
Freescale Semiconductor
Application Note

AN2874
Rev. 0.1, 3/2006
®

Using M68HC908 ROM-Resident
Routines
By Rogelio Gonzalez Coppel

RTAC Americas
Mexico

Overview

This document is a quick reference for using the ROM-resident routines to read, program, and verify the
FLASH on any MC68HC908 MCU. Basic information about the functional description and configuration
options will give the user a better understanding of how the ROM-resident routines work. This application
note provides examples that demonstrate one use of the ROM-resident routines within the M68HC908
Family of microcontrollers. The examples given may be modified to suit requirements of a specific
application.

This application note has a companion software file, AN2874SW.zip, available from www.freescale.com.
It contains two example projects that demonstrate the routines described in this document.
© Freescale Semiconductor, Inc., 2006. All rights reserved.

This product incorporates SuperFlash technology licensed from SST.

Introduction
Introduction

Most M68HC908 MCUs have on-chip support routines used to program, erase, and verify the FLASH.
These routines may be accessed in either user mode or monitor mode1 and eliminate the need to develop
separate FLASH routines for applications, saving development time and getting more robust FLASH
performance.

There are two instances of the ROM-resident routines implementation in the HC908 MCUs, care should
be taken to ensure the correct implementation is used (data structure type, arguments, routine addresses,
etc.). The instance implemented on each device depends on the family of the MCU. These differences
must be considered to correctly reference these routines.

This document will show how to use these routines from the user software and highlight the main
differences between the two implementations.

Data Structure

Some routines require certain registers and/or RAM locations to be initialized before being called from the
user software (via a JSR). The parameters passed to a routine are in the form of a contiguous data block
stored in RAM. The index register (H:X) acts as a pointer to the routine and is loaded with an address that
will depend on the instance implemented in the MCU. A data block has the control and data bytes in a
defined order, as shown in Figure 1.

Figure 1. Data Block Format for ROM-Resident Routines

Instance A and instance B are similar, but there are differences in how the collection of variables is
ordered in RAM. The next sections will describe in detail each implementation and which families use
which instance.

1. User mode is the normal operating state of the MCU. Entering monitor mode requires specific conditions on pins. Monitor mode
provides a programming interface with a PC via a standard RS-232 interface. For more on this, refer to the monitor ROM section
in the MCU data sheet.

BASE ADDRESS

$XXXX
FIXED IN MEMORY

DATA ARRAY

RAM

CONTROL BYTE (CTRLBYT)

BUS SPEED (CPUSPD)

LAST ADDRESS HIGH (LADDRH)

LAST ADDRESS LOW (LADDRL)

DATA 0
DATA 1

DATA N

INSTANCE A INSTANCE B

DATA N

START ADDRESS HIGH (ADDRH)

START ADDRESS LOW (ADDRL)

DATA 0
DATA 1

DATA SIZE (DATASIZE)

BUS SPEED (BUS_SPD)

RAM

DATA
BLOCK

DATA ARRAY

FILE_PTR

$XXXX
ADDRESS
AS
POINTER
Using M68HC908 ROM-Resident Routines, Rev. 0.1

2 Freescale Semiconductor

Instance A: Fixed Data Structure Implementation
Using M68HC908 ROM-Resident Routines, Rev. 0.1

Instance A: Fixed Data Structure Implementation

Variables

Table 1 shows variables used in the ROM-resident routines and their locations. These variables are either
passed in a register or as static variables in a predefined location in RAM (base address). This address
will be located at the start of RAM + 8.

ROM-Resident Routines

Table 2 introduces the routines. Details are discussed later in this document.

Table 1. Variables Used in ROM-Resident Routines — Instance A (See Notes)

Variable Name Description Location(1)

1. Base address is the fixed location in RAM at which the data array should be placed.

FADDR
Registers H and X are initialized with a 16-bit value representing the

first address of a range.
H:X

CTRLBYT
Control byte used for the ERARNGE routine. Bit 6 in this location is

used to specify either MASS (1) or PAGE (0) erase.
Base address

CPUSPD
CPU speed (used for delays within routines) is the internal operating

frequency (fop) in MHz) times 4 then rounded up to the next integer(2).

