a discussion of those details will be postponed until the example projects
are introduced. It is very important to note that whatever else the ISR does, it must not omit one very
important task: When a peripheral module asserts an interrupt request, a flag bit will be set in that
peripheral’s status register. The request must be acknowledged and its associated flag cleared by the ISR.

The MAC7100 Interrupt Controller does not have the ability to acknowledge and clear interrupt flags at
the peripheral module. The INTC can only identify the source; it can’t clear any flags. The interrupt service
routine must do that, or else the interrupt request will still be asserted when vsr_IRQ returns, and the
program will enter an infinite loop.

8.5 Restore the Context and Return
After the table-jump returns, the VSR uses the contents of the saved level mask to restore the current level
mask. This is necessary because hardware masking was enabled, and the mask would have prevented the
IRQ signal from being generated again if CLMASK was not restored to its former state.

The r4, scratch and link registers are restored, and the final subs instruction restores the PC and CPSR
simultaneously, returning control to the main program flow.

9 Nested Interrupts

9.1 Overview
The purpose of nesting interrupts is to reduce the latency for handling higher-priority interrupt requests. A
simple vector service routine like the one detailed in Figure 9 does not re-enable IRQ requests before
executing the table-jump. With IRQs disabled, the only advantage in prioritizing interrupt sources is that
if two requests arrive at the same time, the higher-priority one will be serviced first. A high-priority IRQ
occurring during a low-priority IRQ’s service routine will have to wait until that ISR has finished.

With nested interrupts, a high-priority IRQ can suspend a low-priority ISR, allowing the higher-priority
IRQ to be serviced without waiting. This can be a distinct advantage in a system where multiple sources
of interrupt are active, and some of them require frequent and prompt servicing.

The availability of the FIQ exception type and its larger set of banked registers provides hardware support for
a single level of nesting, and this is perhaps the simplest solution if only one additional nesting level is required.
The machine state need not be saved, because a carefully constructed FIQ handler does not disturb it.

If further levels of nesting are needed, or if the programmer wants to reserve the FIQ for a special purpose,
then the context must be saved in software. The MAC7100 INTC module has some features that will help
(see Section 7), but the main responsibility for supporting a complex, nested-interrupt environment lies
with the vector service routine.
Handling Multiple Interrupts on the MAC7100 Microcontroller Family, Rev. 0

Freescale Semiconductor18

Nested Interrupts
In order to provide this type of functionality, the VSR must be rewritten so that it saves the entire machine
state necessary for interrupt servicing. Once this has been accomplished, the VSR has become reentrant,
meaning that it can be executed recursively without destroying the context. Only then can the VSR safely
re-enable IRQ requests.

In this situation, coding the vector service routine in assembler becomes practically mandatory because of
the additional complexities involved. There are several more items to be saved in order to preserve the
complete machine state, and the core processor’s operating mode must be also changed.

9.2 Saving the Machine State
The overall concept to achieving this end is simply stated: For every object containing a part of the
machine state, that object must be preserved before interrupts are re-enabled if a higher-level interrupt
might later change the object without saving its contents.

Objects satisfying this criteria fall into three categories:
• Scratch registers (r0-r3, r12)
• Banked registers (LR_irq, SPSR_irq)
• INTC module registers containing state information

The scratch registers have already been discussed, but interrupt nesting requires saving some additional
context to allow the VSR to safely re-enable IRQ exceptions.

9.2.1 The Banked Link Register
In the previous examples, the IRQ exception caused the core to switch to IRQ mode, where it remained
during interrupt handling until control was returned to the main program. The banked IRQ stack pointer
and IRQ link register were used for stack manipulation and for setting return links from procedure calls.
It is the LR_irq that must be preserved when IRQ handlers become reentrant.

