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The Fast Fourier Transform (FFT) is an efficient way to compute the 
Discrete-time Fourier Transform (DFT) by exploiting symmetry and 
periodicity in the DFT. Because it is so efficient, the algorithm is 
implemented on many DSPs and hardware platforms for real-time 
applications. FFT applications include not only DSP but also spectrum 
analysis, speech processing, and filter designs where filter coefficients 
are determined according to the frequency response of the filter. The 
frequency response of a filter can be obtained by taking the Discrete 
Fourier Transform of its impulse response. Conversely, given the 
frequency response samples in the frequency domain, the time domain 
impulse response can be computed by taking the inverse DFT. For any 
discrete time sequences, the frequency components or spectral 
components can be obtained by taking the FFT on the discrete time 
sequences.

This application note describes how a 128-point FFT is implemented 
on the Freescale Semiconductor MRC6011 reconfigurable compute 
fabric (RCF ) device, which has an array of processors working in 
parallel. FFT butterflies are normally performed sequentially. 
However, the MRC6011 device has 16 processors that can perform 16 
simultaneous butterflies. The RCF programming techniques to 
achieve this parallelism are the subject of this application note. We 
begin with a look at the parallel RCF architecture, which is the basis 
for the parallel butterfly operations on the RC array. Also, we describe 
the effects of finite-precision arithmetic relative to the MRC6011 
device and the FFT results. 
© Freescale Semiconductor, Inc., 2004. All rights reserved.



Basics of the Fast Fourier Transform
1 Basics of the Fast Fourier Transform 
The DFT is the basis of the fast Fourier transform. The DFT of a finite-length sequence of length N is defined as 
follows:

 Equation 1

Where . The Inverse Discrete Fourier Transform is given by

 Equation 2

In these two equations, both x[n] and X[k] can be complex, so N complex multiplications and (N –1) complex 
additions are required to compute each value of the DFT if we use Equation 1 directly. Computing all N values of 
the frequency components requires a total of  complex multiplications and N(N –1) complex additions. To 
improve efficiency in computing the DFT, the properties of symmetry and periodicity of are exploited, and 
they are described as follows:

1. (Complex conjugate symmetry)

2. (Periodicity in n and k)

To simplify the notation of the two preceding expressions, we let r=(kn)mod (N) so that the property of symmetry 
becomes  and the property of periodicity is . The are often referred to as the 
twiddle factors in FFT computation, where  is the  root of unity.

1.1   Decimation in Time and Frequency
FFT algorithms decompose the DFT of a time domain sequence of length N into successively smaller DFTs—a 
divide and conquer strategy. Among the variety of divide and conquer algorithms are decimation in time (DIT) and 
decimation in frequency (DIF). DIT decomposes the time sequence x[n] into successively smaller sub-sequences 
until there are only two elements in the sequences for a radix-2 DFT. Figure 1 and Figure 2 show the decimation 
process for a time sequence of eight elements.
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Basics of the Fast Fourier Transform
Figure 1.   Decimation in Time of an N-Point DFT into Two (N/2)-Point DFT (N = 8)

Figure 2.   Decimation in Time of an (N/2)-Point DFT into Two (N/4)-Point DFT (N = 8)

Equation 3 demonstrates the decimation in time principle and is derived from the Equation 1, with the help of the 
symmetry and periodicity properties.

 Equation 3

DIF algorithms decompose the sequence of DFT coefficients X[k] into successively smaller sub-sequences.  
Figure 3 illustrates the decimation process in the discrete frequency sequence of eight. Alternatively, the N-point 
DFT can be represented in terms of successively smaller sequences with N/2 frequency samples. Figure 3 
illustrates the decimation process for a discrete frequency of eight.
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Basics of the Fast Fourier Transform
Figure 3.   Decimation in Frequency of an N-Point DFT into Two (N/2)-Point DFT (N = 8)

Similar to DIT, the DIF principle is illustrated in the following equations, also originating from Equation 1.

 Equation 4

 Equation 5

1.2   Radix-2 and Radix-4
The radix-2 FFT algorithm breaks the DFT calculation down into several 2-point DFTs, each consisting of a 
multiply-and-accumulate (MAC) operation called a bufferfly, as shown in Figure 4.

Figure 4.   Radix-2 Butterfly
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Basics of the Fast Fourier Transform
Figure 5 shows a radix-4 butterfly.

Figure 5.   Radix-4 Butterfly

If the FFT number of points is a power of 2, the successive decomposition results in 2-point butterflies. If the 
number of points in an FFT is a power of 4, the FFT can be broken down into several 4-point DFTs. The twiddle 
factors of a radix-4 FFT possess the unique property that they belong to the set of . Therefore, the 
radix-4 FFT requires fewer complex multiplications but more additions than the radix-2 FFT for the same number 
of points. The radix-4 FFT is more efficient than the radix-2 FFT, so its hardware implementation is simpler. The 
implementation of the radix-4 FFT is beyond the scope of this application note, which focuses on a radix-2 
decimation in time implementation. 

For an N-point FFT, the FFT algorithm decomposes the DFT into stages, each of which consists of N/2 
butterfly computations. Each butterfly takes two complex numbers  and  and 
computes from them two other numbers,

 Equation 6

 Equation 7

Where

 Equation 8

Figure 6 shows the 2-point butterfly operation.

Figure 6.   Radix-2 Butterfly Operation
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MRC6011 Architecture Overview
If we define

 Equation 9

The 2-point butterfly output in Equation 6 and Equation 7 can be formulated as follows:

 Equation 10

 Equation 11

Where

 Equation 12

This relationship in Equation 12 can be used to simplify the computation of the second output.

1.3   Bit Reversal
The radix-2 FFT needs bit-reversed data ordering; that is, the MSBs become LSBs and the LSBs become MSBs. 
Table 1 shows an example of bit-reversal with an 8-point input sequence.

Bit reversal is convenient for in-place computation of an FFT. With bit reversal of the input sequence, the output 
sequence is ordered normally from 0 to N –1. 

2 MRC6011 Architecture Overview
The MRC6011 processor is the first Freescale device based on the RCF core. It is a highly integrated system-on-a-
Chip (SoC) that combines six reconfigurable RCF cores into a homogeneous compute node. The six RCF cores 
reside in two RC modules containing three RCF cores each. The RCF cores on the MRC6011 device instantiate the 
2 × 8 processing array depicted in Figure 17. Both RC modules are accessible via an antenna slave interface and 
two slave I/O Interfaces. Each antenna interface can interact with up to 16 antennas, and each RCF core can 
manipulate the data from two antennas. The processed data goes either to one of the two slave I/O bus interfaces 
(industry-wide DSP device-compatible) or to another RCF core in the same or the adjacent module. At 250 MHz, 

Table 1.   Bit Reversal with 8-Point Input Sequence

Decimal Number 0 1 2 3 4 5 6 7

Binary Equivalent 000 001 010 011 100 101 110 111

Bit reversed Binary 000 100 010 110 001 101 011 111

Decimal Equivalent 0 4 2 6 1 5 3 7

)/2sin(    and   )/2cos( NrSNrC ππ ==

{ }
][][

][][][

][][][][

11

221

2211

kjGkG

SkCkkj

SkCkkkG

imre

reimim

imrere

xxx
xxx

+=

−++

++=

{ }
{ }

][][

][][][

][][][][

22

221

2212

kjGkG

SkCkkj

SkCkkkG

imre

reimim

imrere

xxx
xxx

+=

+−+

+−=

][][2][

][][2][

112

112

kGkxkG

kGkxkG

imimim

rerere

−=
−=
Implementation of a 128-Point FFT on the MRC6011 Device, Rev. 0

6 Freescale Semiconductor



MRC6011 Architecture Overview
the six-core MRC6011 device delivers a peak performance of 24 giga complex correlations per second with a 
sample resolution of 8 bits for I and Q inputs each–or up to 48 giga complex correlations per second at a resolution 
of 4 bits. 

