
Freescale Semiconductor
Application Note

 AN2821
Rev. 2, 08/2007

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
eTPU and Host Interface Hardware  . . . . . . . . . . . . . . . . 3
Host Interface Software  . . . . . . . . . . . . . . . . . . . . . . . . . 4

4.1 Initialization Overview . . . . . . . . . . . . . . . . . . . . . . . 4
4.2 eTPU Module Initialization. . . . . . . . . . . . . . . . . . . . 5
4.3 eTPU Channel Initialization . . . . . . . . . . . . . . . . . . . 6
4.4 eTPU Function Initialization. . . . . . . . . . . . . . . . . . . 6
4.5 eTPU and Host Interactive Control . . . . . . . . . . . . . 7
Software Integration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

eTPU Host Interface
by: David Paterson

Ming Li
MCD Applications
1 Introduction
This application note discusses the enhanced Time 
Processing Unit (eTPU), hardware and software of the 
host interface, and describes the software integration. 

See http://www.freescale.com/etpu for eTPU software 
and examples.

The eTPU is the new generation of a Time Processing 
Unit (TPU) by Freescale. Besides the hardware 
enhancement, significant improvements over TPU have 
been made to the accompanying software development 
tools; these tools make the eTPU easy to use. A high 
level (C) language compiler has been developed so the 
eTPU can be programmed using C language instead of 
microcode. 

To program the eTPU effectively, you must have a clear 
understanding of how the eTPU hardware works. Coding 
in C, the programmer can leave the mechanics of the 
eTPU programming to the compiler (parameter packing, 
micro-instruction packing, etc.) and focus more on the 

1
2
3
4

5
6

© Freescale Semiconductor, Inc., 2007. All rights reserved.

http://www.freescale.com/etpu


application logic. With the help of the eTPU simulator and debugger, eTPU software can be developed 
much like the software for the host CPU. Productivity of software development can be significantly 
improved. 

The introduction of the eTPU C compiler also changes the way the host interfaces to the eTPU functions. 
With the help of the compiler, the same symbol can be referenced by the eTPU and host software. The host 
software can interface with eTPU functions via application programming interface (API) functions, 
instead of accessing physical memory locations and registers. The host application can call these API 
functions to interface with the eTPU. The references to these API functions and symbols for parameters 
are resolved at compile time. The implementation details of the eTPU functions are hidden from the host 
application. This design improves the flexibility of the eTPU functions’ implementation and the portability 
of the host application code. This application note discusses how to build the host interface for eTPU 
functions.

2 Overview
Host interface software adds another layer of abstraction between the host CPU and eTPU. The host 
interface API functions hide the complexity of the interaction between the host CPU and eTPU, providing 
a simple interface for host applications. Ideally, every eTPU function shall have one or more host interface 
API functions.

The interface software between host and eTPU facilitates three major tasks: 
• eTPU hardware initialization – configure eTPU peripheral hardware
• eTPU function initialization – pass initial parameters and initiate function execution 
• eTPU function run time interactive control – update function parameters and manages handshaking

After the eTPU peripheral and eTPU functions are initialized, each eTPU function can start to execute with 
initial function parameters. The host interface API functions need to be provided for interactive control 
such as parameters updating, control mode changing, etc. To update the parameter or change control mode, 
the host is responsible for passing updated parameters to the eTPU functions and then informing the eTPU 
that the function parameters have changed. If a coherent change of function parameters is required, the 
logic has to be built in the eTPU functions to ensure the coherency. For some eTPU functions, the 
interaction between host and eTPU is an essential part of the operation. In host and eTPU software, the 
logic is needed to manage the handshaking between host and eTPU. The interaction between the eTPU and 
host can be encapsulated in the host interface API functions.

The host code and eTPU code are compiled by different compilers. The host compiler is normally used to 
build a single code image for host and eTPU. To build eTPU code and host code together, the eTPU 
software building information (i.e. eTPU code image) has to be exported to the host compiler. The symbol 
information has to be exported from the eTPU compiler to the host compiler as well. For the Byte Craft 
eTPU compiler, the mechanism is implemented as a set of host interface macros. In the eTPU code, these 
macros are inserted to generate proper executable and symbol information for the host compiler.
eTPU Host Interface, Rev. 2

2 Freescale Semiconductor
 



3 eTPU and Host Interface Hardware
Figure 1 shows the host interface hardware for the eTPU. The host and eTPU can communicate to each 
other via event or by data.

