
Freescale Semiconductor
Application Note

AN2678
Rev. 0.1, 07/2005
Using the HCS12 NVM Standard 
Software Drivers with the Cosmic 
Compiler
By Gordon Doughman

Field Applications Engineer
Software Specialist

Introduction

The NVM Standard Software Drivers (SSD) for the HCS12 Family of microcontrollers provide position 
independent, ROM-able software to allow erasure and programming of any member of the HCS12 Family 
containing 0.25 µm Split-Gate Flash (SGF) Non-Volatile Memory (NVM) technology. While the SSD 
software was developed using the C programming language, it is only distributed in position independent 
binary form. Rather than distribute the software as a binary object file, which is specific to a particular 
compiler tool set, it is distributed as a C-data array for embedded applications and S-Record format for 
use with BDM programming tools. Theoretically, this should allow the drivers to be used with any compiler 
tool set.

Unfortunately, the tool set used to compile the SSD software, the Metrowerks Codewarrior tools, places 
function arguments on the stack using the Pascal calling convention. In this convention, the caller pushes 
the arguments on the stack from left to right rather than using the standard C calling convention which 
pushes function arguments on the stack from right to left. In addition, the Codewarrior calling convention 
passes the last or only function argument in the CPU registers. While this poses no problem when the 
SSD software is used with the Codewarrior toolset, it prevents direct use with other compiler toolsets such 
© Freescale Semiconductor, Inc., 2005. All rights reserved.

This product incorporates SuperFlash® technology licensed from SST.



CallBack Functions
as the Cosmic compiler for the HCS12 Family. Fortunately, because the Cosmic compiler also passes the 
last or only function argument in the same CPU registers as the Codewarrior tools, compatibility with the 
SSD software can be achieved by simply modifying one of the header files distributed with the driver 
software.

Because the HCS12 SGF NVM Standard Software Driver User’s Manual provides complete, detailed 
information on the integration, use and troubleshooting of the SSD functions this application note will 
simply supplement the information contained in Section 3, API Specification, of that document.

CallBack Functions

Many of the SSD functions support concurrency in a polled environment through the use of a CallBack 
mechanism. To keep the SSD functions from monopolizing the CPU for extended periods of time a user 
supplied function pointer is passed as one of the function parameters. This function is then periodically 
called during the execution of the SSD function. However, because there is no way to disabled the 
CallBack mechanism, a pointer to an empty function must be passed in the CallBack parameter even 
when concurrency in a polled environment is not required.

Because the CallBack function pointer is limited to a 16-bit value, the CallBack function must reside within 
the S12’s 64K memory space. This restricts its placement to one of the two fixed Flash pages, EEPROM 
or RAM. For those applications not performing program or erase operations on Flash block zero, the 
CallBack function may conveniently be placed on either the upper or lower fixed Flash pages. However, 
for S12 devices containing only a single Flash block or for applications such as bootloaders, which require 
at least a portion of Flash block zero to be erased and reprogrammed, the Callback function must be 
placed in EEPROM or RAM.

For SSD driver applications not requiring concurrency in a polled environment, a single RTS instruction 
(0x3d) can be placed into a char variable and the address of this variable can be passed to the SSD 
function as the address of the CallBack function.

Compiler Command Line Option

By default, the Cosmic compiler automatically widens parameters of type char to short before being 
pushed onto the stack. Because the Metrowerks compiler does not perform this automatic widening 
operation, the Cosmic compiler’s +nowiden command line option must be used with all source files in 
projects using the SSD software.

Revised Standard Software Drivers API

The header file, ssd_sgf.h, included with the SSD software distribution contains the function prototypes 
for each of the SSD implemented NVM functions. Each of these function prototypes must be modified to 
reverse the order of the declared parameters. Presented in each of the following sections is the revised 
function prototype and parameter description for each of the functions available in the SSD package.
Using the HCS12 NVM Standard Software Drivers with the Cosmic Compiler, Rev. 0.1

2 Freescale Semiconductor



Revised Standard Software Drivers API
NVMInit()

This function sets up the NVM module clock according to the oscillator clock and the bus clock. It also 
initializes the control registers for Flash and EEPROM. NVMInit must be called prior to program or erase 
operations to ensure that both the Flash and EEPROM module clock dividers are correctly configured. 

