
Freescale Semiconductor
Application Note

Document Number: AN2831
Rev. 0, 01/2008

Contents
 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Boot Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Internal and External Boot Modes . . . . . . . . . . . . . . . . . . 4

3.1 RCHW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Generating Boot Code. . . . . . . . . . . . . . . . . . . . . . . 6
Serial Boot Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1 Generating Serial Download Code . . . . . . . . . . . . . 8
4.2 Serial Boot Password  . . . . . . . . . . . . . . . . . . . . . . 10
Core Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . 10
BAM Execution Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Debug Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

ppendix A  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
A.1 Debug Mode MMU Initialization Scripts. . . . . . . . . 12
A.2 Lauterbach Trace 32 . . . . . . . . . . . . . . . . . . . . . . . 12

MPC5500 Boot Assist Module
by: Alistair Robertson

Powertrain Systems Engineer
1  Overview
Freescale Semiconductor’s MPC5500 family of highly 
integrated microcontrollers offer a greater level of 
functionality than earlier generations of 
microcontrollers, such as the MPC500 family. A host of 
new features including the direct memory access (DMA) 
and the memory management unit (MMU) has resulted 
in an increase in system initialization requirements. This 
has subsequently led to the introduction of the boot assist 
module (BAM).

The BAM is a nonvolatile memory based software 
program. The BAM’s primary function is to perform 
essential system initialization and to locate and execute 
the application code. The BAM also supports serial 
download of user code. The execution of the BAM is 
affected by the censorship status. BAM is executed when 
reset is negated.

The BAM supports four different modes of locating and 
executing user code:

1
2
3

4

5
6
7
8
A

© Freescale Semiconductor, Inc., 2007. All rights reserved.



Overview
• Boot from internal flash
• Boot from external memory
• Boot from external memory with arbitration for multi-master systems
• Serially download user code via the enhanced serial communications interface (eSCI) or FlexCAN.

When booting from the internal flash or the external memory, the BAM reads a reset configuration half 
word (RCHW) and configures the core watchdog and external bus interface (EBI) accordingly. The BAM 
also supports password protection when serially downloading boot-code. This serial download function 
allows the BAM to be used for censorship recovery, flash programming and even high level debug.

This application note details how to use the different boot modes of MPC5500 devices, providing example 
code where necessary. This acts as a supplement to the information provided in the reference manuals for 
the MPC5500 devices available at www.freescale.com.

This document describes the BAM implemented in the following devices:

*= 16-bit only in 324 PBGA package

% = No EBI on 208 packages

Figure 1 shows the simplified program flow of the BAM.

Table 1. Devices supported by AN2831

Device Core VLE 
Supported

SRAM 
Size Bus Width

MPC5533 e200z3 Yes 48K No external bus interface (EBI)

MPC5534 e200z3 Yes 64K 16-bit EBI*

MPC5553 e200z6 No 64K 16 or 32-bit selectable*%

MPC5554 e200z6 No 64K 16 or 32-bit selectable*

MPC5561 e200z6 Yes 192K 16-bit*

MPC5565 e200z6 Yes 80K 16-bit*

MPC5566 e200z6 Yes 128K 16 or 32-bit selectable

MPC5567 e200z6 Yes 80K 16 or 32-bit selectable*
MPC5500 Boot Assist Module, Rev. 0

Freescale Semiconductor2



Overview
Figure 1. MPC5500 Boot Assist Module Flow Diagram

 

Internal 
boot? 

Reset 

yes 

no Serial 
boot? 

yes 

no 
Single 
master 
boot? 

yes 

no 

Search for RCHW 

Find 
RCHW? 

yes 

no 

Parse RCHW 

Branch to code in 
INTERNAL FLASH / 

EXTERNAL MEMORY 

Configure MMU for 
internal boot 

Download: 
* Store address 
* Size of code 
* VLE bit 
* User code 

Branch to code
loaded into 

INTERNAL SRAM

Read RCHW 

Find 
RCHW? 

yes 

no 

Parse RCHW 

Re-configure MMU 

Configure EBI as 16 
bit with arbitration 

Configure EBI as 16bit 
without arbitration 

WTE 
bit set? 

yes 

Enable Watchdog 

Password Check 

Password 
match 

no 

yes 

STOP
Wait for 
reset or 
watchdog 
timeout

no 

VLE bit 
set? 

yes 

no Program 
RAM, EBI and 
Flash TLB 
entries for 
VLE mode 

VLE bit 
set? 

yes 

no 
Program RAM, EBI 
and Flash TLB  
entries for VLE 
mode 

Port 
size=32 

bit? 

yes 

no 

Configure 
for 32-bit. 

