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Overview

This document is a quick reference for using the ROM-resident routines to read, program, and verify the
FLASH on any MC68HC908 MCU. Basic information about the functional description and configuration
options will give the user a better understanding of how the ROM-resident routines work. This application
note provides examples that demonstrate one use of the ROM-resident routines within the M68HC908
Family of microcontrollers. The examples given may be modified to suit requirements of a specific
application.

This application note has a companion software file, AN2874SW.zip, available from www.freescale.com.
It contains two example projects that demonstrate the routines described in this document.
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Introduction
Introduction

Most M68HC908 MCUs have on-chip support routines used to program, erase, and verify the FLASH.
These routines may be accessed in either user mode or monitor mode1 and eliminate the need to develop
separate FLASH routines for applications, saving development time and getting more robust FLASH
performance.

There are two instances of the ROM-resident routines implementation in the HC908 MCUs, care should
be taken to ensure the correct implementation is used (data structure type, arguments, routine addresses,
etc.). The instance implemented on each device depends on the family of the MCU. These differences
must be considered to correctly reference these routines.

This document will show how to use these routines from the user software and highlight the main
differences between the two implementations.

Data Structure

Some routines require certain registers and/or RAM locations to be initialized before being called from the
user software (via a JSR). The parameters passed to a routine are in the form of a contiguous data block
stored in RAM. The index register (H:X) acts as a pointer to the routine and is loaded with an address that
will depend on the instance implemented in the MCU. A data block has the control and data bytes in a
defined order, as shown in Figure 1.

Figure 1. Data Block Format for ROM-Resident Routines

Instance A and instance B are similar, but there are differences in how the collection of variables is
ordered in RAM. The next sections will describe in detail each implementation and which families use
which instance.

1. User mode is the normal operating state of the MCU. Entering monitor mode requires specific conditions on pins. Monitor mode
provides a programming interface with a PC via a standard RS-232 interface. For more on this, refer to the monitor ROM section
in the MCU data sheet.
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Instance A: Fixed Data Structure Implementation
Using M68HC908 ROM-Resident Routines, Rev. 0.1

Instance A: Fixed Data Structure Implementation

Variables

Table 1 shows variables used in the ROM-resident routines and their locations. These variables are either
passed in a register or as static variables in a predefined location in RAM (base address). This address
will be located at the start of RAM + 8.

ROM-Resident Routines

Table 2 introduces the routines. Details are discussed later in this document.

Table 1. Variables Used in ROM-Resident Routines — Instance A (See Notes)

Variable Name Description Location(1)

1. Base address is the fixed location in RAM at which the data array should be placed.

FADDR
Registers H and X are initialized with a 16-bit value representing the

first address of a range.
H:X

CTRLBYT
Control byte used for the ERARNGE routine. Bit 6 in this location is

used to specify either MASS (1) or PAGE (0) erase.
Base address

CPUSPD
CPU speed (used for delays within routines) is the internal operating

frequency (fop) in MHz) times 4 then rounded up to the next integer(2).

2. CPUSPD will be internal operating frequency (fop) times 2 for M68HC908GZ8/16 and M68HC908GR16

Base address + 1

LADDR
A range specifies the FLASH locations to be read, verified, or

programmed. This 16-bit value in RAM holds the last address of a
range.

Base address + 2

DATA
The DATA array contains data that is to be manipulated. The size of

this array must match the size of the range to be programmed or
verified.

Base address + 4

Table 2. ROM-Resident Routines — Instance A

Routine Name Description

PRGRNGE
PRGRNGE is used to program(1) a range of FLASH locations with data loaded into the

DATA array.

1. FLASH locations must be blank so they can be written to. User must ensure that the range specified is first erased before
attempting to program it.

ERARNGE ERARNGE can be called to erase a page (64 bytes) or a whole array of FLASH.

RDVRRNG

This routine is used to perform one of two options. Using the send-out option, this routine
reads FLASH locations and sends the data out serially on a general-purpose I/O. Using
the verify option, this routine verifies the FLASH data against data in a specific RAM
location, which is referred to as a DATA array.

GETBYTE
This routine is used to receive a byte serially on the general-purpose I/O port A bit 0. The

receiving baud rate is the same as the baud rate used in monitor mode.