NOTE
This function returns bit mapped error codes so more than one error 
condition can be communicated with a single return code.

The NVM module’s clocks must be properly synchronized with the oscillator clock and the bus clock. 
NVMInit ensures that all of the clock synchronization requirements are met. Consult one of the NVM 
module specifications for more information regarding the NVM module clock requirements.

UINT16 NVMInit(UINT16 funcPtr,
UINT16 pDescriptor,
UINT16 regBase,
BOOL BDMEnable
UINT16 oscClock)

Figure 1. NVMInit() Function Prototype

Table 1. NVMInit() Parameter Description

Argument Type Description Range

funcPtr UINT16 Function pointer to RangeCheck. If this value is 0xFFFF the RangeCheck 
function is not called. In this case memory 
resource intersections are the user's 
responsibilities. Otherwise, the RangeCheck 
function is called to verify that the requested 
NVM operation is consistent with the 
user-defined memory map.

pDescriptor UINT16 Pointer to the SSD
configuration descriptor.

Any address within the MCU address space 
(0x0000 – 0xFFFF).

regBase UINT16 Base address of the register 
block.

This value should be on a 2K byte boundary 
within the first 32K bytes of the 64K byte MCU 
address space.

BDMEnable BOOL Select alternate function returns. FALSE selects a normal function return; TRUE 
executes the BGND instruction at the function 
exit.

oscClock UINT16 Target oscillator clock One oscClock equals 10 kHz
Using the HCS12 NVM Standard Software Drivers with the Cosmic Compiler, Rev. 0.1

Freescale Semiconductor 3



Revised Standard Software Drivers API
NVMMass Erase()

This function automatically erases multiple NVM blocks. Both Flash and EEPROM can be erased during 
the same function call.

UINT16 NVMMassErase(UINT16 funcPtr,
UINT16 regBase,
void (*CallBack)(void)
BOOL BDMEnable,
BOOL ISREnable
UINT16 blocks);

Figure 2. NVMMassErase() Function Prototype

Table 2. MVMMassErase() Parameter Description

Argument Type Description Range

funcPtr UINT16 Function pointer to 
RangeCheck.

If this value is 0xFFFF the RangeCheck 
function is not called. In this case memory 
resource intersections are the user's 
responsibilities. Otherwise, the 
RangeCheck function is called to verify that 
the requested NVM operation is consistent 
with the user-defined memory map.

regBase UINT16 Base address of the register 
block.

This value should be on a 2K byte boundary 
within the first 32K bytes of the 64K byte 
MCU address space.

CallBack void(*)(void) Address of void callback 
function pointer

Any valid void function address

BDMEnable BOOL Select alternate function
returns.

FALSE selects a normal function return; 
TRUE executes the BGND instruction at the 
function exit.

ISREnable BOOL Select Interrupt or polling logic. TRUE selects interrupt logic. FALSE selects 
polling logic

blocks UINT16 A bit-mapped argument 
defining the NVM regions to be 
erased. if blocks is 0x0000, the 
return code is SGF_OK.

The LSB selects EEPROM. Higher order 
bits select Flash.
Using the HCS12 NVM Standard Software Drivers with the Cosmic Compiler, Rev. 0.1

4 Freescale Semiconductor



Revised Standard Software Drivers API
NVMSectorErase()

This function automatically erases multiple four byte EEPROM sectors given a starting address and the 
number of sectors to erase. This function also automatically erases multiple 512 byte Flash sectors given 
a starting address and the number of sectors to erase. Only one type of NVM – either Flash or EEPROM 
– can be erased during a single call.