Enable 
watchdog 

Service 
Watchdog 

Read destination 
address 

SCI/CAN modules 
Initialisation 
MPC5500 Boot Assist Module, Rev. 0

Freescale Semiconductor3



Boot Modes
NOTE
Figure 1 shows the generic BAM program flow diagram for the MPC5500 
family. Not all MPC5500 derivatives support the 16-/32-bit EBI features 
detailed.

This is a simplified program flow and is not representative of the actual code 
implementation. Liberties have been made to ease understanding of the 
flow.

2 Boot Modes
There are four different boot modes supported by the BAM. These, together with the required entry 
conditions are listed in Table 2. Refer to the MPC5554 Reference Manual Rev 3.1, Section 16.3.2, for a 
complete description.

NOTE
‘!’ = ‘NOT’, meaning any value other than the value specified. Values 
0x0000 and 0xFFFF must not be used.

Internal boot mode is the default selection if the BOOTCFG pins are not sampled at reset (RSTCFG not 
asserted as RSTOUT negates). Serial download mode is the default selection if internal or external boot 
mode is selected but no valid RCHW is found.

Table 2. BAM Boot Modes

BOOT
CFG 
[0:1]

Censorship 
Control 
0x00FF_

FDE0

Serial Boot 
Control 
0x00FF_

FDE2

Boot Mode Name
Internal 
Flash 
State

Nexus 
State

Serial 
Password

00 !0x55AA Don’t care Internal – censored Enabled Disabled Flash

0x55AA Internal – public Enabled Enabled Public

01 Don’t care 0x55AA Serial – flash password Enabled Disabled Flash

!0x55AA Serial – public password Disabled Enabled Public

10 !0x55AA Don’t Care External – no arbitration – censored Disabled Enabled Public

0x55AA External – no arbitration – public Enabled Enabled Public

11 !0x55AA Don’t care External – external arbitration – 
censored

Disabled Enabled Public

0x55AA External – external arbitration – 
public

Enabled Enabled Public
MPC5500 Boot Assist Module, Rev. 0

Freescale Semiconductor4



Internal and External Boot Modes
3 Internal and External Boot Modes

3.1 RCHW
The reset configuration half word (RCHW) controls the program flow of the BAM. Boot ID = 0x5A 
signifies that the RCHW is valid. WTE = 1 enables / WTE = 0 disables the core watchdog timer. PSO 
selects an external bus port size of 16-bit if PSO = 1 and 32-bit if PSO = 0. VLE = 1 enables variable length 
encoding. Unused bits must be written to zero to ensure compatibility with future MPC5500 devices.

Figure 2. Reset Configuration Half Word

The RCHW can be located at various locations.

The BAM has no means of determining in advance whether the external memory port size is 16 or 32-bits 
wide until the RCHW has been read. Therefore the initial read of the external memory is configured as a 
16-bit read. The BAM also has no knowledge of the partitioning of external memory, therefore only the 
first address of the external memory is valid.

For internal flash, after reading the 16-bit RCHW, the next 32-bit aligned location must contain the 
application code start vector. The same rules apply to external memory as shown in the tables below.

0 4 5 6 7 8 15

WTE PS0 VLE BOOTID (0b01011010)

Table 3. RCHW Locations

Boot Mode RCHW locations Comment

Internal flash 0x00_0000 (LAS0)
0x00_4000 (LAS1)
0x01_0000 (LAS2)
0x01_c000 (LAS3)
0x02_0000 (LAS4)
0x03_0000 (LAS5)

The lowest address of any of the six Low Address Spaces (LAS) in internal 
flash memory. 
When booting from internal memory, the BAM can ignore ECC errors in 
the RCHW thus avoiding the possibility of being stuck in an endless loop. 
As a further safety measure, a valid RCHW could be placed at more than 
one LAS location.