DELNUS
This routine can generate a specified delay based on the values of register X and

accumulator (A) as parameters.
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Instance A: Fixed Data Structure Implementation
Addresses of Routines

Table 3 provides necessary addresses used in the on-chip FLASH routines for the HC908 families that
use this instance. The address to call each of the five routines varies among the devices. This table gives
the absolute address that should be used when calling the routines.

Page Erase Issue

ERARNGE works properly when the mass erase operation is performed. However, we found that
ERARNGE does not always fully erase a selected page when a page erase operation is performed.
Furthermore, it has the potential to erase a vector page unintentionally.

Please refer to AN1831, Rev. 3, for more information on this issue, a list of affected devices, and
workarounds.

Table 3. MCU Type vs. On-Chip FLASH Routines Addresses (Instance A)

MCU
ROM-Resident Routines RAM Data

Base
AddressPRGRNGE ERARNGE RDVRRNG GETBYTE DELNUS

EY16 $1009 $1006 $1003 $1000 $100C $48

GR4/8 $1CEC $1DA0 $1CAD $1C99 $1D96 $48

GT8/16 $1B59 $1B56 $1B53 $1C6C $1B5C $48

JB8 $FC09 $FC06 $FC03 $FC00 $FC0C $48

JB12/16 $FC09 $FC06 $FC03 - - $88

JG16 $FC09 $FC06 $FC03 - - $88

JK1/JK1E $FC09 $FC06 $FC03 $FC00 $FC0C $88

JL3/JK3 $FC09 $FC06 $FC03 $FC00 $FC0C $88

KX2/8 $1009 $1006 $1003 $1000 $100C $48

QF/QT/QY $2809 $2806 $2803 $2800 $280C $88

RK2/RF2 $F04B $F07D $F00F $F2DE $F0EC $88

Note: Refer to AN1831 for a more detailed description on using these routines.

GZ8/16 $1C09 $1C06 $1C03 $1C00 $1C0C $48

GR16 $1C09 $1C06 $1C03 $1C00 $1C0C $48

Note: Refer to AN2545 for a more detailed description on using these routines.

LB8 $038A $0387 $0384 $037E $038D $88

QL4 $2B8A $2B87 $2B84 $2B7E $2B8D $88

QYxA/QTxA $2809 $2806 $2803 $2800 $280C $88

QB4/8 $2809 $2806 $2803 $2800 $280C $88

Note: Refer to AN2635 for a more detailed description on using these routines.
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Instance B: User-Defined Data Structure Implementation
Instance B: User-Defined Data Structure Implementation

Variables

For this implementation, the index register (H:X) is loaded with the address of the first byte of the data
block (acting as a pointer). Using the start address as a pointer, multiple data blocks can be used, and
any area of RAM may be used. Given this, the RAM data structure is re-locatable and its location will be
defined by the user. The control and data bytes are described in Table 4. Its important to note that variable
naming will also vary compared to instance A.

ROM-Resident Routines

For instance B, there are only three routines that may be used. PRGRNGE and ERARNGE are used in
a similar way as in instance A. Table 5 shows a summary of the ROM-resident routines.

Table 4. Variables Used in ROM-Resident Routines (Instance B)

Variable Name Description Location

FILE_PTR
Registers H and X are initialized with the address to the first byte of the

data block in RAM.
H:X

BUS_SPD
Indicates the operating bus speed of the MCU. The value on this byte

should equal to 4 times the bus speed.
FILE_PTR

DATASIZE
This byte indicates the number of bytes in the data array to be

manipulated. The maximum data array size is 255 bytes.
FILE_PTR + 1

ADDR
These two bytes indicate the start address of the FLASH memory to be

manipulated (ADDRH:ADDRL).
FILE_PTR + 2

DATA This data array contains data that is to be manipulated. FILE_PTR + 4

Table 5. Summary of ROM-Resident Routines

Routine Name Description

PRGRNGE Program a range of FLASH locations with data loaded into the DATA array(1).

1. FLASH locations must be blank so they can be written to. User must ensure that the range specified is first erased before
attempting to program it.

ERARNGE Erase a page or a whole array of FLASH.

LDRNGE Load the data array in RAM with data from a range of FLASH locations.
Using M68HC908 ROM-Resident Routines, Rev. 0.1
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Instance B: User-Defined Data Structure Implementation
Addresses of Routines

Table 6 provides necessary addresses used in the on-chip FLASH routines for the HC908 families that
use instance B.