2. CPUSPD will be internal operating frequency (fop) times 2 for M68HC908GZ8/16 and M68HC908GR16

Base address + 1

LADDR
A range specifies the FLASH locations to be read, verified, or

programmed. This 16-bit value in RAM holds the last address of a
range.

Base address + 2

DATA
The DATA array contains data that is to be manipulated. The size of

this array must match the size of the range to be programmed or
verified.

Base address + 4

Table 2. ROM-Resident Routines — Instance A

Routine Name Description

PRGRNGE
PRGRNGE is used to program(1) a range of FLASH locations with data loaded into the

DATA array.

1. FLASH locations must be blank so they can be written to. User must ensure that the range specified is first erased before
attempting to program it.

ERARNGE ERARNGE can be called to erase a page (64 bytes) or a whole array of FLASH.

RDVRRNG

This routine is used to perform one of two options. Using the send-out option, this routine
reads FLASH locations and sends the data out serially on a general-purpose I/O. Using
the verify option, this routine verifies the FLASH data against data in a specific RAM
location, which is referred to as a DATA array.

GETBYTE
This routine is used to receive a byte serially on the general-purpose I/O port A bit 0. The

receiving baud rate is the same as the baud rate used in monitor mode.

DELNUS
This routine can generate a specified delay based on the values of register X and

accumulator (A) as parameters.
Freescale Semiconductor 3

Instance A: Fixed Data Structure Implementation
Addresses of Routines

Table 3 provides necessary addresses used in the on-chip FLASH routines for the HC908 families that
use this instance. The address to call each of the five routines varies among the devices. This table gives
the absolute address that should be used when calling the routines.

Page Erase Issue

ERARNGE works properly when the mass erase operation is performed. However, we found that
ERARNGE does not always fully erase a selected page when a page erase operation is performed.
Furthermore, it has the potential to erase a vector page unintentionally.

Please refer to AN1831, Rev. 3, for more information on this issue, a list of affected devices, and
workarounds.

Table 3. MCU Type vs. On-Chip FLASH Routines Addresses (Instance A)

MCU
ROM-Resident Routines RAM Data

Base
AddressPRGRNGE ERARNGE RDVRRNG GETBYTE DELNUS

EY16 $1009 $1006 $1003 $1000 $100C $48

GR4/8 $1CEC $1DA0 $1CAD $1C99 $1D96 $48

GT8/16 $1B59 $1B56 $1B53 $1C6C $1B5C $48

JB8 $FC09 $FC06 $FC03 $FC00 $FC0C $48

JB12/16 $FC09 $FC06 $FC03 - - $88

JG16 $FC09 $FC06 $FC03 - - $88

JK1/JK1E $FC09 $FC06 $FC03 $FC00 $FC0C $88

JL3/JK3 $FC09 $FC06 $FC03 $FC00 $FC0C $88

KX2/8 $1009 $1006 $1003 $1000 $100C $48

QF/QT/QY $2809 $2806 $2803 $2800 $280C $88

RK2/RF2 $F04B $F07D $F00F $F2DE $F0EC $88

Note: Refer to AN1831 for a more detailed description on using these routines.

GZ8/16 $1C09 $1C06 $1C03 $1C00 $1C0C $48

GR16 $1C09 $1C06 $1C03 $1C00 $1C0C $48

Note: Refer to AN2545 for a more detailed description on using these routines.