UINT16 NVMSectorErase (UINT16 funcPtr,
UINT16 regBase,
void (*CallBack)(void),
BOOL BDMEnable,
BOOK ISREnable,
UINT16 number,
UINT32 dest);

Figure 3. NVMSectorErase() Function Prototype

Table 3. NVMSectorErase() Parameter Description

Argument Type Description Range

funcPtr UINT16 Function pointer to 
RangeCheck.

If this value is 0xFFFF the RangeCheck 
function is not called. In this case memory 
resource intersections are the user's 
responsibilities. Otherwise, the 
RangeCheck function is called to verify 
that the requested NVM operation is 
consistent with the user-defined memory 
map.

regBase UINT16 Base address of the
register block.

This value should be on a 2K byte 
boundary within the first 32K bytes of the 
64K byte MCU address Space.

CallBack void(*)(void) Address of void callback
function pointer

Any valid void function address

BDMEnable BOOL Select alternate function 
returns.

FALSE selects a normal function return; 
TRUE executes the BGND instruction at 
the function exit.

ISREnable BOOL Select Interrupt or polling logic. TRUE selects interrupt logic. FALSE 
selects polling logic

number UINT16 The number of sectors to be 
erased. If number is zero, the 
return value is SGF_OK.

The dest and number parameters define a 
continuous sequence of NVM sectors that 
must lie entirely within either Flash or 
EEPROM but not both.

dest UINT32 The first sector address. 1. Any location within MCU EEPROM 
address space or the virtual Flash 
memory.

2. For Flash, the lowest nine bits are 
masked. For EEPROM, the lowest two 
bits are masked.
Using the HCS12 NVM Standard Software Drivers with the Cosmic Compiler, Rev. 0.1

Freescale Semiconductor 5



Revised Standard Software Drivers API
BlankCheck()

This function reads the memory range and checks for the erased state (0xFFFF). The scope of this 
function is either Flash or EEPROM, but only one NVM region can be checked per function call.

UINT16 BlankCheck(UINT16 funcPtr,
UINT16 regBase,
void (*CallBack)(void),
BOOL BDMEnable
UINT16 *compareData,
UNIT32 *compareAddress,
UNIT32 size,
UINT32 dest);

Figure 4. BlankCheck() Function Prototype

Table 4. BlackCheck() Parameter Description

Argument Type Description Range

funcPtr UINT16 Function pointer to 
RangeCheck.

If this value is 0xFFFF the RangeCheck function is 
not called. In this case memory resource 
intersections are the user's responsibilities. 
Otherwise, the RangeCheck function is called to 
verify that the requested NVM operation is 
consistent with the user-defined memory map.

regBase UINT16 Base address of the 
register block.

This value should be on a 2K byte boundary within 
the first 32K bytes of the 64K byte MCU address 
space.

CallBack void(*)(void) Address of void callback
function pointer

Any valid void function address

BDMEnable BOOL Select alternate function 
returns.

FALSE selects a normal function return; TRUE 
executes the BGND instruction at the function exit.

compareData UINT16 * The value of the first 
non-blank destination 
data.

1. compareData should lie within the MCU address 
space.

2. *compareData is valid only when the function 
returns SGF_ERROR_NOT_BLANK.

compareAddress UINT32 * Destination address of 
the first non-blank word.

1. compareAddress should lie within the MCU 
address space.

2. *compareAddress is valid only when the function 
returns SGF_ERROR_NOT_BLANK.

size UINT32 The size of the blank 
check region in bytes. If 
size is zero, the return 
value is SGF_OK.

1. The dest and size parameters define a 
continuous sequence of NVM words that must lie 
entirely within either Flash or EEPROM but not 
both.

2. This value must be a multiple of two.

dest UINT32 The first sector address. 1. Any location within MCU EEPROM address 
space or the virtual Flash memory.

2. This value must be a multiple of two.
Using the HCS12 NVM Standard Software Drivers with the Cosmic Compiler, Rev. 0.1

6 Freescale Semiconductor



Revised Standard Software Drivers API
NVMProgram()

This function programs the specified NVM regions with the contents of a source data buffer. The scope 
of this function is either Flash or EEPROM, but only one NVM region can be programmed per function call.