External memory
(with/without 
arbitration)

0x2000_0000 The lowest address of an external memory device, enabled by chip select 
CS0 using either 16 or 32-bit wide external data bus.

Table 4. Internal Flash

Logical Address Code Description

0x0001_C000 0x045A_XXXX RCHW located at flash LAS L3, watchdog enabled. 

0x0001_C004 0x0008_0000 Application code start resides in flash has H0 address 
0x0008_0000
MPC5500 Boot Assist Module, Rev. 0

Freescale Semiconductor5



Internal and External Boot Modes
The address at the start of the application code is read by the BAM. This is data and is not a branch 
instruction therefore program breakpoints set at this address do not work. Data/read breakpoints must be 
used.

3.2 Generating Boot Code
There are several programming techniques for developing application code with the RCHW and the 
address or START positioned at a valid location.

NOTE
The following code examples were developed using Windriver’s Diab 
C\C++ compiler.

3.2.1 Using #PRAGMA Directives to Create Absolute Sections
The simplest method is to create absolute sections using the # pragma section-directive. The advantage of 
creating an absolute section is that it requires no modification to the linker file. The compiler creates an 
.abs.xxxxxxxx section at compile time, that the linker automatically locates at address defined by 
xxxxxxxx.

#pragma section SCONST address=0x0001c000

const short int ResetConfigWord = 0x005A;

extern void _start();                                         

#pragma section SDATA address=0x0001c004

int start_address = (int)_start;

#pragma section CODE

//application code here…

• SCONST & SDATA are predefined section class names. Default settings are far-absolute 
address-mode and read-only access mode.

• _start defined in init code such as crt0.s file or equivalent

Table 5. 16 -Bit External Memory

Logical Address Code Description

0x2000_0000 0x025A RCHW located at start of external memory, Watchdog disabled, 
16-bit port size.

0x2000_0002 0xXXXX Don’t care

0x2000_0004 0x0008 Application code ‘START’ resides at Flash HAS H0 address 
0x0008_0000

0x2000_0006 0x0000
MPC5500 Boot Assist Module, Rev. 0

Freescale Semiconductor6



Internal and External Boot Modes
The user must take care to ensure that the memory areas defined in the linker file do not overlap the 2 x 
32-bit words used for the RCHW and the _start address. For the example code given, the linker file must 
not use address range from 0x1C000 to 0x1C008.

3.2.2 Define RCHW within Linker File
In this approach, memory and section commands within the linker command file can specify a memory 
area to be used for the RCHW. The advantage of this approach is that RCHW can be easily moved without 
having to modify application code. The following extract from a linker command file gives an example of 
how the memory and section commands can be updated to include the RCHW.
MPC5500 Boot Assist Module, Rev. 0

Freescale Semiconductor7



Serial Boot Mode
MEMORY

{
// 2M Internal FLASH
RCHW : org = 0x00000000,len = 0x00000008
int_flash: org = 0x00000008,len = 0x001FFFF7
// 2M External Memory
ext_mem:org = 0x20000000,len = 0x00080000
// 64K Internal RAM
int_sram: org = 0x40000000,len = 0x00010000
}

SECTIONS
{
// FLASH data
.rchw : { *(.rchw) } > RCHW    
.init : {} > int_flash 
.text : {} > int_flash
.flash_data: {} > int_flash

// RAM data
.data : {} > int_sram
.sdata : {} > int_sram
.sbss : {} > int_sram
.sdata2 : {} > int_sram
.sbss2 : {} > int_sram
.bss : {} > int_sram
}

In the initialization assembly code (crt0.s or equivalent), the following section must be added:
.section               .rchw// As defined in SECTIONS command in linker file.
.LONG 0x005A0000 // Watchdog disabled, 32-bit port size. 

.LONG _start // Start vector, defined in user initialization code.