LB8 $038A $0387 $0384 $037E $038D $88

QL4 $2B8A $2B87 $2B84 $2B7E $2B8D $88

QYxA/QTxA $2809 $2806 $2803 $2800 $280C $88

QB4/8 $2809 $2806 $2803 $2800 $280C $88

Note: Refer to AN2635 for a more detailed description on using these routines.
Using M68HC908 ROM-Resident Routines, Rev. 0.1

4 Freescale Semiconductor

Instance B: User-Defined Data Structure Implementation
Instance B: User-Defined Data Structure Implementation

Variables

For this implementation, the index register (H:X) is loaded with the address of the first byte of the data
block (acting as a pointer). Using the start address as a pointer, multiple data blocks can be used, and
any area of RAM may be used. Given this, the RAM data structure is re-locatable and its location will be
defined by the user. The control and data bytes are described in Table 4. Its important to note that variable
naming will also vary compared to instance A.

ROM-Resident Routines

For instance B, there are only three routines that may be used. PRGRNGE and ERARNGE are used in
a similar way as in instance A. Table 5 shows a summary of the ROM-resident routines.

Table 4. Variables Used in ROM-Resident Routines (Instance B)

Variable Name Description Location

FILE_PTR
Registers H and X are initialized with the address to the first byte of the

data block in RAM.
H:X

BUS_SPD
Indicates the operating bus speed of the MCU. The value on this byte

should equal to 4 times the bus speed.
FILE_PTR

DATASIZE
This byte indicates the number of bytes in the data array to be

manipulated. The maximum data array size is 255 bytes.
FILE_PTR + 1

ADDR
These two bytes indicate the start address of the FLASH memory to be

manipulated (ADDRH:ADDRL).
FILE_PTR + 2

DATA This data array contains data that is to be manipulated. FILE_PTR + 4

Table 5. Summary of ROM-Resident Routines

Routine Name Description

PRGRNGE Program a range of FLASH locations with data loaded into the DATA array(1).

1. FLASH locations must be blank so they can be written to. User must ensure that the range specified is first erased before
attempting to program it.

ERARNGE Erase a page or a whole array of FLASH.

LDRNGE Load the data array in RAM with data from a range of FLASH locations.
Using M68HC908 ROM-Resident Routines, Rev. 0.1

Freescale Semiconductor 5

Instance B: User-Defined Data Structure Implementation
Addresses of Routines

Table 6 provides necessary addresses used in the on-chip FLASH routines for the HC908 families that
use instance B.

Code Example

The following C code is a basic example using a 68HC908QY4 (instance A implementation of the
ROM-resident routines). This piece of code configures and uses the PRGRNGE routine to program
4 bytes into a specific location in FLASH. Code for instance B implementation is not described in this
section, but its usage is very similar in the provided implementation.

First, the address for the PRGRNGE routine is defined at address $2809 (as shown in Table 3 for QY4):

/* ROM Resident Routines Pointer Definitions */
#define PRGRNGE 0x2809 /* Program a range of FLASH locations */

Next, the RAM data block must be defined and placed at address $88. FADDR is also defined and
initialized with the first address in FLASH to be programmed. This variable will be used as a parameter
when calling PRGRNGE:

/* RAM Data Block */
unsigned char CTRLBYT @0x0088; /* Select between mass/page erase */
unsigned char CPUSPD @0x0089; /* CPU value equals 4x Bus speed */
unsigned int LADDR @0x008A; /* Last address of FLASH to manipulate */
unsigned char DATA[4] @0x008C; /* Data to program into FLASH */

unsigned int FADDR = 0xEF00; /* First Address to store data in FLASH */
unsigned char DataSize = 4; /* Variable to calculate Last Address */

Table 6. MCU Type vs. On-Chip FLASH Routines Addresses (Instance B)

MCU
ROM-Resident Routines

PRGRNGE ERARNGE LDRGNE DELNUS

JK8/JL8 $FC06 $FCBE $FF30 $FD35

LJ12 $FC06 $FCBE $FF30 $FD35

LJ24/LK24 $FC06 $FCBE $FF30 $FD35

AP $FC34 $FCE4 $FC00 $FF2C

JW32 $FE10 $FE13 $FA31 —

Note: Refer to AN2272 for a more detailed description on using these routines.
Using M68HC908 ROM-Resident Routines, Rev. 0.1

6 Freescale Semiconductor

Considerations
As soon as the RAM data block is defined, it must be initialized:

1. CTRLBYT is set to page erase (which is not used in this exercise, because there is no erasure of
FLASH locations, only data programming).