The Freescale RCF technology is designed to meet the processing needs of computationally intensive tasks such as 
the FFT. The Freescale MRC6011 RCF device is a highly effective device on which to implement the FFT. The 
RCF core technology of the MRC6011 device is based on an array of processing elements that combines efficient 
parallel computing with fast and flexible reconfiguration and data routing. Figure 7 shows the highly parallel 
architecture of the RCF core. The array of processors perform DSP-like operations for compute intensive 
algorithms in many applications. The RCF core contains the array of reconfigurable cells (RCs), the RC controller, 
a context memory that acts as the RC program memory, and a frame buffer that is the data memory of the RC array. 

The data and instruction memory of the RC controller resides outside the RCF core and is associated with an 
ICache and a DCache. The sequence generator and interleaver interact only with other internal core components 
and are designed for CDMA operations. The input buffer receives data from outside with a 32-bit input bus, and the 
DMA controller handles all other data and RC array program transfers from external memory space. Multiple cores 
can interconnect via internal and external buses to expand the RCF parallelism with arbitrators and glue logic. 
Multiple cores can perform more parallel computations with careful programming of the shared resources.

Figure 7.   RCF Core with 8 × 2 Reconfigurable Cells

Cell
(0,0)

Cell
(0,1)

Cell
(0,2)

Cell
(0,3)

Cell
(0,4)

Cell
(0,5)

Cell
(0,6)

Cell
(0,7)

Cell
(1,0)

Cell
(1,1)

Cell
(1,2)

Cell
(1,3)

Cell
(1,4)

Cell
(1,5)

Cell
(1,6)

Cell
(1,7)

RC Controller

Instruction
Cache

Context
Memory

Frame
Buffer

Interleaver

DMA
Controller

Sequence
Generator

Input
Buffer

Input 

RC Array

Data in Rows of 128 Bits

Memory Controller

Data
Cache

Controller
Bus

32

Bus

32

38

128

DMA
Bus

P
or

t A
 B

us

P
or

t B
 B

us

128128
Implementation of a 128-Point FFT on the MRC6011 Device, Rev. 0

Freescale Semiconductor 7



MRC6011 Architecture Overview
The RC controller executes the main control process of an application and schedules every execution cycle of the 
processing array. The actual array instructions reside in the context memory. The wide interconnect path between 
the context memory and the RC array allows single-cycle reconfiguration of the processing units. The DMA 
controller is the interface to the main system bus. The input buffer connects to the antenna input ports and 
appropriately interleaves and combines the data for efficient writes into the frame buffer. The following sections 
describe the frame buffer and RC array to clarify how parallel FFT butterflies are performed on this architecture.

2.1   Frame Buffer
The frame buffer is a dual-port RAM that connects one side to the RC controller, RC array, and interleaver, and the 
other side to the DMA controller, input buffer, and sequence generator via a separate 128-bit bus. The frame buffer 
is organized in rows (horizontally) and banks (vertically) to facilitate easy data transfer to and from the RC array. 
Since the RC array is organized into two rows of eight RCs each, there are eight two-byte banks in the frame buffer.

As shown in Figure 8, an Omega network between the frame buffer and the RC array routes data into the RC array 
for computation in each RC. The Omega network can broadcast a byte or a 16-bit word into all RCs so that all RCs 
process the same data. Alternatively, the Omega network can transfer a row of data into the RCs column-wise so 
that each RC processes different data. The 128-point FFT application employs both of these data routing 
mechanisms.

Figure 8.   Omega Network Location

The 40 KB frame buffer is organized into 2560 rows × 16 bytes per row. In the 128-point FFT computation, input 
data and twiddle factors are both 16-bit integers or 16-bit fixed-point numbers (–1.0 to +1.0), so there are eight 
input data or twiddle factors in each frame buffer row. Section 3 describes how the entire 128 complex data input 
samples and the various twiddle factors are stored to support parallel butterfly operations on the RC array.
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The FFT on the MRC6011 Device
2.2   RC Array
The 16-element RC array operates using the same clock as the RC controller that schedules array operations. Each 
RC can complete a MAC operation, so the array performs a maximum of 16 MACs on each core clock cycle. The 
RC array takes data directly from the frame buffer through the Omega network to perform operations on data 
already in the RC registers. Depending on the application, the intermediate results are either temporarily stored in 
one of the sixteen registers in each RC or they are output back to the frame buffer rows for subsequent computing. 

Sometimes, data exchange between two or more cells is needed. Sophisticated inter-cell connections enable the 
cells to exchange data items in selected rule-governed ways to feed data to locations where it is needed on the next 
clock cycle. In the 128-point FFT application, with decimation in time, the bit reversal of the input data requires 
this type of operation to generate the 128-point complex frequency components in normal order. 

3 The FFT on the MRC6011 Device
The 128-point complex input samples are 16-bit two’s complement fixed-point real and imaginary numbers with a 
value between –1.0 and +1.0 and in the following format:

Since the frame buffer is organized into 128-bit rows, each row can store eight 16-bit real or eight 16-bit imaginary 
numbers. For complex numbers, the first row usually stores the real parts and the next row stores the imaginary 
parts, as shown in Table 2.

Alternatively, the real parts and the imaginary parts can be grouped together and occupy consecutive rows if they 
are to be accessed one after the other. We choose this type of storage over the one shown in Table 2 for the 
following reasons:

• Reading consecutive rows of real or imaginary numbers into RC registers is simple. Conveniently, the input data 
is transposed for bit reversal in the RC registers.

• The twiddle factors are not loaded into the RC registers for the butterfly operations. It is more efficient if real 
parts of the twiddle factors are collocated in consecutive rows of the frame buffer.

3.1   Input Data Storage in the Frame Buffer
The 128 complex input samples are stored so that 128 real numbers occupy 16 rows of the frame buffer and 128 
imaginary numbers occupy another 16 rows of the frame buffer, as illustrated in Figure 9.

Table 2.   Conventional Data Storage in the Frame Buffer for Complex Numbers

Bytes 0/1 2/3 4/5 6/7 8/9 10/11 12/13 14/15

Data[0].re Data[1].re Data[2].re Data[3].re Data[4].re Data[5].re Data[6].re Data[7].re

Data[0].im Data[1].im Data[2].im Data[3].im Data[4].im Data[5].im Data[6].im Data[7].im

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S

Radix Point

Sign Bit
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The FFT on the MRC6011 Device
Figure 9.   Input Data Storage in Frame Buffer

Since the input data is transposed to produce the bit-reversed input for a decimation in time FFT, the initial data 
organization in the frame buffer is not crucial. The input data are signed 2’s complement 16-bit fixed-point 
numbers between –1.0 and +1.0.

3.2   Twiddle Factor Storage in Frame Buffer
The organization of the twiddle factors in the frame buffer is important for the butterfly operations because the 
MAC operation takes the twiddle factor as an argument directly from the frame buffer (see Figure 10). Both real 
and imaginary twiddle factors for every stage of the butterfly operation are accessed with two pointers pointing to 
the two parts of the twiddle factors, respectively. The twiddle factors are 2’s complement 16-bit fixed-point 
numbers between –1.0 and +1.0. For easy access during the butterfly operations, the stage 1 twiddle factor is a 
single twiddle factor that coincides with the first of the stage 2 twiddle factors.