Recall that the assertion of an IRQ request automatically and immediately overwrites the LR_irq. Consider
also that the IRQ handler might itself need to call other procedures. If interrupt servicing is being done
entirely in IRQ mode, the LR_irq would therefore be used for return links from these procedure calls. The
LR_irq must be used in this case because procedure calls always require a back link, and the LR_irq is the
only link register available in IRQ mode.

Ordinarily, the compiler saves the link register on the stack at the entry point of any C function. But if an
ISR calls a procedure, and then a higher-priority IRQ exception is asserted before the LR_irq can be saved,
the context will be destroyed.

This is why reentrant IRQ handlers must not re-enable IRQ exceptions when they are still in IRQ mode. 6
The IRQ-mode context must be saved, and the CPSR[Mode] bits must be changed to switch modes before
IRQ exceptions can be re-enabled. Only then is it safe to consider servicing higher-priority IRQ requests.
System mode is best suited for this purpose, because it allows privileged hardware access while protecting
the banked registers from accidental corruption.

6. Or else you must ensure that all procedures after the trampoline do not ever use the link register, which is hardly an optimum
solution considering that the VSR does exactly that.
Handling Multiple Interrupts on the MAC7100 Microcontroller Family, Rev. 0

Freescale Semiconductor 19

Nested Interrupts
9.2.2 The Banked SPSR_irq
The second item that must be preserved before it is safe to re-enable IRQs is the SPSR_irq. This banked
register is provided in the ARM7 architecture to preserve the contents of the CPSR during IRQ handling,
but there is only one SPSR_irq. If another IRQ event overwrites the SPSR_irq, the original CPSR saved
by the lower-level interrupt will be destroyed. A reentrant IRQ handler must save a copy of SPSR_irq
before other IRQ events can overwrite it.

9.2.3 The Contents of INTC[SLMASK]
Setting the EMASK bit in the INTC[ICONFIG] register enables a hardware-masking capability.
Hardware masking allows the Interrupt Controller Module to prevent an interrupt request from reaching
the core if an equal or higher-priority request is being serviced at the time. This prevents a situation where
interrupts could continually preempt each other, resulting in a deadlock.

If masking is enabled, a current level mask value is defined that prevents interrupts with priorities equal
to or less than this value from being recognized. The current level mask is stored in the INTC[CLMASK]
register (see Figure 10). The value of CLMASK is 0x1F on reset, so all interrupts are unmasked here by
default. 7

When a vector service routine reads the IRQIACK register to determine the source of an interrupt, the
INTC does more than just return the source number. If the EMASK bit in the INTC[ICONFIG] register
is set when the IRQIACK is read, the priority of the source is automatically copied into CLMASK, and the
former contents of CLMASK are saved. A saved level mask register (SLMASK) is provided for this purpose
(see Figure 11).

7. This does not override the masking state enforced by the Interrupt Mask Registers, which mask all priorities at reset. The
IMR{H,L} setting is not dynamic, and only changes when explicitly modified. The CLMASK is a dynamic setting, and changes
automatically according to the most recent interrupt event that was active when IRQIACK was read. Both masks must be
disabled for an interrupt signal to be transmitted to the core.

7 6 5 4 3 2 1 0

R 0 0 0 CLMASK

W

Reset — — — 1 1 1 1 1

Reg Addr INTC Base + 0x001E

Figure 10. INTC Current Level Mask Register (CLMASK)

7 6 5 4 3 2 1 0

R 0 0 0 SLMASK

W

Reset — — — 1 1 1 1 1

Reg Addr INTC Base + 0x001F

Figure 11. INTC Saved Level Mask Register (SLMASK)
Handling Multiple Interrupts on the MAC7100 Microcontroller Family, Rev. 0

Freescale Semiconductor20

Nested Interrupts
There is only a single SLMASK available, so if additional levels of nested interrupts are to be serviced, this
machine-state information must be preserved. One way to do this is to store the contents of SLMASK into
a non-volatile data register. This way, any further nested service routines will preserve the SLMASK,
because the ATPCS requires functions to stack all non-volatile registers before overwriting them. This
method also ensures that the value is readily available when the ISR returns, because the CLMASK must
be restored from SLMASK at that time.