4 Serial Boot Mode
When operating in serial boot mode the BAM can download a program into internal RAM using either 
eSCI or FlexCAN. The protocol for serial download involves sending:

• A 64-bit password
• A 32-bit destination address for application code
• A 32-bit word that consists of:

— The 31-bit size of the application code in bytes
— The VLE bit

• The application code.

In the case of eSCI transmission, each byte received by the MPC5500 is echoed. In the case of FlexCAN, 
each data packet received is echoed. Therefore, even if not monitoring the echoed bytes or packets, a delay 
must be inserted between transmissions of each byte/packet to allow enough time for the previous echo to 
MPC5500 Boot Assist Module, Rev. 0

Freescale Semiconductor8



Serial Boot Mode
be transmitted. Refer to device reference manual for specific FlexCAN & eSCI settings and information 
on download protocol.

4.1 Generating Serial Download Code
When loading code to internal RAM (using the BAM serial download or otherwise) the user must be aware 
that error correction coding (ECC) is implemented for all SRAM (SRAM). It is essential that the ECC 
parity bits are initialized after power on. A 64-bit cache inhibited write to each location in SRAM must be 
used to initialize the SRAM array. Code downloaded to SRAM by the serial download mode of the BAM 
is loaded in 64-bit writes, initializing the SRAM as the code is downloaded. However care must be taken 
to ensure that SRAM areas allocated to variables, heap and stack are also initialized.

There are several ways to handle this:
• Assign all stack and variables to non-SRAM address space.
• Develop code in assembler, which does not rely on a stack or any variables.
• Initialize additional SRAM array space to accommodate variables/stack.

4.1.1 Assign Variables and Stack to Non-ECC RAM
There are several smaller RAM arrays within the peripheral modules, such as the eTPU, the FlexCAN and 
the eDMA, which do not have ECC implemented.

These RAM memory locations can not be used for the executable code. Whether downloading using 
FlexCAN or eSCI the BAM collects each 8 bytes of transmitted information and performs 64-bit writes to 
the internal RAM. Only the SRAM array supports the 64-bit writes implemented by the BAM. An 
advantage of using non-system RAM for stack and heap allocation is that it removes the time delay 
required to initialize the entire SRAM array

Table 6. Available RAM Arrays

MPC5554 RAM Type Size MPC5554 Location

eTPU parameter RAM 3K 0xC3FC_8000 to 0xC3FC_BFFF

FlexCAN_A message buffers 0 – 631

1 Message buffer 0 in FlexCAN_A is used for CAN serial download mode by the BAM and the remaining message buffers 
are used as scratch pad RAM. (The serial download section of the BAM was written in C and requires RAM allocation for 
variables). When control is passed to the application code, the BAM no longer uses FlexCAN_A message buffers and then 
they are available for use. If the downloaded user code makes use of the FlexCAN module, then the 
CANx_MCR[MAXMB[0..5] can be set to minimize the number of buffers used, and therefore maximize the free available 
memory.

1K 0xFFFC_0080 to 0xFFFC_047F

FlexCAN_B message buffers 0 – 63 1K 0xFFFC_4080 to 0xFFFC_447F

FlexCAN_C message buffers 0 – 63 1K 0xFFFC_8080 to 0xFFFC_847F

eDMA transfer control descriptors2

2 Although the eDMA transfer control descriptor (TCD) memory space is available for use, extreme care must be taken when 
using this to ensure that the TCD[START] bit is not written to, potentially triggering an unwanted eDMA transfer. It is not 
recommended to use this memory area unless absolutely necessary.

2K 0xFFF4_5000 to 0xFFF4_5800
MPC5500 Boot Assist Module, Rev. 0

Freescale Semiconductor9



Serial Boot Mode
4.1.2 Develop Download Code in Assembler Code
By developing serial-download application in assembler code using internal GPRs only, the user can avoid 
using uninitialized SRAM locations.