Figure 10.   Real Twiddle Factor Storage in the Frame Buffer
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The FFT on the MRC6011 Device
The imaginary (or sine) part of the twiddle factors is stored immediately after the real (or cosine) part of the 
twiddle factors. Each part of the twiddle factors has an associated pointer that is updated during the butterfly 
operations only when the frame buffer offset exceeds the limit of addressability of the instruction, which is 64.

3.3   Transposition for Bit Reversal
The bit reversal of 128 complex input data requires two 128-element transpositions. Each 128-element 
transposition has two simultaneous 64-element transpositions on the top and bottom rows of the RC array. The 
transposition is performed for the 128 real numbers and then for the 128 imaginary numbers. The steps in the 
transposition are as follows:

1. Set up circular buffer 0.

2. Load 64 real numbers into the R0, R4, R2, R6, R1, R5, R3, and R7 registers of the first row of RCs in 
the array.

3. Load the next 64 real numbers into the R0, R4, R2, R6, R1, R5, R3, and R7 registers of the second row 
of RCs in the array.

4. Transpose both rows to shuffle the 128 real numbers:

R0–R7 → R8–R15 
R0–R7 → R0–R7

5. Push the G5–G8 data to the frame buffer and reshuffle the G1–G4 data for the butterfly.

Before the transposition begins, circular buffer 0 is selected and initialized to point to the beginning of the input 
data in the frame buffer so that data can be loaded into the RC registers without incurring pointer updates. The code 
for circular buffer set-up and consecutive frame buffer row loading is listed in Example 1.

Example 1.   RCF Circular Buffer Initialization and Frame Buffer Row Loading

   _DEC_CIRCULAR_BUFFER_SELECT = 0;
   _DEC_AUTOINCREMENT0 = (unsigned long)psiFBInputData;

   MORPHO_ASM( psiFBInputData )

/** LOAD INPUT DATA **/
/***** Row0 *****/
/* Load input data(Re0-63)*/
CELL{0,*}:OUT_REG R0=BYP{FB++{16,OMEGA_RT, COL_BUS, WORD}};
CELL{0,*}:OUT_REG R4=BYP{FB++{16,OMEGA_RT, COL_BUS, WORD}};
CELL{0,*}:OUT_REG R2=BYP{FB++{16,OMEGA_RT, COL_BUS, WORD}};
CELL{0,*}:OUT_REG R6=BYP{FB++{16,OMEGA_RT, COL_BUS, WORD}};
CELL{0,*}:OUT_REG R1=BYP{FB++{16,OMEGA_RT, COL_BUS, WORD}};
CELL{0,*}:OUT_REG R5=BYP{FB++{16,OMEGA_RT, COL_BUS, WORD}};
CELL{0,*}:OUT_REG R3=BYP{FB++{16,OMEGA_RT, COL_BUS, WORD}};
CELL{0,*}:OUT_REG R7=BYP{FB++{16,OMEGA_RT, COL_BUS, WORD}};
/***** Row1 *****/
/* Load input data(Re64-127)*/
CELL{1,*}:OUT_REG R0=BYP{FB++{16,OMEGA_RT, COL_BUS, WORD}};
CELL{1,*}:OUT_REG R4=BYP{FB++{16,OMEGA_RT, COL_BUS, WORD}};
CELL{1,*}:OUT_REG R2=BYP{FB++{16,OMEGA_RT, COL_BUS, WORD}};
CELL{1,*}:OUT_REG R6=BYP{FB++{16,OMEGA_RT, COL_BUS, WORD}};
CELL{1,*}:OUT_REG R1=BYP{FB++{16,OMEGA_RT, COL_BUS, WORD}};
CELL{1,*}:OUT_REG R5=BYP{FB++{16,OMEGA_RT, COL_BUS, WORD}};
CELL{1,*}:OUT_REG R3=BYP{FB++{16,OMEGA_RT, COL_BUS, WORD}};
CELL{1,*}:OUT_REG R7=BYP{FB++{16,OMEGA_RT, COL_BUS, WORD}};  
Implementation of a 128-Point FFT on the MRC6011 Device, Rev. 0
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The FFT on the MRC6011 Device
At the end of the real input data loading, the input data are interleaved and are ready for the final shuffling to 
complete the transpose operation. Figure 11 shows the layout of the data at this stage. 

Figure 11.   128-Point Input Data Loaded into the RC Registers in Top and Bottom Rows of the RC Array

Figure 12 shows that the transposition of the two 8 × 8 matrices simultaneously completes in the top and bottom 
rows of the RC array.

Figure 12.   128-Point Input Data Completed Transpose in Top and Bottom Rows of the RC Array

Cell 0 Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7

Register 0 0 1 2 3 4 5 6 7

Register 1 32 33 34 35 36 37 38 39

Register 2 16 17 18 19 20 21 22 23

Register 3 48 49 50 51 52 53 54 55

Register 4 8 9 10 11 12 13 14 15

Register 5 40 41 42 43 44 45 46 47

Register 6 24 25 26 27 28 29 30 31

Register 7 56 57 58 59 60 61 62 63

Register 0 64 65 66 67 68 69 70 71

Register 1 96 97 98 99 100 101 102 103

Register 2 80 81 82 83 84 85 86 87

Register 3 112 113 114 115 116 117 118 119

Register 4 72 73 74 75 76 77 78 79

Register 5 104 105 106 107 108 109 110 111

Register 6 88 89 90 91 92 93 94 95

Register 7 120 121 122 123 124 125 126 127

Cell 0 Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7

Register 0 0 32 16 48 8 40 24 56

Register 1 1 33 17 49 9 41 25 57

Register 2 2 34 18 50 10 42 26 58

Register 3 3 35 19 51 11 43 27 59

Register 4 4 36 20 52 12 44 28 60

Register 5 5 37 21 53 13 45 29 61

Register 6 6 38 22 54 14 46 30 62

Register 7 7 39 23 55 15 47 31 63

Register 0 64 96 80 112 72 104 88 120

Register 1 65 97 81 113 73 105 89 121

Register 2 66 98 82 114 74 106 90 122

Register 3 67 99 83 115 75 107 91 123

Register 4 68 100 84 116 76 108 92 124

Register 5 69 101 85 117 77 109 93 125

Register 6 70 102 86 118 78 110 94 126

Register 7 71 103 87 119 79 111 95 127
Implementation of a 128-Point FFT on the MRC6011 Device, Rev. 0
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The shuffling that brings the data format from that in Figure 11 to that in Figure 12 uses the connectivity of the 
RCs within quadrants and the available fast lanes between the quadrants of the RCs. Eight cycles are required to 
complete this final shuffling operation. The code segment for this operation is listed in Example 2.