The host has access to all eTPU host interface registers. When the host wants the eTPU’s services, it can 
issue the host service request (HSR) by writing the eTPU channel control registers. After the host service 
request is acknowledged, a thread of eTPU code associated with this HSR is activated for execution. The 
eTPU code in the thread implements the functions requested by the host. When eTPU needs the host 
service, it can issue the interrupt request or DMA data transfer request, or generate a global exception. The 
events handling logic is needed in the host software to provide services to the eTPU corresponding to these 
requests.

The eTPU code memory (RAM) and data memory (RAM) are accessible by host and eTPU. The eTPU 
code memory stores the eTPU executable binary image. At the power up initialization, following the 
defined sequences, the host transfers the eTPU code stored in the flash memory to the eTPU code memory. 
During the execution, the eTPU micro-engine fetches the micro-instructions from the code memory. 

Figure 1. eTPU Host Interface Hardware

The eTPU data memory provides for data sharing between the host and eTPU engines. The eTPU can read 
and write the eTPU data memory in any data size (8, 16, 24, and 32 bit). However, the host can only read 
and write in 8, 16, and 32 bits. A virtual mirror memory space of the normal eTPU data memory, parameter 
sign extension (PSE) memory space, has been created to allow for converting the 24-bit data. This allows 
the host to read signed 24-bit data and write signed and unsigned 24 bit data.
eTPU Host Interface, Rev. 2

Freescale Semiconductor 3
 



4 Host Interface Software 
The function partition between the application software and low-level driver is defined during the software 
architecture design. To make the software portable, the application software is normally designed to 
interface with the low-level driver via abstracted interface APIs. The host interface of the eTPU functions 
should be designed so the implementation of the low-level driver is hidden from the application software. 

After the application software interface to the low-level driver is defined, the functionality of the low-level 
driver can be partitioned between host CPU and eTPU. The eTPU interface software running on the host 
CPU is an integral part of the low-level driver. It manages the details of the interaction between host and 
eTPU. 

The eTPU code and host interface code are compiled by two different compilers. To resolve the eTPU code 
symbol reference in the host code, it is necessary to export the symbolic information from the eTPU 
compiler to the host compiler. Similarly, to build a single executable image, it is necessary to export eTPU 
code image to the host compiler. Several types of information are exported from eTPU_C through host 
interface files, generated from #pragma write statements during compilation. For detailed information on 
#pragma write, see the eTPU_C documentation. 

4.1 Initialization Overview
The eTPU initialization is an important part of the host interface. At the power up, the host has to configure 
the eTPU peripheral properly before the eTPU function can be executed. The eTPU initialization process 
is accomplished by host CPU and eTPU. During the initialization, the functional partition between host 
CPU and eTPU is as follows:

Host responsibility: 
• eTPU module initialization
• eTPU channel configuration
• Providing initial eTPU function parameters
• Initiating the eTPU function execution

eTPU Responsibility:
• Responding to the HSR
• Transitioning into the initialization state 

The eTPU initialization can be broken down into three steps: eTPU module initialization, eTPU channel 
initialization and eTPU function initialization. The following sections discuss the interface design and the 
data exchange between host CPU and eTPU for each step of initialization.
eTPU Host Interface, Rev. 2

4 Freescale Semiconductor
 



4.2 eTPU Module Initialization
At the power up initialization, the eTPU peripheral hardware is configured by the host. The eTPU module 
initialization includes the following steps:

1. Initialize eTPU global registers
— eTPU MISC compare register (ETPU_MISCCMPR)
— eTPU module configuration register (ETPU_MCR)
— eTPU time base configuration register (ETPU_TBCR)
— eTPU STAC bus configuration register (ETPU_STACR)
— eTPU engine configuration register (ETPU_ECR) 

2. Load eTPU code to eTPU code RAM
3. Copy initial values of eTPU code global variables to eTPU data memory

Most of the information required to configure the eTPU global registers are not dependent on the eTPU 
software implementation (time base, clock frequency, entry table address, etc.). The configuration 
information is determined during the host peripheral configuration and resource allocation. Only the MISC 
value depends on the actual eTPU software implementation; it has to be exported to the host program after 
the eTPU code is compiled. The eTPU_C compiler provides a macro (::ETPUmisc) to calculate the MISC 
value of the eTPU code image.