9.3 A Reentrant Vector Service Routine
Figure 12 shows a vector service routine that implements nested interrupts. Many of the statements in this
listing will be familiar from the simple VSR shown in Figure 9, but it is somewhat more complicated.

As before, the VSR is entered in ARM state (32-bit instructions) and in IRQ mode, with the IRQ banked
registers enabled. Several more registers are saved on the stack than previously, but a “store multiple with
full descending stack” instruction (stmfd) handles this in a single statement. This requires more time to
complete for the additional registers, but the ARM v4T architecture is optimized for this operation. Note
that the LR_irq is one of the registers saved.

The SPSR_irq is stored into R6_irq, and the INTC[SLMASK] is stored into R5_irq. These are non-volatile
data registers, ensuring that any functions using them later will preserve them first. The base address of
the INTC module is also stored into R4_irq to be used later.

By the time processing reaches line 6, the VSR has saved all the necessary machine state information and
is ready to switch modes. This is done by writing the pattern 0x1F to the CPSR control field (cpsr_c).

Ordinarily it would not be considered advisable to write an immediate value to the CPSR in this way, but
here the entire state of the CPSR control bit field is already known. The Mode and IRQ Disable bits are
the quantities being set, and Thumb mode is disabled during exception handling. It is also known that FIQ
exceptions must be enabled at this point, because FIQs are only disabled during FIQ processing. 8 This
VSR could not have been reached if FIQs were disabled, because IRQs are also disabled during FIQ
processing.

Once the core has been placed into System mode, a higher-priority IRQ can safely preempt the current
execution without destroying any context. The System-mode link register is saved on the stack in line 7
prior to modifying it in line 10. Calculating the source number and executing the table jump proceeds as
in Figure 9, using the jump table at the bottom of RAM.

IRQ exceptions are disabled in line 13 after the jump returns, making it safe to restore the context that was
saved earlier. At this point, the whole process is reversed. The machine is restored to its former state, and
control passes back to the next lower level of interrupt servicing (or back to the main program) in line 19.

8. A significant assumption is being made here. If FIQs are not used in the application at all, or if for some unusual reason it is
required to disable them during IRQ processing, then the immediate value written to the CPSR in Figure 12 lines 6 and 13
will necessarily be different.
Handling Multiple Interrupts on the MAC7100 Microcontroller Family, Rev. 0

Freescale Semiconductor 21

Example Projects
Figure 12. A Reentrant Vector Service Routine

10 Example Projects

10.1 Overview
There are three example projects included with this application note -- a simple interrupt handling
example, a more complicated version that uses nested normal interrupts, and a final example that adds a
fast interrupt request. These examples are designed to be run on the MAC7100EVB, and are compiled with
the GNU arm-elf-gcc cross compiler. All of the projects are based on an infinite loop main program that
repeatedly copies a pseudo-random array of integers into RAM, and sorts them in place. This work has

 .global vsr_IRQ
vsr_IRQ:

 /* enter in ARM state, IRQ mode */
 /* pre-IRQ CPSR saved in SPSR_irq, PC+4 saved in LR_irq */
1. stmfd sp!, {r0-r6, r12, lr} /* LR_irq + 7 regs onto IRQ stack */
2. mrs r6, spsr /* r6 := SPSR_irq */
3. ldr r4, .__INTC_base /* base address of INTC module */
4. ldrb r5, [r4,#INTC_SLMASK] /* r5 := SLMASK */
5. ldrb r2, [r4,#INTC_IRQIACK] /* r2 := IRQIACK */

 /* LR_irq, working and scratch registers are now saved on IRQ stack */
 /* base addr of INTC, the SLMASK, and SPSR_irq are now in r4,r5,r6 */
 /* all other regs are non-volatile and will be preserved downstream */