Example 2.   RCF Code to Transpose Two 8 × 8 Matrices with One on Each Row

/** 8X8 TRANSPOSE OF SYMBOLS [R0-R7]->[R8-R15] **/
MORPHO{//1.cycle

CELL{*,0}:R0  R8 =BYP{R0{*,0}};
 CELL{*,1}:R1  R9 =BYP{R1{*,1}};

 CELL{*,2}:R4  R12=BYP{R2{*,4}};//Expr lane right->left
  CELL{*,3}:R5  R13=BYP{R3{*,5}};//Expr lane right->left

CELL{*,4}:R2  R10=BYP{R4{*,2}};//Expr lane left->right
CELL{*,5}:R3  R11=BYP{R5{*,3}};//Expr lane left->right
CELL{*,6}:R6  R14=BYP{R6{*,6}};
CELL{*,7}:R7  R15=BYP{R7{*,7}};

}      

MORPHO{//2.cycle
CELL{*,0}:R1  R9 =BYP{R0{*,1}};
CELL{*,1}:R0  R8 =BYP{R1{*,0}};
CELL{*,2}:R5  R13=BYP{R2{*,5}};//Expr lane right->left
CELL{*,3}:R4  R12=BYP{R3{*,4}};//Expr lane right->left
CELL{*,4}:R3  R11=BYP{R4{*,3}};//Expr lane left->right
CELL{*,5}:R2  R10=BYP{R5{*,2}};//Expr lane left->right
CELL{*,6}:R7  R15=BYP{R6{*,7}};
CELL{*,7}:R6  R14=BYP{R7{*,6}};

}      

MORPHO{//3.cycle
CELL{*,0}:R6  R14=BYP{R0{*,6}};//Expr lane right->left
CELL{*,1}:R7  R15=BYP{R1{*,7}};//Expr lane right->left
CELL{*,2}:R2  R10=BYP{R2{*,2}};
CELL{*,3}:R3  R11=BYP{R3{*,3}};
CELL{*,4}:R4  R12=BYP{R4{*,4}};
CELL{*,5}:R5  R13=BYP{R5{*,5}};
CELL{*,6}:R0  R8 =BYP{R6{*,0}};//Expr lane left->right
CELL{*,7}:R1  R9 =BYP{R7{*,1}};//Expr lane left->right

}      

MORPHO{//4.cycle
CELL{*,0}:R7  R15=BYP{R0{*,7}};//Expr lane right->left
CELL{*,1}:R6  R14=BYP{R1{*,6}};//Expr lane right->left
CELL{*,2}:R3  R11=BYP{R2{*,3}};
CELL{*,3}:R2  R10=BYP{R3{*,2}};
CELL{*,4}:R5  R13=BYP{R4{*,5}};
CELL{*,5}:R4  R12=BYP{R5{*,4}};
CELL{*,6}:R1  R9 =BYP{R6{*,1}};//Expr lane left->right
CELL{*,7}:R0  R8 =BYP{R7{*,0}};//Expr lane left->right

}      
Implementation of a 128-Point FFT on the MRC6011 Device, Rev. 0
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MORPHO{//5.cycle
CELL{*,0}:R4  R10=BYP{R0{*,2}};
CELL{*,1}:R5  R11=BYP{R1{*,3}};
CELL{*,2}:R0  R14=BYP{R2{*,6}};//Expr lane right->left
CELL{*,3}:R1  R15=BYP{R3{*,7}};//Expr lane right->left
CELL{*,4}:R6  R8 =BYP{R4{*,0}};//Expr lane left->right
CELL{*,5}:R7  R9 =BYP{R5{*,1}};//Expr lane left->right
CELL{*,6}:R2  R12=BYP{R6{*,4}};
CELL{*,7}:R3  R13=BYP{R7{*,5}};

}      

MORPHO{//6.cycle
CELL{*,0}:R5  R11=BYP{R0{*,3}};
CELL{*,1}:R4  R10=BYP{R1{*,2}};
CELL{*,2}:R1  R15=BYP{R2{*,7}};//Expr lane right->left
CELL{*,3}:R0  R14=BYP{R3{*,6}};//Expr lane right->left
CELL{*,4}:R7  R9 =BYP{R4{*,1}};//Expr lane left->right
CELL{*,5}:R6  R8 =BYP{R5{*,0}};//Expr lane left->right
CELL{*,6}:R3  R13=BYP{R6{*,5}};
CELL{*,7}:R2  R12=BYP{R7{*,4}};

}      

MORPHO{//7.cycle
  CELL{*,0}:R2  R12=BYP{R0{*,4}};//Expr lane right->left
  CELL{*,1}:R3  R13=BYP{R1{*,5}};//Expr lane right->left
  CELL{*,2}:R6  R8 =BYP{R2{*,0}};
  CELL{*,3}:R7  R9 =BYP{R3{*,1}};
  CELL{*,4}:R0  R14=BYP{R4{*,6}};
  CELL{*,5}:R1  R15=BYP{R5{*,7}};
  CELL{*,6}:R4  R10=BYP{R6{*,2}};//Expr lane left->right
  CELL{*,7}:R5  R11=BYP{R7{*,3}};//Expr lane left->right
}      

MORPHO{//8.cycle
CELL{*,0}:R3  R13=BYP{R0{*,5}};//Expr lane right->left
CELL{*,1}:R2  R12=BYP{R1{*,4}};//Expr lane right->left
CELL{*,2}:R7  R9 =BYP{R2{*,1}};
CELL{*,3}:R6  R8 =BYP{R3{*,0}};
CELL{*,4}:R1  R15=BYP{R4{*,7}};
CELL{*,5}:R0  R14=BYP{R5{*,6}};
CELL{*,6}:R5  R11=BYP{R6{*,3}};//Expr lane left->right
CELL{*,7}:R4  R10=BYP{R7{*,2}};//Expr lane left->right

}    

After the 128 real numbers are transposed and transferred into the R[8–15] registers of the RC array, the 128 
imaginary numbers are read from the frame buffer to repeat the same transpose operations in registers R[0–7]. At 
this time, both the real and imaginary parts have completed the bit reversal. However, the 128 × 2 = 256 data items 
occupy all 16 (registers/cell) × 16 cells = 256 registers in the RC array, leaving no room for further operations. To 
continue with subsequent butterfly operations, we can keep only half of the transposed (or bit reversed) data in the 
RC array and move half of the data out to the frame buffer for temporary storage, making 128 registers available 
for butterfly operations.

The bit reversed data is organized into groups of 16 complex samples to form eight groups of data. Groups 1 to 4 
are selected to stay in the RC registers, and Groups 5 to 8 are temporarily placed into the frame buffer.
Implementation of a 128-Point FFT on the MRC6011 Device, Rev. 0
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3.4   Post-Transpose Data Organization
The 128 complex data are divided into eight groups, each with 16 complex numbers, as shown in Figure 13. 
Simultaneous butterfly operations are performed in stages within groups and between groups to reach the final FTT 
results. 

Figure 13.   Data Partitioned into Groups for Parallel Butterflies

3.5   Parallel Butterfly Operations
An FFT with 128-point input data is composed of seven stages of butterfly operations. In the first four stages, 16 
data samples from the same group are used in the butterfly computation. No data exchange is necessary between 
different groups. However, in stage 5, data exchange between groups is needed. For example, G1 data and G2 data 
form butterflies in stage 5. The butterfly span increases as the number of stages increases. In stage 7, G1 data work 
with G5 data to complete butterflies of the final stage. 

If we partition the data of the 8-point DIT FFT into groups of 2, stage 1 of this particular FFT needs data only from 
its own group, and stage 2 requires data with increased distance—that is, from G1 and G3 or G2 and G4. The last 
stage of this FFT requires data with a distance of half the FFT length, as shown in Figure 14.