4.1.3 Initialize the Entire SRAM Array
There are two methods for ensuring the entire SRAM array is initialized.

• Insert SRAM ECC initialization code:
The serial download mode of the BAM performs 64-bit writes to the internal SRAM using the 
STMW instruction. Each 64-bit write performed by the BAM actively enables the ECC bits for that 
double word. By placing SRAM initialization code at the start of the download code (before stack 
or heap is established), the entire SRAM array can be initialized before executing any code that 
could make use of uninitialized SRAM.
For example: consider the case where 32K of code is downloaded via eSCI. This could occupy 
address range 0x4000_0000 to 0x4000_7FFF. The remaining 32K of RAM from address 
0x4000_8000 to 0x4000_FFFF can be initialized by adding the following code to the start of the 
download code. 

Clear_GPRs
li r16, 0 # Clear general purpose registers 16 - 32
li r17, 0 # This is to ensure that the SRAM is initialized to zero.
li r18, 0 # Although not always strictly necessary it is
….. # good practice to initialize memory to be used for
li r31, 0 # variables to zero.

init_SRAM:
lis r11,0x4000 # Load address 0x4000_8000 
ori r11,r11,0x8000 
li r12, 0x200 # 32k/4 bytes/16 GPRs = 512 = 0x200. 
mtctr r12 # Move contents of r12 into counter

init_SRAM_loop: 
stmw r16,0(r11) # write all 16 GPRs to SRAM
addi r11,r11,0x40  # increment the ram pointer by 64 bytes
bdnz init_SRAM_loop  # loop for all remaining 32k of SRAM
blr

• Manipulate S-record/binary to initialize entire array:
By simply appending or prefixing the downloadable user code with enough arbitrary values to 
create a 64K array the user can ensure that all of the SRAM is initialized. This can be performed 
manually or by software. For example, the SREC_CAT* utility provides a means to manipulate 
S-records, binary files and C arrays. To buffer an S-record so that it fills the entire 64K address 
range between 0x4000_0000 and 0x4001_0000 use the command line:

– srec_cat file.s19 -fill 0x00 0x400000000 0x40003FFE -o updatedfile.s19
To convert an S-record into a C-array for easily incorporating into serial download code use the 
command line:

– srec_cat file.s19 -o file.c -C-array
MPC5500 Boot Assist Module, Rev. 0

Freescale Semiconductor10



Core Watchdog Timer
* SREC_CAT is not a Freescale Semiconductor product. It is part of the GNU S-record tools suite 
available at http://srecord.sourceforge.net/

4.2 Serial Boot Password
To commence downloading code in serial boot mode a valid 64-bit password must first be downloaded. 
This can be either the user defined flash password or the pre-defined public password depending upon the 
censorship control and serial boot control bits, refer to Table 2.

• The predefined public password is 0xFEED_FACE_CAFE_BEEF.
• Within the flash password none of the 4 x 16-bit half words can be 0x0000 or 0xFFFF.

With knowledge of the flash password, the user can recover censored devices. This involves downloading 
a flash programmer into the internal SRAM that reprograms the censorship control bits, therefore 
unlocking the censored flash array.

4.2.1 Password Security Features
If an incorrect password is transmitted, the password is still echoed. There is no immediate indication if 
an incorrect password has been received by the BAM. Only if the next packet of information, that must 
define the address of _start is echoed does the user know if the password was accepted.

There are 264 different password combinations. The only way to test these combinations is to try and 
download them. Each incorrect attempt requires either a watchdog timeout or a reset and the BAM to run 
again. Therefore, even with the maximum FlexCAN baud rate, it takes 100,000’s of years to exercise all 
264 passwords combinations.

Finally, the internal mechanism for comparing the downloaded password with the stored password is 
configured so that no trace of the stored password remains in any register that is not cleared by a reset, 
such as core GPRs, thus providing an extra level of security.

5 Core Watchdog Timer
In internal or external boot mode the BAM enables the watchdog, only if the RCHW[WTE] bit is set. The 
BAM programs the time base registers (TBU and TBL) to 0x0000_0000_0000_0000 and enables the core 
watchdog timer with a time-out period of 3 x 217 system clock cycles. For example, an 8 MHz crystal 
generating a 12 MHz system clock results in a watchdog timeout of 32.7 ms.