 /* switch to system mode and re-enable IRQ exceptions */
6. msr cpsr_c, #SYS_MODE /* SYS mode, IRQ & FIQ enabled */
7. stmfd sp!, {lr} /* link register onto user stack */
8. subs r2, r2, #64 /* r2 := IRQ source number */
9. movpl r3, #0x40000000 /* address of jump table */
10. movpl lr, pc /* prepare link for branch */
11. ldrpl pc, [r3, r2, lsl #2] /* jump to correct ISR */
12. ldmfd sp!, {lr} /* restore LR_usr from user stack */

 /* switch back to IRQ mode, IRQs disabled, to restore machine state */
13. msr cpsr_c, #(IRQ_MODE|IRQ_DISABLE)
14. ldrb r2, [r4, #INTC_SLMASK] /* r2 := SLMASK (the old CLMASK) */
15. strb r5, [r4, #INTC_SLMASK] /* restore old SLMASK from r5 */
16. strb r2, [r4, #INTC_CLMASK] /* restore old CLMASK from r2 */
17. msr spsr, r6 /* restore old SPSR_irq from r6 */
18. ldmfd sp!, {r0-r6, r12, lr} /* restore registers from stack */
19. subs pc, lr, #4 /* return from exception */
Handling Multiple Interrupts on the MAC7100 Microcontroller Family, Rev. 0

Freescale Semiconductor22

Example Projects
absolutely no bearing on anything else, and is included for no reason other than to give the processor
something to do in its spare time.

While this sorting is going on, interrupts are arriving from the MAC7111 peripheral modules and are being
serviced using the concepts developed earlier.

The source code is nearly the same for all three projects, and is drawn from a /common folder by the
Makefiles for each project. Small differences between each project are contained in separate versions of
certain critical files. These are contained in private /src folders within each project. Any file in a private
/src folder will be chosen preferentially over a file by the same name in the /common folder (see the
VPATH setting in the Makefile for each project.) Explanatory notes for these files are contained in
Appendix A.

10.2 Example 1: A Simple IRQ Handler
In the first example, the main program is being regularly interrupted by the PIT1 timer. Nested interrupts
are not supported, because a non-reentrant vector service routine is used to dispatch a handler for the PIT1.

The PIT1 interrupt service routine produces a visible output on the LED array, combined with a text
display on the SCI-B port that reports the LED position. You can see the text output by connecting
Hyperterminal to the SCI-B port at 115200 baud, no parity, 8 data bits, 1 stop bit. The “LED_Blinker” ISR
causes the LEDs to blink in a rotating pattern with three-on and one-off. The overall effect produced is a
dark LED rotating among a field of bright ones.

A second, higher-priority interrupt is manually forced from within LED_Blinker. The service routine for
the second interrupt simply reverses the bits of the LED state variable. This ISR (LED_Reverse) is not
serviced immediately because interrupt nesting is not supported in this example, so the interrupt is still
pending when the first ISR returns.

This change has no visible effect because the second interrupt request must wait for service until after the
first ISR has returned. By that time, the LED state has already been written to the LED array.

10.3 Example 2: A Reentrant IRQ Handler
The second example illustrates a reentrant IRQ handler. The structure of the first project is maintained,
with changes added to the vector service routine in crt0.S to implement interrupt nesting. The interrupt
service routine is identical to the first example, and the second interrupt is forced manually just as before.
Because the VSR is reentrant, the higher-priority interrupt is serviced immediately, as soon as it is forced.
The result is that the bitwise reversal of the LED state variable now takes place within the first ISR, not
after it returns.

The second interrupt is forced just before the LED state is written to the port, so the reversal becomes
visible on the LED array. The blinking effect changes to become a single bright LED rotating within a field
of dark ones, the opposite of the first example.