The first half of the 128-point input data is independent of the second half of the data until stage 7 of the FFT. 
Taking this into consideration, as well as the number of registers available in RCs for the FFT computations, we 
divide the 128-point FFT into three steps. In the first step, G1–G4 are register-resident while the first six stages of 
their butterfly computations are performed. Then the intermediate results from the first six stages of G1–G4 data 
are sent to the frame buffer for temporary storage. In the second step, G5–G8 are moved into the RC registers to 
perform the first six stages of the butterfly operations and the intermediate results from these groups stay in the RC. 
In the last step, the partial results of G5–G8 in RC the registers are paired with those of G1–G4 in the frame buffer 
to form the butterflies of stage 7 and complete the 128-point FFT.

G1 G2 G3 G4 G5 G6 G7 G8

Cell 0
0 4 2 6 1 5 3 7

64 68 66 70 65 69 67 71

Cell 1
32 36 34 38 33 37 35 39

96 100 98 102 97 101 99 103

Cell 2
16 20 18 22 17 21 19 23

80 84 82 86 81 85 83 87

Cell 3
48 52 50 54 49 53 51 55

112 116 114 118 113 117 115 119

Cell 4 
8 12 10 14 9 13 11 15

72 76 74 78 73 77 75 79

Cell 5
40 44 42 46 41 45 43 47

104 108 106 110 105 109 107 111

Cell 6
24 28 26 30 25 29 27 31

88 92 90 94 89 93 91 95

Cell 7 
56 60 58 62 57 61 59 63

120 124 122 126 121 125 123 127
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Figure 14.   8-point DIT FFT Butterfly Diagram

The procedure for computing the 128-point FFT on the RCF architecture is summarized as follows:

1. Groups 1–4 are in stage 1 for six butterfly operations.

2. The intermediate results are of groups 1–4 are sent to the frame buffer.

3. Groups 5–8 are in stage 1 for six butterfly operations.

4. (G1, G5), (G2, G6), (G3, G7), (G4, G8) are paired to complete stage 7 butterfly operations.

5. The final results are output to the frame buffer.

Since each group has 16 data items, eight butterflies can be formed. One row of RCs can perform eight butterflies 
simultaneously, so the 2 × 8 RC array can perform 16 simultaneous butterfly operations. In step one, for example, 
the group 1 and group 2 butterfly operations are simultaneously performed on the first and second rows of the RC 
array. Next are the group 3 and group 4 butterfly operations for stage 1. The following sections explain how the 
basic 2-point butterfly operation is performed on the RCs. Examples are presented from stage to stage. 

3.5.1   2-point Butterfly Operation on RC
In Example 3, the group 1 (G1) butterfly operations are performed on the top row of the RC array, and the G2 
butterfly operations are performed on the bottom row.  Each cell gets two complex samples. The results of the 
butterfly operation are inputs to the butterfly operation at the next stage. A total of 16 butterfly operations are 
performed in parallel, and each cell computes one butterfly at a time. The code segment in Example 3 shows how 
the 16 butterflies are simultaneously performed on the RC array.

X[0]x[0]

X[2]x[2]

X[4]x[1]

X[6]x[3]

Stage 1 Stage 2 Stage 3

x[4] X[1]

x[6]

x[5]

x[7]

X[3]

X[5]

X[7]

G1

G2

G3

G4

W
4
N

W
4
N

W
4
N

W
4
N

W
0
N

W
0
N

W
0
N

W
0
N

W
0
N

W
2
N

W
4
N

W
6
N

W
0
N

W
2
N

W
4
N

W
6
N

W
0
N

W
1
N

W
2
N

W
3
N

W
4
N

W
5
N

W
6
N

W
7
N

Butterfly Span
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Example 3.   Parallel Butterfly Operations without Scaling Down

_DEC_CIRCULAR_BUFFER_SELECT = 0;
   _DEC_AUTOINCREMENT0 = (unsigned long)psiFBInputData;
   

/* Stage1 */
/* G1,G2[Re,Im] = k1[R4,R0], k2[R5,R1], tmp = R8,R9 */
CELL{*,*} R13 = MULSIH{FB{psiFBInputTwiddleCos, 0, OMEGA_BR2, COL_BUS, WORD},R5, R14} << 1;
CELL{*,*} R12 = MULSIH{FB{psiFBInputTwiddleCos, 0, OMEGA_BR2, COL_BUS, WORD},R1, R14} << 1;
CELL{*,*} R11 = MULSIH{FB{psiFBInputTwiddleSin, 0, OMEGA_BR2, COL_BUS, WORD},R1, R14} << 1;
CELL{*,*} R10 = MULSIH{FB{psiFBInputTwiddleSin, 0, OMEGA_BR2, COL_BUS, WORD},R5, R14} << 1;
CELL{*,*} NOP{};
CELL{*,*} R13 = ADD{R13, R11};
CELL{*,*} R12 = SUB{R12, R10};
CELL{*,*} R8 = ADD{R4, R13};
CELL{*,*} R9 = ADD{R0, R12};
CELL{*,*} R4 = MULSIL{R15,R4,R8};
CELL{*,*} R0 = MULSIL{R15,R0,R9};

With reference to Equation 10, the first four cycles compute , , and  
with rounding, respectively. All R14 registers hold a value of 0x8000. They are first sign extended to 0xFFFF8000 
and then subtracted from the products so that the sixteenth bit is rounded to improve precision in the 128-point 
FFT.

The NOP operation is for MAC pipeline delay when an ADD instruction follows a MAC instruction. The four 
cycles after the NOP compute the real and imaginary parts  and  of . The last two cycles 
compute  and  to complete the stage 1 butterfly operations for G1 and G2. Table 3 provides the 
notation for the input/output and intermediate results.

Figure 15 shows a complete picture of the stage 1 butterfly operation on the RC array for G1 and G2 data, which 
matches the code segment described in Example 3. The top portion of the figure shows the eight parallel butterfly 
operations for G1 data, and the lower portion shows another eight parallel butterfly operations for G2 data. In each 
cell are two complex samples or four 16-bit values stored in registers R4, R0, R5, R1, respectively. The R4{0,*} 
notation indicates the R4 register in every cell in the first row of the RC array. The R4 registers hold the real 
portions of half of the G1 samples. The corresponding imaginary portions are in R0{0,*} of these cells.

Table 3.   Symbols of Input/Output and Intermediate Results of the 128-point FFT

Symbols

Butterfly Input X[ k]

Stage 1 Output G[ k]

Stage 2 Output H[ k]

Stage 3 Output I [ k]

Stage 4 Output J[ k]

Stage 5 Output K[k]

Stage 6 Output L[k]

Stage 7 Output Y[k]

Ckxre ][ 2 Ckxim ][ 2 Skxim ][ 2 Skxre ][ 2

][ 1kGre ][ 1kGim ][ 1kG
][ 2kGre ][ 2kGim
Implementation of a 128-Point FFT on the MRC6011 Device, Rev. 0
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As indicated in the code segment of Example 3, the outputs of the butterflies go into R8, R9, R4, R0 of all 16 cells 
of the RC array, which are addressed as R8{*,*}. Stage 1 butterfly operations are formed within individual cells. 
As shown in Figure 14, the butterfly span increases with each stage. To continue with the 16 parallel butterfly 
computations as in stage 1 for subsequent stages, data regrouping is needed. Data regrouping is handled via register 
exchanges on the RC array.