The eTPU code image is generated when the eTPU C program is compiled. To use this code in the host 
program, the eTPU code image can be exported as an array of constant values. The eTPU_C compiler 
provides a macro (::ETPUcode) to generate and export the eTPU code image. The eTPU code image 
constant array is suitable to be included in the host source code. The host compiler locates the eTPU code 
image array at host source code compile time. Because the eTPU micro-engine can only fetch 
micro-instructions out of eTPU code memory (RAM), at the power up initialization, the eTPU code image 
has to be loaded to eTPU code memory. 

As it is in the standard C syntax, when the eTPU code is compiled, the global variables are allocated to the 
eTPU data memory and the initial values are assigned to the corresponding memory locations. The 
standard C syntax requires that all global variables are declared outside of any function. For eTPU, this 
means that all global variables have to be declared outside of any execution thread. Because only the code 
in a thread can be executed on eTPU, the global variable initial value assignment statements are not 
executed. The global variables cannot be initialized in the eTPU code; they must be initialized by the host. 

The software statements have to be added to the host code to initialize the eTPU global variables. The 
initialization values have to be exported from the eTPU compiler to host compiler. The eTPU_C compiler 
provides a macro (::ETPUglobalimage) to capture initial values for all global variables and exports them 
as a constant array. At power up initialization, the global variable initial values are loaded to the eTPU data 
memory for global variables.

The host interface macros have to be added to the eTPU code in #pragma write statements to export the 
eTPU software information to the host compiler. These statements generate header files that contain the 
MISC value, eTPU code image and global variable memory image.
eTPU Host Interface, Rev. 2

Freescale Semiconductor 5
 



4.3 eTPU Channel Initialization
After the eTPU module is configured, each channel on the eTPU module can be configured. The eTPU 
channel initialization includes the following tasks:

• eTPU channel configuration registers initialization
— Assign eTPU function to a channel
— Configure interrupt/DMA/Output enable
— Select eTPU function entry table encoding
— Assign the function frame to a channel 
— Set-up channel priority

• eTPU channel status control register initialization
— Set-up eTPU function mode 

The eTPU channel assignment and the channel priority determination are a part of the host software 
architecture design. They are independent of the eTPU functions implementation. The information for the 
configuration is provided by the host software design. 

During the channel initialization, a section of eTPU data memory is assigned to each channel. This 
memory section is the function frame. The function frame contains all the function parameters and static 
local variables used by the eTPU function. The starting address of the function frame is assigned to the 
channel at initialization. The function frame assignment can be static or dynamic. Dynamic allocation 
assigns the function frame to the channel based on the next available memory space. The availability of 
the eTPU data memory depends on the number of functions that have been assigned and the number of 
parameters the function is using. Dynamic allocation can reduce the eTPU data memory consumption by 
minimizing unused memory holes. To allocate the function frame dynamically, the host must know the 
function frame consumption by a particular eTPU function. The eTPU_C compiler provides a macro 
(::ETPUram) to report the number of parameters and static local variables used by a function at compile 
time.

After the host interface macros are added to the eTPU code, the #pragma write statements generate a 
header file that contains all the eTPU function configuration and software symbol information at compile 
time. The header file can be included in the host interface code to resolve symbol references.

4.4 eTPU Function Initialization
The eTPU function initialization is the last step of the eTPU initialization process. During the eTPU 
function initialization, the host is responsible for passing the parameters to the eTPU functions and 
initiating the eTPU function execution by issuing a host service request. After the host service request for 
initialization is recognized, the eTPU transitions to the initialization state.

Unlike in the host CPU, the eTPU function parameters passed from host are not placed on the stack. 
Instead, memory in the function frame is allocated to accommodate every function parameter. The host 
passes the eTPU function parameters by writing directly to the eTPU function frame. The host needs to 
know the function frame address for each channel, as well as the data type and address offset for every 
parameter. The function frame address can be derived by reading the eTPU channel base address register. 
eTPU Host Interface, Rev. 2

6 Freescale Semiconductor
 



The eTPU_C compiler provides the host interface macros to export the offset of each function parameter; 
use them in #pragma write directives to export this information. 