The hardware setup (sysinit.c) and the ISR code (isr.c) are identical to the first example, but the change is
visible on the array because the second ISR was able to nest on top of the first. The only difference is that
the second example has a more advanced vector service routine in crt0.S, one that supports nesting.
Handling Multiple Interrupts on the MAC7100 Microcontroller Family, Rev. 0

Freescale Semiconductor 23

Conclusion and Further Reading
10.4 Example 3: Add an FIQ
The last example adds an FIQ to the previous projects, a PIT2 interrupt running with a 10 microsecond
period. The setup for this is seen in the file sysinit.c, in the /src directory of the third example. The ISR for
this interrupt drives a 1/16th duty cycle pulse on PORTF[15]. This high-frequency signal completely
overwhelms the slow 1/10th second pulse from the other IRQs, causing one of the LEDs to appear to glow
dimly instead of blinking as before.

The FIQ service routine is written in assembler, in the file crt0.S, also contained in the private /src
directory. It executes immediately as soon as the FIQ signal is received by the core because it is located at
0x001C. There is no need for an intermediate vector service routine because there is only one FIQ source.

11 Conclusion and Further Reading
This application note has presented the interrupt handling capabilities of the MAC7100 family of
microprocessors. The MAC7100 is based on the ARM7TDMI-S core, and much of the discussion has
centered around the instruction set and programming model of that core. A number of the potential
difficulties involved with interrupt servicing have been highlighted, and example solutions offered.

The Interrupt Controller Module of the MAC7100 provides many useful services to assist the programmer.
Methods were presented for using the INTC module to classify multiple interrupt sources into types,
organize them into a priority scheme, and selectively mask or unmask them.

The complexities involved with servicing multiply nested asynchronous interrupt signals has been
presented with example projects.

Much of the information contained in this document has been gathered from sources available on the web.
In particular, the Freescale and ARM web sites contain a great deal of useful information to help the system
designer to implement the concepts developed in this paper.

For further information on the ARM core, see the following:

11.1 ARM Documentation
http://www.arm.com/documentation

ARM7TDMI-S (Rev.4) Technical Reference Manual, ARM DDI 0234A

ARM Architectural Reference Manual, ARM DDI 0100E

Exception Handling on the ARM, ARM DAI 0025E

Software Prioritization of Interrupts, ARM DAI 0030A

ARM-THUMB Procedure Call Standard, SWS ESPC 0002 A-05

11.2 ARM Technical Support FAQs
http://www.arm.com/support/Cores_Interrupts.html
Handling Multiple Interrupts on the MAC7100 Microcontroller Family, Rev. 0

Freescale Semiconductor24

http://www.arm.com/support/Cores_Interrupts.html
http://www.arm.com/documentation/

Conclusion and Further Reading
11.3 MAC7100 Reference
For reference information about the MAC7100 family of microprocessors, see the Freescale web site:
http://www.freescale.com.

MAC7100 Microcontroller Family Reference Manual, MAC7100RM

11.4 Other Reading
An excellent printed reference is available on the development of the ARM family, containing much
background information on ARM processors in general:

Furber, ARM system-on-chip architecture, 2nd Edition, Pearson Education Limited, Edinburgh, 2000

For detailed information on the use of GNU tools for programming and debugging, consult the GCC and
GDB manuals from the FSF:

Using the GNU Compiler Collection (GCC), Version 3.4.2, Free Software Foundation, Boston, MA 2004

Stallman, Pesch, Shebs, et al. Debugging with GDB, The GNU Source-Level Debugger, 9th Edition, Free
Software Foundation, Boston, MA 2004
Handling Multiple Interrupts on the MAC7100 Microcontroller Family, Rev. 0

Freescale Semiconductor 25

http://www.freescale.com/webapp/sps/library/documentationlist.jsp?rootNodeId=01&nodeId=018rH32451&Device=All&DocTypeKey=A0&Results=25

THIS PAGE INTENTIONALLY LEFT BLANK
Handling Multiple Interrupts on the MAC7100 Microcontroller Family, Rev. 0

Freescale Semiconductor26

Appendix A
Notes on The Example Source Code

A.1 vectors.S
The vectors.S file contains the trampolines, the VSR table, and the “trap” vector service routines as
described in Figure 3. There is little more to discuss about this file, except to note that it must be located
at the bottom of memory at 0x0000. This location is not specified anywhere in the vectors.S file itself.
Instead, a “.section” pseudo-op statement at the top of the file places the contents into a section called
“.vectors”. The linker directives file “project.ld” determines the absolute address for each section, and it
places the “.vectors” section into a one-kilobyte block of memory originating at 0x0000.