Figure 15.   Sixteen Butterfly Operations in Parallel for the Group 1 and Group 2 Data

3.5.2   Data Regrouping
From stage 1 to stage 6, data regrouping is required at the end of each stage because of the increased butterfly 
spans. Data regrouping changes the original butterfly data flow as the intermediate nodes are regrouped. The 
change is not a problem if the first four stages of the butterfly operations are regrouped since butterflies are formed 
from within the groups. It is not a problem either when the group boundary is crossed to form the butterflies for 
stages 5 through 7 since all groups perform the same exchanges. Figure 16 shows an example of data regrouping 
for stage 2 of Group 1 data. The output nodes are stored in registers R8, R9, R0, and R4. If no regrouping occurred 
for this data, the butterfly operations would have been performed across the cell boundary, which is not efficient on 
an RC array. The data samples used in a particular computation (in general) are better aligned column-wise for 
efficient computation. Data regrouping simplifies the next butterfly operation. Data regrouping for stage 2 swaps 
data items with neighboring cells to transform inter-cell butterflies to intra-cell butterflies.

R4{0,*} X[ 0]r X[ 32]r X[ 16]r X[ 48]r X[ 8]r X[ 40]r X[ 24]r X[ 56]r

R0{0,*} X[ 0]i X[ 32]i X[ 16]i X[ 48]i X[ 8]i X[ 40]i X[ 24]i X[ 56]i

R5{0,*} X[ 64]r X[ 96]r X[ 80]r X[ 112]r X[ 72]r X[ 104]r X[ 88]r X[ 120]r

R1{0,*} X[ 96]i X[ 80]i X[ 112]i X[ 72]i X[ 104]i X[ 88]i

G1

Cell → 1 2 3 4 5 6 7 8

G[ ] Nodes

Stage 1 Butterfly
Operations

R4{0,*} X[ 4]r X[ 36]r X[ 20]r X[ 52]r X[ 12]r X[ 44]r X[ 28]r X[ 60]r

R0{0,*} X[ 4]i X[ 36]i X[ 20]i X[ 52]i X[ 12]i X[ 44]i X[ 28]i X[ 60]i

R5{0,*} X[ 68]r X[ 100]r X[ 84]r X[ 116]r X[ 76]r X[ 108]r X[ 92]r X[ 124]r

R1{0,*} X[ 68]i X[ 100]i X[ 84]i X[ 116]i X[ 76]i X[ 108]i X[ 92]i

G2

G[ ] Nodes

Stage 1 Butterfly
Operations
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Figure 16.   Data Regrouping for Stage 2 of Butterfly Operations for Group 1 Data

Figure 17 shows data regrouping for stage 3 of G1 data, which has a larger butterfly span than the previous stage. 
The data from cell 1 must be swapped with data in cell 3 and also for cells (2,4), (5,7), (6,8). These data exchanges 
convert the butterflies in row 2 of Figure 17 into intra-cell butterflies in row 3 of the figure.

R8{0,*} G[ 0]r G[ 32]r G[ 16]r G[ 48]r G[ 8]r G[ 40]r G[ 24]r G[ 56]r

R9{0,*} G[ 0]i G[ 32]i G[ 16]i G[ 48]i G[ 8]i G[ 40]i G[ 24]i G[ 56]i

R4{0,*} G[ 64]r G[ 96]r G[ 80]r G[ 112]r G[ 72]r G[ 104]r G[ 88]r G[ 120]r

R0{0,*} G[ 64]i G[ 96]i G[ 80]i G[ 112]i G[ 72]i G[ 104]i G[ 88]i G[ 120]i

G1

Cell → 1 2 3 4 5 6 7 8

G0 G32 G64 G96 G16 G48 G80 G112 G8 G40 G72 G104 G24 G56 G88 G120

G0 G64 G32 G96 G16 G80 G48 G112 G8 G72 G40 G104 G24 G88 G56 G120

1 2 3 4 5 6 7 8
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Figure 17.   Data Regrouping for Stage 3 of Butterfly Operations for Group 1 Data

Figure 18 shows data regrouping for stage 4 of G1 data, with data exchanges among cell pairs (1,5), (2,6), (3,7), 
(4,8). A comparison of Figure 16 through Figure 18 demonstrates that data regrouping effectively shrinks the 
spans of the butterflies at each stage so that the parallel butterflies shown in Figure 15 can continue for subsequent 
stages. At the end of stage 4, data regrouping causes an exchange of data between the two rows of RCs.  At the end 
of stage 5, data regrouping causes an exchange of data by swapping registers so that Group 1 and Group 3 are 
paired to form butterflies. For the last stage, the register-resident groups (G5 to G8) must pair with the groups in the 
frame buffer (G1 to G4) to form butterflies. Continuously regrouping data causes the 16 parallel butterflies at each 
stage to be performed in virtually the same way within respective cells. Example 4 shows a code segment for data 
regrouping in Group 1 data for stage 2. The data is regrouped in four RC cycles to prepare it for the next stage of 
FFT butterfly operations.

R8{0,*} H[ 0]r H[ 64]r H[ 16]r H[ 80]r H[ 8]r H[ 72]r H[ 24]r H[ 88]r

R9{0,*} H[ 0]i H[ 64]i H[ 16]i H[ 80]i H[ 8]i H[ 72]i H[ 24]i H[ 88]i

R4{0,*} H[ 32]r H[ 96]r H[ 48]r H[ 112]r H[ 40]r H[ 104]r H[ 56]r H[ 120]r

R0{0,*} H[ 32]i H[ 96]i H[ 48]i H[ 112]i H[ 40]i H[ 104]i H[ 56]i H[ 120]i

G1

Cell → 1 2 3 4 5 6 7 8

H0 H16 H64 H80 H32 H48 H96 H112 H8 H24 H72 H88 H40 H56 H104 H120

H0 H32 H64 H96 H16 H48 H80 H112 H8 H40 H72 H104 H24 H56 H88 H120

1 2 3 4 5 6 7 8
Implementation of a 128-Point FFT on the MRC6011 Device, Rev. 0

20 Freescale Semiconductor



The FFT on the MRC6011 Device
Figure 18.   Data Regrouping for Stage 4 of Butterfly Operations for Group 1 Data

Example 4.   Code Segment for Data Regroup of Group 1 Data

/* Result of G1,G2[Re,Im] = k1[R8,R9], k2[R4,R0] */
/* data(G1,G2) regroup for stage 2 */
MORPHO{

CELL{*,0} R5 = BYP{R8{*,$+1}};
CELL{*,2} R5 = BYP{R8{*,$+1}};
CELL{*,4} R5 = BYP{R8{*,$+1}};
CELL{*,6} R5 = BYP{R8{*,$+1}};
CELL{*,1} R5 = BYP{R4};
CELL{*,3} R5 = BYP{R4};
CELL{*,5} R5 = BYP{R4};
CELL{*,7} R5 = BYP{R4};
}

MORPHO{
CELL{*,0} R1 = BYP{R9{*,$+1}};
CELL{*,2} R1 = BYP{R9{*,$+1}};
CELL{*,4} R1 = BYP{R9{*,$+1}};
CELL{*,6} R1 = BYP{R9{*,$+1}};
CELL{*,1} R4 = BYP{R4{*,$-1}};
CELL{*,3} R4 = BYP{R4{*,$-1}};
CELL{*,5} R4 = BYP{R4{*,$-1}};
CELL{*,7} R4 = BYP{R4{*,$-1}};
}