When the BAM switches to serial boot mode the watchdog is always enabled. The watchdog is refreshed 
only after the correct flash/public password is accepted and subsequently after each write to the internal 
SRAM. This means, the user must either service the watchdog or disable it after serial download is 
complete. The watchdog can be serviced in several ways.

• Clear the TBU and TBL bits to refresh the timer. This is acceptable when the code download has 
just completed, but may be less desirable if the downloaded application code makes use of the 
decrementer or fixed-interval-timer that are dependent upon the timebase.

• Stop the timebase by writing HID0[TBEN] = 0
• Periodically clearing the TSR[WIS] bit
MPC5500 Boot Assist Module, Rev. 0

Freescale Semiconductor11



BAM Execution Time
• Increase the timeout period

The simplest method is to increase the timeout period to ensure that there is sufficient time for the 
downloaded code to run. For example, the default settings for the watchdog in serial boot mode are: WP 
= 0b01, WPEXT = 0b1001, selecting a timeout in the order of 217 system clocks. The watchdog can be 
effectively disabled by increasing the timeout by writing the TCR[WP, WPEXT] bits. For example, setting 
WP=0b00 & WPEXT = 0b0000 gives a timeout of in the region of 264 system clocks.

For information referring to the watchdog refer to the e200z6 Core Reference Manual available at 
www.freescale.com. Further information, including example code, can be found in AN2817 MPC5500 
Watchdog Timer.

6 BAM Execution Time
The boot time from the internal flash based on an 8 MHz clock source, is <100 μs for internal flash if the 
RCHW is on the first block of the flash.

For external memory, the boot time is <150 μs.

For serial boot it is approximately 200 μs before the BAM waits for the first data from the SCI or CAN.

7 Debug Mode
The BAM program is not executed when the MCU comes out of reset in debug mode. Consequently, steps 
must be taken to perform the relevant MMU initialization that would normally have been implemented by 
the BAM. The EBI and relevant pins must also be initialized if the user intends to use external memory.

Three options are:
• If an application code with a valid RCHW resides in the internal flash or external memory. The 

BAM can be allowed to run and stopped using either hardware breakpoints or manually by the 
debugger.

• If no application code with a valid RCHW is present in either internal flash or external memory, 
the BAM execution can be stopped by using breakpoints. This can halt the execution of the BAM 
after it has set up the MMU but before the internal boot mode is entered. This ensures that the 
watchdog remains disabled allowing the user to continue with debug.

• The MMU can be manually setup by writing directly to the MMU MAS registers and executing 
tlbwe instructions. This bypasses the BAM altogether. Example scripts for Lauterbach Trace32 and 
Metroworks Codewarrior for MPC5500 are included in Appendix A.

8 Summary
This application note has highlighted the key features of the BAM and provided examples of how to 
develop code for internal and external boot and serial download.

Although the BAM is implemented on the entire MPC5500 family, the information in this application note 
was based on the devices in Table 1.
MPC5500 Boot Assist Module, Rev. 0

Freescale Semiconductor12



Summary
Appendix A  

A.1 Debug Mode MMU Initialization Scripts
The following example scripts setup the MMU in a similar manner the way the BAM does. Both the 
internal flash and external memory space are set up in this example.

In each case all MMU accesses must go through the MMU assist registers (MAS0-MAS3). The contents 
of the MAS registers are copied into the TLB with the tlbwe instruction.

A.2 Lauterbach Trace 32
The following script file is executed as a ‘*.cmm’ file executed after the devices come out of reset in debug 
mode, but before application code is loaded.