The third example project has a slightly different vectors.S file than the other two, because it contains an
FIQ service routine at 0x001C instead of a trampoline:

/* 0x001C FIQ service routine */
ldr r10, .__PIT_base /* r10 := PIT base address */
mov r11, #0x4 /* TIF2 is bit 2 */
str r11, [r10, #0x100] /* clear the TIF2 flag */

add r8, r8, #0x01 /* increment r8 */
ldr r10, .__portF_base /* port F base address */
ands r8, r8, #0x0F /* r8 <- (r8 modulo 16) */

moveq r11, #0x00
movne r11, #0x01
strb r11, [r10, #0x37] /* write port F PINDATA[15] */

subs pc, lr, #4 /* return from FIQ */

The first three statements of the ISR clear the PIT2 interrupt flag, as must be done to avoid an infinite
interrupt loop. The next three statements increment a modulo-16 counter on R8_fiq. This banked register
is not used by any other code in the project, so it can be considered non-volatile storage.

Note that if the data contained in R8_fiq was being used for a critical purpose, this would not be considered
a good programming practice. Registers should never be used for long-term storage of important data. In
this case, R8_fiq is just holding the state of a counter running at 100 kHz, and its value is only used to
update the state of an LED.

Depending on the result of the ands statement (zero or non-zero) the R11_fiq register receives a value of
zero or one, and this value is used to update the LED state. Port F[15] is written as a “1” most of the time,
so the active-low LED is usually turned off. The LED appears to glow dimly because it receives a “0”
every sixteenth time through the ISR.
Handling Multiple Interrupts on the MAC7100 Microcontroller Family, Rev. 0

Freescale Semiconductor 27

Notes on The Example Source Code
A.2 crt0.S
The crt0.S file contains two vector service routines, one for the reset vector and one for the IRQ vector.

The reset VSR begins by initializing the exception environment. This is done by cycling through each
operating mode and initializing the stack pointer for that mode. The locations and sizes for each stack are
defined at the bottom of the file.

Note that the IRQ stack in the first example project is larger than the SYS stack. This is because interrupt
servicing in the first example is done entirely in IRQ mode. There is no need to switch to System mode in
this example because the VSR is not reentrant, so a larger SYS stack is not required. It is critical that the
system designer monitors the stack requirements of the application and selects an appropriate size for each
mode stack.

.global _reset
_reset:

/* initialize exception environments */
mov r0, #(IRQ_DISABLE|FIQ_DISABLE|FIQ_MODE)
msr cpsr, r0
ldr sp, .__FIQ_stack

mov r0, #(IRQ_DISABLE|FIQ_DISABLE|IRQ_MODE)
msr cpsr, r0
ldr sp, .__IRQ_stack

mov r0, #(IRQ_DISABLE|FIQ_DISABLE|ABT_MODE)
msr cpsr, r0
ldr sp, .__ABT_stack

mov r0, #(IRQ_DISABLE|FIQ_DISABLE|UND_MODE)
msr cpsr, r0
ldr sp, .__UND_stack

mov r0, #(IRQ_DISABLE|FIQ_DISABLE|SYS_MODE)
msr cpsr, r0
ldr sp, .__SYS_stack

mov r0, #(IRQ_DISABLE|FIQ_DISABLE|SVC_MODE)
msr cpsr, r0
msr spsr, r0 /* some LIBGCC1 funcs restore from SPSR */
ldr sp, .__SVC_stack

The next task of the reset handler is probably more familiar, because it is performed at startup by every
compiled C program. Setting up the C runtime environment by copying initialized data and clearing the
block start segment are actions required by ANSI C. These two tasks are somewhat simplified because the
Handling Multiple Interrupts on the MAC7100 Microcontroller Family, Rev. 0

Freescale Semiconductor28

Notes on The Example Source Code
data is moved four bytes at a time. This shortcut can be used in this case because the linker directives file
aligns .data and .bss on four-byte boundaries.