R8{0,*} I[ 0]r I[ 64]r I[ 32]r I[ 96]r I[ 8]r I[ 72]r I[ 40]r I[ 104]r

R9{0,*} I[ 0]i I[ 64]i I[ 32]i I[ 96]i I[ 8]i I[ 72]i I[ 40]i I[ 104]i

R4{0,*} I[ 16]r I[ 80]r I[ 48]r I[ 112]r I[ 24]r I[ 88]r I[ 56]r I[ 120]r

R0{0,*} I[ 16]i I[ 80]i I[ 48]i I[ 112]i I[ 24]i I[ 88]i I[ 56]i I[ 120]i

G1

Cell → 1 2 3 4 5 6 7 8

I0 I8 I64 I72 I32 I40 I96 I104 I16 I24 I80 I88 I48 I56 I112 I120

I0 I16 I64 I80 I32 I48 I96 I112 I8 I24 I72 I88 I40 I56 I104 I120

1 2 3 4 5 6 7 8
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Fixed-Point and Precision Issues
MORPHO{
CELL{*,0} R4 = BYP{R8};
CELL{*,2} R4 = BYP{R8};
CELL{*,4} R4 = BYP{R8};
CELL{*,6} R4 = BYP{R8};
CELL{*,1} R1 = BYP{R0};
CELL{*,3} R1 = BYP{R0};
CELL{*,5} R1 = BYP{R0};
CELL{*,7} R1 = BYP{R0};
}

MORPHO{
CELL{*,0} R0 = BYP{R9};
CELL{*,2} R0 = BYP{R9};
CELL{*,4} R0 = BYP{R9};
CELL{*,6} R0 = BYP{R9};
CELL{*,1} R0 = BYP{R0{*,$-1}};
CELL{*,3} R0 = BYP{R0{*,$-1}};
CELL{*,5} R0 = BYP{R0{*,$-1}};
CELL{*,7} R0 = BYP{R0{*,$-1}};
}

The data exchange operation for this group of data is shown in Figure 19. After data regrouping, intermediate data 
is transferred into the R4, R0, R5 and R1 registers, which are the same input registers for stage 1 butterflies. The 
stage 2 butterfly can then reuse the code from stage 1.

Figure 19.   Group 1 Data Regroup After Stage 1 Butterfly Operation

4 Fixed-Point and Precision Issues
For FFT on fixed-point processors such as the MRC6011 device, finite precision is limited by the number of bits 
available in the number representation and by the effects of finite arithmetic operations (truncation and rounding). 
It is important to understand that the magnitude of the complex FFT data changes through the various stages of 
calculation. Figure 20 shows how two complex numbers at the input of the DIT butterfly combine to give two 
outputs. First, Vector B is multiplied by the twiddle factor. Since all twiddle factors in the FFT have the form  
which has unit magnitude, the magnitude of B´ is the same as that of B. Multiplication by the twiddle factor is 
nothing more than a rotation of the vector B over the angle θ. The vectors B´ and A are next added and subtracted 
to give the butterfly ouputs C and D, respectively.

R8{0,*} G[ 0]r G[ 32]r G[ 16]r G[ 48]r G[ 8]r G[ 40]r G[ 24]r G[ 56]r

R9{0,*} G[ 0]i G[ 32]i G[ 16]i G[ 48]i G[ 8]i G[ 40]i G[ 24]i G[ 56]i

R4{0,*} G[ 64]r G[ 96]r G[ 80]r G[ 112]r G[ 72]r G[ 104]r G[ 88]r G[ 120]r

R0{0,*} G[ 64]i G[ 96]i G[ 80]i G[ 112]i G[ 72]i G[ 104]i G[ 88]i

G1

Cell → 1 2 3 4 5 6 7 8

R4{0,*} G[ 0]r G[ 64]r G[ 16]r G[ 80]r G[ 8]r G[ 72]r G[ 24]r G[ 88]r

R0{0,*} G[ 0]i G[ 64]i G[ 16]i G[ 80]i G[ 8]i G[ 72]i G[ 24]i G[ 88]i

R5{0,*} G[ 32]r G[ 96]r G[ 48]r G[ 112]r G[ 40]r G[ 104]r G[ 56]r G[ 120]r

R1{0,*} G[ 32]i G[ 96]i G[ 48]i G[ 112]i G[ 40]i G[ 104]i G[ 56]i G[ 120]i

G1

e jθ–
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Fixed-Point and Precision Issues
Figure 20.   Vector Representation of the DIT Butterfly

Figure 21 shows that the largest magnitude occurs when the vectors B´ and A line up so that the magnitude of C (if 
B´ and A point in the same direction) or D (B´ and A point in opposite directions) is the sum of the magnitudes of 
A and B´. 

Figure 21.   Bounds on Butterfly Output Magnitude

It should also be clear that either the magnitude of C or the magnitude of D is at least equal to the magnitude of the 
larger of the two vectors A and B. This leads to the relationship:

 Equation 13

We can see that the complex numbers at the output stages of the butterflies grow in magnitude from stage to stage. 
The maximum growth as given by Equation 13 is a factor of two per stage or one bit-per-pass.

4.1   Input Data Analysis
The MRC6011 device is a fixed-point processor that uses 16 bits to represents integers . When an FFT is 
implemented on the MRC6011 device, the internal results of the FFT must not exceed these values at any one time. 
The previous discussion shows that the magnitude of the complex numbers can grow by a total factor of N or  
bits in an N-point FFT. Because of the twiddle factor rotation, real and imaginary parts of the complex numbers can 

θ

–B´
D

B
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C
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q
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θ
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B

A D

max A B,( ) max C D,( ) 2max A B,( )≤ ≤

1.0– x 1<≤

N2log
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Fixed-Point and Precision Issues
at any time equal their magnitude (they become either purely real or purely imaginary). Therefore, the magnitude 
of the FFT input data must be limited by . For a real-input 128-point FFT, the absolute value of the 
input equals the magnitude and therefore must satisfy . 

We can achieve this bound by scaling the input data so that it resides in the lower 6 bits of the 16-bit word, yielding 
10 guard bits to accommodate the worst case growth. For a complex input FFT, we must account for the imaginary 
part, and the bounds must not become as follows:

This requirement forces the input data to be scaled so that it resides in the lower five bits of the input data. While 
scaling satisfies the requirements to avoid overflow, it has a detrimental effect in that precision is lost in the input 
data because the magnitude of the butterfly increases at every stage. However, this growth can be avoided by 
scaling the outputs of all of the FFT butterflies by a factor of 0.5 (one bit). Since this scaling is uniform through the 
FFT (because all points are treated equally), we must apply a common scale factor to the FFT results, as follows:

This scaling is now applied to Equation 13 to obtain the bounds for the butterfly outputs with scaling:

 Equation 14

With two’s complement fixed-point notation, we ensure that the magnitude of the butterfly inputs is less than one at 
all times. We use 15 bits for the most possible precision with a signed two’s complement fixed-point 16-bit number. 
The next section discusses the implementation details of this technique.

4.2   Butterfly Output Scaling
The scaling approach is illustrated in Figure 22. The two numbers added together at each stage of the butterfly 
flow are divided by 2 (right shift by 1 bit) to avoid immediate overflow. This approach is very effective and proven 
to eliminate any overflows. The final FFT outputs are reduced by N due to the consecutive right bit shift at each 
stage, where the N is the number of FFT points. In our implementation, the final FFT spectrum is reduced to 1/128 
of the original Matlab-computed spectrum. Nonetheless, the shape of the spectrum is the same as that of the 
floating-point spectrum.

The butterfly output scaling approach is simple to implement on the RCF. The code segment in Example 5 
illustrates the simplicity of the implementation.