; Setup MMU for peripheral B modules, base address = 0xFFF0_0000

; TLB0, 1 MByte memory space, guarded, do not cache, all access

MMU.TLBSET 0 0xC0000500 0xFFF0000A 0xFFF0003F

; Set up MMU for internal flash, base address = 0x0000_0000

; TLB1, 16 MByte memory space, not guarded, cacheable, all access

MMU.TLBSET 1 0xC0000700 0x00000000 0x0000003F 

Table A-1. Example MMU Settings

TLB 
Entry Region Logical Base 

Address
Physical Base 

Address Size Attributes

0 Peripheral bridge 
B

0xFFF0_0000 0xFFF0_0000 1 Mbyte Cache inhibited
Guarded

Big endian
Global PID

1 Internal flash 0x0000_0000 0x0000_0000 16 Mbytes Cache enabled
Not guarded
Big endian
Global PID

2 External bus 0x2000_0000 0x2000_0000 16 Mbytes Cache enabled
Not guarded
Big endian
Global PID

3 SRAM 0x4000_0000 0x4000_0000 256 kbytes Cache inhibited
Not guarded
Big endian
Global PID

4 Peripheral bridge 
A

0xC3F0_0000 0xC3F0_0000 1 Mbyte Cache inhibited
Guarded

Big endian
Global PID
MPC5500 Boot Assist Module, Rev. 0

Freescale Semiconductor13



Summary
; Set up MMU for external memory, base address = 0x2000_0000

; TLB2, 16 MByte memory space, not guarded, cacheable, all access

MMU.TLBSET 2 0xC0000700 0x20000000 0x2000003F 

; Set up MMU for internal RAM, Base address = 0x4000_0000

; TLB3, 256 KByte memory space, not guarded, do not cache, all access

MMU.TLBSET 3 0xC0000400 0x40000008 0x4000003F

; Set up MMU for peripheral A modules, base address = 0xC3F0_0000

; TLB4, 1 MByte memory space, not guarded, do not cache, all access

MMU.TLBSET 4 0xC0000500 0xC3F00008 0xC3F0003F 
MPC5500 Boot Assist Module, Rev. 0

Freescale Semiconductor 14



Summary
MPC5500 Boot Assist Module, Rev. 0

Freescale Semiconductor15



Document Number: AN2831
Rev. 0
01/2008

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software 
implementers to use Freescale Semiconductor products. There are no express or 
implied copyright licenses granted hereunder to design or fabricate any integrated 
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to 
any products herein. Freescale Semiconductor makes no warranty, representation or 
guarantee regarding the suitability of its products for any particular purpose, nor does 
Freescale Semiconductor assume any liability arising out of the application or use of any 
product or circuit, and specifically disclaims any and all liability, including without 
limitation consequential or incidental damages. “Typical” parameters that may be 
provided in Freescale Semiconductor data sheets and/or specifications can and do vary 
in different applications and actual performance may vary over time. All operating 
parameters, including “Typicals”, must be validated for each customer application by 
customer’s technical experts. Freescale Semiconductor does not convey any license 
under its patent rights nor the rights of others. Freescale Semiconductor products are 
not designed, intended, or authorized for use as components in systems intended for 
surgical implant into the body, or other applications intended to support or sustain life, 
or for any other application in which the failure of the Freescale Semiconductor product 
could create a situation where personal injury or death may occur. Should Buyer 
purchase or use Freescale Semiconductor products for any such unintended or 
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and 
its officers, employees, subsidiaries, affiliates, and distributors harmless against all 
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, 
directly or indirectly, any claim of personal injury or death associated with such 
unintended or unauthorized use, even if such claim alleges that Freescale 
Semiconductor was negligent regarding the design or manufacture of the part. 

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality 
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free 
counterparts. For further information, see http://www.freescale.com or contact your 
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to 
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. 
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2007. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	1 Overview
	2 Boot Modes
	3 Internal and External Boot Modes
	3.1 RCHW
	3.2 Generating Boot Code
	3.2.1 Using #PRAGMA Directives to Create Absolute Sections
	3.2.2 Define RCHW within Linker File


	4 Serial Boot Mode
	4.1 Generating Serial Download Code
	4.1.1 Assign Variables and Stack to Non-ECC RAM
	4.1.2 Develop Download Code in Assembler Code
	4.1.3 Initialize the Entire SRAM Array

	4.2 Serial Boot Password
	4.2.1 Password Security Features


	5 Core Watchdog Timer
	6 BAM Execution Time
	7 Debug Mode
	8 Summary
	A.1 Debug Mode MMU Initialization Scripts
	A.2 Lauterbach Trace 32