Beneath the reset handler is the vector service routine for IRQ exceptions. The VSR for the first example
project is the simplified, non-reentrant version as shown in Figure 9. The VSRs for examples 2 and 3 are
the more advanced version shown in Figure 12.

A.3 sysinit.c
The system initialization routine is called by the reset handler, and is where all of the remaining hardware
setup is performed. This is where the system clock is initialized to its final value, having run in its default
state since power-on.

/* ----- initialize system clock to FSYS (see project.h) */
 errflag = mac7101_crg_init(FSYS);

The port pins are set as outputs to enable the LEDs…
/* initialize PORT module to GPIO outputs for LEDs */
 for (i=12; i<=15; i++)
 PORTF_CONFIG(i) = GPIO_MODE | DDR_OUTPUT;

 PORTF_PORTDATA = 0xF000; /* turn off all LEDs */

… and the serial communications interface (SCI) is initialized to allow RS-232 communication with the
debugging monitor at 115200 baud.

/* initialize eSCI module */
 esci_mode = ESCI_CR12_RE /* enable receiver */
 | ESCI_CR12_TE; /* enable transmitter */

 errflag = mac7101_sci_init (
 FSYS, /* system clock (in MHz) */
 ESCI_BASE, /* eSCI chan (see project.h) */
 115200, /* baud rate */
 esci_mode); /* mode mask (see above) */

PIT1 is then set to produce interrupts every 100ms. 9 Note that the PIT3 interrupt doesn’t need to be set up
at the PIT module level. 10

/* initialize PIT1 timer to produce interrupts */
 errflag = mac7101_pit_init(
 FSYS, /* system clock (in MHz) */
 1, /* PIT channel (1..4) */
 (100*MSECONDS)); /* period */

The Interrupt Controller’s ICONFIG register is set up as described earlier, mapping all priorities to IRQs
except priority 15, which is an FIQ.

9. The SCI and PIT setup are both done through calls to library functions. The source code for these functions is in the /lib folder
parallel to the project directory.

10. There is no need to set up a PIT3 timer because its interrupt signal is being generated by INTC.
Handling Multiple Interrupts on the MAC7100 Microcontroller Family, Rev. 0

Freescale Semiconductor 29

Notes on The Example Source Code
/* initialize interrupt controller */
/* configure levels 0-14 as IRQ, level 15 as FIQ, masking enabled */
 INTC_ICONFIG = INTC_CONFIG_EMASK
 | INTC_CONFIG_FIQDEF_15;

/* set PIT1 to a Level-7 interrupt and unmask it */
 INTC_ICR(PIT1_SRC) = 7; /* make PIT1 a Level-7 int */
 INTC_CIMR = PIT1_SRC; /* unmask PIT1 in CIMR */

/* set PIT3 to a higher priority than PIT1 and unmask it */
/* (unmasking is not actually necessary because PIT3 is being forced) */
 INTC_ICR(PIT3_SRC) = 8; /* make PIT3 a Level-8 int */
 INTC_CIMR = PIT3_SRC; /* unmask PIT3 in CIMR */

The address of the two PIT interrupt service routines are entered into the jump table with calls to the
install_isr macro. (see “mac7111_intc.h” in the /lib folder).