M 1.0 N⁄<
x nT( ) 1

128
---------<

Real Part: 0.5
128
---------– R x nT( ) 0.5

128
---------≤ ≤

Imaginary Part:
0.5
128
---------– I x nT( ) 0.5

128
---------≤ ≤

N 2
N2log

=

max A B,( )
2

-------------------------------- max C D,( ) max A B,( )≤ ≤
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Example 5.   Scale Down Approach Applied to Stage 1 Butterfly for Group 1 and 2 Data

/* Result of G1,G2[Re,Im] = k1[R8,R9], k2[R4,R0] */
/* Stage1 */
/* G1,G2[Re,Im] = k1[R4,R0], k2[R5,R1], tmp = R8,R9 */
CELL{*,*} R13 = MULSIH{FB{psiFBInputTwiddleCos, 0, OMEGA_BR2, COL_BUS, WORD},

R5, R14} << 1;

CELL{*,*} R12 = MULSIH{FB{psiFBInputTwiddleCos, 0, OMEGA_BR2, COL_BUS, WORD},
R1, R14} << 1;

CELL{*,*} R11 = MULSIH{FB{psiFBInputTwiddleSin, 0, OMEGA_BR2, COL_BUS, WORD},
R1, R14} << 1;

CELL{*,*} R10 = MULSIH{FB{psiFBInputTwiddleSin, 0, OMEGA_BR2, COL_BUS, WORD},
R5, R14} << 1;

CELL{*,*} NOP{};
CELL{*,*} R13 = ADD{R13, R11} >> 1; // scale down;
CELL{*,*} R12 = SUB{R12, R10} >> 1; // scale down;
CELL{*,*} R11 = MULL{R15,R4} >> 1;// scale down for adjustment;
CELL{*,*} R10 = MULL{R15,R0} >> 1;// scale down for adjustment;
CELL{*,*} NOP{};
CELL{*,*} R8 = ADD{R11, R13};
CELL{*,*} R9 = ADD{R10, R12};
CELL{*,*} R4 = MULSIL{R15,R4,R8}; // scale down
CELL{*,*} R0 = MULSIL{R15,R0,R9}; // scale down

Figure 22.   Scale Down By Two Applied to an 8-Point FFT

The scaling step incurs three more cycles at each stage than are shown in Example 3. To implement scale down, 
the code in Example 3 is changed as follows:
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• The right 1 bit shift at the end of the R13, R12 addition.

• Two additional multiplication cycles to scale down R4 and R0 for adjustment.

• One NOP cycle as a result of the MAC delay introduced by the multiplication preceding it.

• Instead of holding the constant of 0x2, the R15 register retains the constant of 0x1 throughout the butterfly stages 
due to the scale down operation.

4.3   Rounding on RC
Although rounding on RCF is not automatic, it is achieved by adding 0x00008000 to or subtracting 0xFFFF8000 
from the number to be rounded. In Figure 23, the truncation and rounding operations are directly compared. The 
net effect of the truncation introduces bias or error in the final result. However, proper rounding generally yields an 
unbiased result or a near zero bias in the final result. An apparent cost of rounding is the need for locations to hold 
the rounding constant as well as the intentional multiplication with a constant (one) and add operation if no 
multiplication is necessary in the original operations.

Figure 23.   Comparison of Truncation and Rounding Operations on RCF

5 Performance and Error Analysis
This section presents performance data of the implementation, including RCF cycles counts, frame buffer memory 
requirements, context memory usage, and averaged errors of the FFT spectra. We used both white noise and sine 
wave as test vectors to test the implementation. The errors associated with each test vector are stable and 
acceptable with improved precision. With 8-bit inputs, the errors would have been much larger. 

Table 4 lists the cycle counts for different runs of the FFT. FFT execution time on RCF is calculated as 3659cyc × 
4ns = 14.636 µs, 684 cyc × 4 ns = 2.736 µs at 250 MHz RCF core frequency.

CELL{*,*} R14 = INV{ZERO} << 15;

CELL{*,*} R2 = MULSIH{R0,R1,R14} << 1;

/* move 0x8000 into R14 */

/* multiply R0,R1 and round */

R2 = MAC_REG [ ( (R0 × R1) << 1) – sign extend (R14) ] [31 . . . 16]

MAC_REG [ ( (R0 × R1) << 1) – 0xFFFF8000 ] [31 . . . 16]

MAC_REG [ ( (R0 × R1) << 1) + 0x00008000 ] [31 . . . 16]

0 1

Truncation

Rounding

32 Bits

0 1

+

0 1

1 0

||

Throw AwayOutput

Throw AwayOutput
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Performance and Error Analysis
Table 5 lists the frame buffer memory requirements of the code. The RCF frame buffer size (40 KB ) is sufficient 
to meet the requirements.

Table 6 shows how the context memory in the RCF core is used in the FFT implementation. The FFT128 
computation is divided into three kernels to avoid limiting the number of contexts (contexts of a kernel cannot 
exceed 64). However, all contexts of the kernels can be stored in context memory, which has 128 context memory 
locations for row and column contexts. 

Four 128-point white noise random number sequences were used to generate the averaged errors of the FFT 
spectra. The input numbers were clipped to the range of (–32768, +32767) and the errors were computed as 
follows:

 Equation 15

Table 4.   RCF Cycle Counts for Separate Runs of the 128-Point FFT

Kernel Name Cycles First Run Cycles Second Run

FFT128_Transpose 634 139

FFT128_Stage1_6 1941 297

FFT128_Stage7 1084 248

TOTAL 3659 684

Table 5.   Memory Requirements for the 128-Point FFT Implementation on RCF

Variable Description Variable Name Bytes Required

Input data psiInputData 512

Twiddle factor psiInputTwiddle 544

Temporary area for intermediate 
result

psiOutTmp 256

Output data psiOutput 512

TOTAL 1824 bytes

Table 6.   Context Memory Usage for the 128-Point FFT on RCF

Kernel Name Number of Row Contexts Number of Column Contexts

FFT128_Transpose 39 16

FFT128_Stage1_6 58 32

FFT128_Stage7 12 2

TOTAL 109 50

))](*128)([)](*128)(([)( 22 iYiYiYiYsqrtiError fix
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Summary
Where flt indicates a MATLAB® floating-point FFT result and fix indicates an RCF result. The multiplier of 128 is 
needed because of the scale down by 2 operation at each stage of the butterfly operation. Figure 24 shows the 
point-wise error magnitude for 128 points across the frequency scale for the white noise input.

Figure 24.   Absolute Error Performance of the 128-Point FFT with White Noise Input

The 128-point FFT implementation was also tested with a sine wave of 0.1 Hz normalized frequency. The input 
range of the sine wave was set to (–16384,+16383). Figure 25 shows how the original sine wave and the error 
performance are plotted. The absolute errors across the frequency scale for the sine wave input are on the same 
magnitude as the white noise errors. The vertical scale must be multiplied by 128. The shape of the error curves 
indicates that the low-frequency components contain larger errors than the higher-frequency components.

6 Summary
This application note describes the implementation of a 128-point DIT FFT algorithm on the Freescale MRC6011 
RCF device. Because of the limited number of registers, the first half of the 128 input data is independent of the 
second half of the data, until stage 7. The 128-point FFT butterfly flow is divided into three parts. Between the 
stages, data regrouping is performed to facilitate the butterfly operations of the next stage. Data regrouping is 
performed on RCF via register content swaps. The operation effectively converts inter-cell butterflies into intra-cell 
butterflies so that the parallel RC array is used more efficiently in the FFT computation. Results from different 
input test vectors have shown the effectiveness of these economic approaches.
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Figure 25.   Input Sine Wave and Absolute Error Comparison
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