Code Example

The following C code is a basic example using a 68HC908QY4 (instance A implementation of the
ROM-resident routines). This piece of code configures and uses the PRGRNGE routine to program
4 bytes into a specific location in FLASH. Code for instance B implementation is not described in this
section, but its usage is very similar in the provided implementation.

First, the address for the PRGRNGE routine is defined at address $2809 (as shown in Table 3 for QY4):

/* ROM Resident Routines Pointer Definitions */
#define PRGRNGE   0x2809      /* Program a range of FLASH locations */

Next, the RAM data block must be defined and placed at address $88. FADDR is also defined and
initialized with the first address in FLASH to be programmed. This variable will be used as a parameter
when calling PRGRNGE:

/* RAM Data Block */
unsigned char CTRLBYT @0x0088;      /* Select between mass/page erase */
unsigned char CPUSPD  @0x0089;      /* CPU value equals 4x Bus speed */
unsigned int  LADDR   @0x008A;      /* Last address of FLASH to manipulate */
unsigned char DATA[4] @0x008C;      /* Data to program into FLASH */

unsigned int FADDR = 0xEF00;        /* First Address to store data in FLASH */
unsigned char DataSize = 4;         /* Variable to calculate Last Address */

Table 6. MCU Type vs. On-Chip FLASH Routines Addresses (Instance B)

MCU
ROM-Resident Routines

PRGRNGE ERARNGE LDRGNE DELNUS

JK8/JL8 $FC06 $FCBE $FF30 $FD35

LJ12 $FC06 $FCBE $FF30 $FD35

LJ24/LK24 $FC06 $FCBE $FF30 $FD35

AP $FC34 $FCE4 $FC00 $FF2C

JW32 $FE10 $FE13 $FA31 —

Note: Refer to AN2272 for a more detailed description on using these routines.
Using M68HC908 ROM-Resident Routines, Rev. 0.1
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Considerations
As soon as the RAM data block is defined, it must be initialized:

1. CTRLBYT is set to page erase (which is not used in this exercise, because there is no erasure of
FLASH locations, only data programming).

2. CPUSPD is calculated (fop times 4); based on an internal oscillator frequency of 3.2 MHz, the result
is 12.8, rounded up to 13.

3. LADDR will be the last address in FLASH to be programmed. Because we want to write 4 data
bytes, calculate this value adding 4 to FADDR.

/* RAM DATA Initialization */
CTRLBYT = 0;                    /* Page erase (clear bit-6) */
CPUSPD = 13;                    /* 3.2MHz * 4 = 12.8 = 13 (using internal OSC) */
LADDR = FADDR + DataSize - 1;   /* Last address in FLASH to program */

The programming routine FLASHProgram will load in H:X the value from FADDR, and then jump to the
PRGRNGE subroutine to start executing from ROM using the data in the RAM data block as parameters.

void FLASHProgram(void){

asm(LDHX FADDR);     /* Load address of RAM Data Block to H:X */
asm(JSR PRGRNGE);    /* Call PRGRNGE ROM Subroutine */

}

Considerations

AN2874SW.zip, the example code provided with this application note, was developed using CodeWarrior
IDE version 5.0 for HC08. There may be small changes needed for the code to be used in a different
MCU. Depending on the HC908 being used, the addresses will vary, as previously stated in this
document. Two different projects are included: one created for the MC68HC908QY4 (instance A), and
one created for the MC68HC908LJ12 (instance B).

This document describes how to use the ROM-resident routines to program data into the FLASH using
different families of HC908s. It is important to highlight the fact that some families in the HC908 will use
one implementation or the other, and that not all 68HC908 will have these routines embedded in ROM.
On-chip FLASH routines are not supported in the following families: AB, AS/AZ, BD, LD, MR, GP, SR,
GZ32/48/60, and GR32/48/60.

It’s also important to note that some MCUs will require the flash block protection register (FLBPR) to be
configured before attempting a write/erase to FLASH. In some cases, this register will be set to protect
the entire FLASH memory by default. Please refer to the FLASH section of the data sheet for the
particular MCU family to check the out-of-reset state of this register.
Using M68HC908 ROM-Resident Routines, Rev. 0.1
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