The function parameters can be 8-bit, 16-bit, or 32-bit. The eTPU compiler can allocate function 
parameters at 8-, 16-, 24-, or 32-bit boundaries. To pass 8-bit or 16-bit parameters, the host can directly 
write to eTPU data memory.

Most eTPU data registers and timers are 24-bit. To pass 24-bit eTPU function parameters, the host needs 
to pass a 32-bit parameter to the eTPU. Because the host cannot access eTPU data memory on the 24-bit 
boundary, the host code needs to realign the parameter to the 32-bit address boundary before writing it to 
the function frame. It is the responsibility of the host to ensure the function parameters are within proper 
range. It is also the responsibility of the host when writing the 24-bit parameter to ensure that the upper 
byte on the function frame is not corrupted. Similarly, when reading a 24-bit return value from the function 
frame, the host code must mask the upper byte before returning the correct 24-bit value. To simplify the 
interface code, it is recommended to access the 24-bit function parameter by using PSE memory space.

4.5 eTPU and Host Interactive Control
After the eTPU function is initialized, it starts execution based on the initial parameters and input/output 
conditions. The API for the host application code updates the function parameter or changes the control 
mode. Similarly, host software must provide proper logic to manage the eTPU interrupt or DMA requests. 

Some eTPU functions require host or DMA service. The eTPU software can write the CIRC bits in the 
channel interrupt and data transfer request register to send the request to the host or DMA. The interrupt 
service routine must be added and the DMA channel must be configured in the host code to respond to the 
eTPU request.

The host interface software has to provide functions to update eTPU function parameters or change the 
control mode during the normal operation. Similar to the function initialization API, the interface API 
function needs to check the validity of the parameters, write them to the eTPU data memory, and then issue 
the host service request to inform eTPU that the parameters are newly updated.

5 Software Integration
The eTPU code and host CPU code are compiled and linked separately. The eTPU code needs to be built 
first to generate and export the eTPU code image and parameter symbol information. The host code needs 
to include these files properly to resolve all the symbol reference between eTPU and host code. This 
software build dependency can be added easily to the makefile to ensure the proper sequence.

6 Conclusion
The benefit of the host interface design is to isolate any hardware dependency from the application 
software by means of the host interface API functions. In the eTPU host interface design, all the 
interactions between host and eTPU are encapsulated in the interface API functions. With this interface 
design, the implementation of the low-level driver can be hidden from the host application. 

Numerous examples are available in the general set and APIs available from Freescale.com.
eTPU Host Interface, Rev. 2

Freescale Semiconductor 7
 



Document Number: AN2821
Rev. 2
08/2007

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software 
implementers to use Freescale Semiconductor products. There are no express or 
implied copyright licenses granted hereunder to design or fabricate any integrated 
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to 
any products herein. Freescale Semiconductor makes no warranty, representation or 
guarantee regarding the suitability of its products for any particular purpose, nor does 
Freescale Semiconductor assume any liability arising out of the application or use of any 
product or circuit, and specifically disclaims any and all liability, including without 
limitation consequential or incidental damages. “Typical” parameters that may be 
provided in Freescale Semiconductor data sheets and/or specifications can and do vary 
in different applications and actual performance may vary over time. All operating 
parameters, including “Typicals”, must be validated for each customer application by 
customer’s technical experts. Freescale Semiconductor does not convey any license 
under its patent rights nor the rights of others. Freescale Semiconductor products are 
not designed, intended, or authorized for use as components in systems intended for 
surgical implant into the body, or other applications intended to support or sustain life, 
or for any other application in which the failure of the Freescale Semiconductor product 
could create a situation where personal injury or death may occur. Should Buyer 
purchase or use Freescale Semiconductor products for any such unintended or 
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and 
its officers, employees, subsidiaries, affiliates, and distributors harmless against all 
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, 
directly or indirectly, any claim of personal injury or death associated with such 
unintended or unauthorized use, even if such claim alleges that Freescale 
Semiconductor was negligent regarding the design or manufacture of the part. 

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality 
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free 
counterparts. For further information, see http://www.freescale.com or contact your 
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to 
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. 
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2007. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	2 Overview
	3 eTPU and Host Interface Hardware
	4 Host Interface Software
	4.1 Initialization Overview
	4.2 eTPU Module Initialization
	4.3 eTPU Channel Initialization
	4.4 eTPU Function Initialization
	4.5 eTPU and Host Interactive Control

	5 Software Integration
	6 Conclusion