2. CPUSPD is calculated (fop times 4); based on an internal oscillator frequency of 3.2 MHz, the result
is 12.8, rounded up to 13.

3. LADDR will be the last address in FLASH to be programmed. Because we want to write 4 data
bytes, calculate this value adding 4 to FADDR.

/* RAM DATA Initialization */
CTRLBYT = 0; /* Page erase (clear bit-6) */
CPUSPD = 13; /* 3.2MHz * 4 = 12.8 = 13 (using internal OSC) */
LADDR = FADDR + DataSize - 1; /* Last address in FLASH to program */

The programming routine FLASHProgram will load in H:X the value from FADDR, and then jump to the
PRGRNGE subroutine to start executing from ROM using the data in the RAM data block as parameters.

void FLASHProgram(void){

asm(LDHX FADDR); /* Load address of RAM Data Block to H:X */
asm(JSR PRGRNGE); /* Call PRGRNGE ROM Subroutine */

}

Considerations

AN2874SW.zip, the example code provided with this application note, was developed using CodeWarrior
IDE version 5.0 for HC08. There may be small changes needed for the code to be used in a different
MCU. Depending on the HC908 being used, the addresses will vary, as previously stated in this
document. Two different projects are included: one created for the MC68HC908QY4 (instance A), and
one created for the MC68HC908LJ12 (instance B).

This document describes how to use the ROM-resident routines to program data into the FLASH using
different families of HC908s. It is important to highlight the fact that some families in the HC908 will use
one implementation or the other, and that not all 68HC908 will have these routines embedded in ROM.
On-chip FLASH routines are not supported in the following families: AB, AS/AZ, BD, LD, MR, GP, SR,
GZ32/48/60, and GR32/48/60.

It’s also important to note that some MCUs will require the flash block protection register (FLBPR) to be
configured before attempting a write/erase to FLASH. In some cases, this register will be set to protect
the entire FLASH memory by default. Please refer to the FLASH section of the data sheet for the
particular MCU family to check the out-of-reset state of this register.
Using M68HC908 ROM-Resident Routines, Rev. 0.1

Freescale Semiconductor 7

How to Reach Us:

Home Page:
www.freescale.com

References

Visit www.freescale.com for the most up-to-date versions of these and other useful documents:

AN2874SW.zip — Contains example code for the routines described in this application note
MC68HC908LJ12/D, Technical Data Sheet — Section 10.6 ROM-Resident Routines
AN1831 — Using MC68HC908 On-Chip FLASH Programming Routines.
AN2272 — In-Circuit Programming of FLASH Memory in the MC68HC908LJ12
AN2295 — Developer’s Serial Bootloader for M68HC08 and HCS08 MCUs
AN2346 — EEPROM Emulation Using FLASH in MC68HC908QY/QT MCUs
AN2504 — On-Chip FLASH Programming API for CodeWarrior Software
AN2545 — Using MC68HC908GR/GZ On-Chip FLASH Programming Routines
AN2635 — On-Chip FLASH Programming Routines for MC68HC908LB8, MC68HC908QL4,

MC68HC908QB4, MC68HC908QB8, MC68HC908QT5, and MC68HC908QY8
EB618 — Typical Data Retention for Nonvolatile Memory
EB619 — Typical Endurance for Nonvolatile Memory
AN2874
Rev. 0.1, 3/2006

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2004. All rights reserved.

	Overview
	Introduction
	Data Structure
	Instance A: Fixed Data Structure Implementation
	Variables
	ROM-Resident Routines
	Addresses of Routines
	Page Erase Issue

	Instance B: User-Defined Data Structure Implementation
	Variables
	ROM-Resident Routines
	Addresses of Routines
	Code Example

	Considerations
	References