/* enter the PIT1 ISR address in jump table */
install_isr(LED_Blinker, PIT1_SRC);

/* enter the PIT3 ISR address in jump table */
install_isr(LED_Reverse, PIT3_SRC);

IRQ exceptions are then enabled with an inline-assembler macro call. This macro is also defined in
mac7111_intc.h, and illustrates the special syntax available from the GCC compiler.

/* read-modify-write the CPSR to enable IRQ requests */
enable_irq();

All compilers will have some means for setting or clearing a bit in the CPSR. The C language has no idea
about the ARM7 core architecture, so this must be handled either by a call to a function in an assembler
file, or by inserting assembler statements into the C file itself. Most compiler vendors will have some
means of using inline assembler for this purpose.

In some cases, the assembler statements are injected verbatim directly into the compiler’s instruction
stream output, and the avoidance of register conflicts is responsibility of the programmer. The GCC
compiler has the ability to accept a more advanced syntax that informs the compiler which register is being
used, so the compiler can avoid these conflicts. The enable_irq macro is an example of this. An
explanation of the syntax used in this macro is available in Using the GNU Compiler Collection (GCC).
Handling Multiple Interrupts on the MAC7100 Microcontroller Family, Rev. 0

Freescale Semiconductor30

Notes on The Example Source Code
#define enable_irq() \
 asm volatile (\
 "mrs r3,cpsr;" \
 "bic r3,r3,#0x80;" \
 "msr cpsr,r3" \
 : \
 : \
 : "r3" \
);

The method for enabling IRQ exceptions will vary widely according to the compiler being used. Consult
the documentation from your compiler vendor for this information.

The sysinit.c file for Example 3 is slightly different from the first two examples, in that it includes code to
initialize a PIT2 timer as a fast interrupt source, and to enable FIQ exceptions.
Handling Multiple Interrupts on the MAC7100 Microcontroller Family, Rev. 0

Freescale Semiconductor 31

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.

Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. All other product or service names are the property
of their respective owners. The ARM POWERED logo is a registered
trademark of ARM Limited. ARM7TDMI-S is a trademark of ARM Limited.

© Freescale Semiconductor, Inc. 2004. All rights reserved.

AN2891
Rev. 0
11/2004

	1 Abstract
	2 Objective
	3 Background
	4 ARM7TDMI-S Core
	4.1 Processor Modes
	4.2 Banked Registers

	5 Exceptions
	5.1 Exception Types
	5.2 IRQ: Normal Interrupt Requests
	5.3 FIQ: Fast Interrupt Requests

	6 Interrupt Handling
	6.1 Trampoline
	6.2 Vector Service Routine

	7 The MAC7100 Interrupt Controller Module
	7.1 INTC Features
	7.2 The INTC Module Configuration Register (ICONFIG)
	7.3 The IRQ Interrupt Acknowledge Register (IRQIACK)
	7.4 Setting the Priority of an Interrupt Source
	7.5 Unmasking an Interrupt Source

	8 Simple Interrupt Handlers
	8.1 A Basic Vector Service Routine in C
	8.2 Special Considerations When Using C
	8.3 A Simple VSR Written in Assembly Language
	8.4 The Interrupt Service Routine
	8.5 Restore the Context and Return

	9 Nested Interrupts
	9.1 Overview
	9.2 Saving the Machine State
	9.2.1 The Banked Link Register
	9.2.2 The Banked SPSR_irq
	9.2.3 The Contents of INTC[SLMASK]

	9.3 A Reentrant Vector Service Routine

	10 Example Projects
	10.1 Overview
	10.2 Example 1: A Simple IRQ Handler
	10.3 Example 2: A Reentrant IRQ Handler
	10.4 Example 3: Add an FIQ

	11 Conclusion and Further Reading
	11.1 ARM Documentation
	11.2 ARM Technical Support FAQs
	11.3 MAC7100 Reference
	11.4 Other Reading

	Appendix A Notes on The Example Source Code
	A.1 vectors.S
	A.2 crt0.S
	A.3 sysinit.c