UINT16 NVMProgram (UINT16 funcPtr,
UINT16 pDescriptor,
UINT16 regBase,
void (*CallBack)(void),
BOOL BDMEnable,
BOOL ISREnable,
UINT16 source,
UINT32 size,
UINT32 dest);

Figure 5. NVMProgram() Function Prototype

Table 5. NVMProgram() Parameter Description

Argument Type Description Range

funcPtr UINT16 Function pointer to 
RangeCheck.

If this value is 0xFFFF the RangeCheck function is not 
called. In this case memory resource intersections are 
the user's responsibilities. Otherwise, the RangeCheck 
function is called to verify that the requested NVM 
operation is consistent with the user-defined memory 
map.

pDescriptor UINT16 Pointer to the configuration 
descriptor.

Any address within the MCU address space.

regBase UINT16 Base address of the 
register block.

This value should be on a 2K byte boundary within the 
first 32K bytes of the 64K byte MCU address space.

CallBack void(*)(void) Address of void callback 
function pointer

Any valid void function address

BDMEnable BOOL Select alternate function 
returns.

FALSE selects a normal function return; TRUE 
executes the BGND instruction at the function exit.

ISREnable BOOL Select Interrupt or polling 
logic.

TRUE selects interrupt logic. FALSE selects polling 
logic

source UINT16 Address of the source data 
buffer.

This address must lie within MCU address space.

size UINT32 The size of the blank 
check region in bytes. If 
size is zero, the return 
value is SGF_OK.

1. The dest and size parameters define a continuous 
sequence of NVM words that must lie entirely within 
either Flash or EEPROM but not both.

2. This value must be a multiple of two.

dest UINT32 The first sector address. 1. Any location within MCU EEPROM address space 
or the virtual Flash memory.

2. This value must be a multiple of two.
Using the HCS12 NVM Standard Software Drivers with the Cosmic Compiler, Rev. 0.1

Freescale Semiconductor 7



Revised Standard Software Drivers API
ProgramVerify()

This function verifies that a source data buffer matches a corresponding region of NVM. The scope of this 
function is either Flash or EEPROM, but only one NVM region can be checked per function call.

UINT16 ProgramVerify (UINT16 funcPtr,
UINT16 pDescriptor,
UINT16 regBase,
void (*CallBack)(void),
BOOL BDMEnable,
UINT16 *compareSource,
UINT16 *compareData,
UINT32 *compareAddress
UINT16 source,
UINT32 size,
UINT32 dest);

Figure 6. ProgramVerify() Function Prototype

Table 6. ProgramVerity() Parameter Description

Argument Type Description Range

funcPtr UINT16 Function pointer to 
RangeCheck.

If this value is 0xFFFF the RangeCheck function is not 
called. In this case memory resource intersections 
are the user's responsibilities. Otherwise, the 
RangeCheck function is called to verify that the 
requested NVM operation is consistent with the 
user-defined memory map.

pDescriptor UINT16 Pointer to the 
configuration 
descriptor.

Any address within the MCU address space.

regBase UINT16 Base address of the 
register block.

This value should be on a 2K byte boundary within the 
first 32K bytes of the 64K byte MCU address space.

CallBack void(*)(void) Address of void 
callback function 
pointer

Any valid void function address

BDMEnable BOOL Select alternate 
function returns.

FALSE selects a normal function return; TRUE 
executes the BGND instruction at the function exit.

compareSource UINT16 * The value at the first 
source address that 
fails to verify.

1. compareSource should lie within the MCU address 
space.

2. *compareSource is valid only when the function 
returns SGF_ERROR_VERIFY.

compareData UINT16 * The value of the first 
destination address 
that fails to verify.

1. compareData should lie within the MCU address 
space.

2. *compareData is valid only when the function 
returns SGF_ERROR_NOT_BLANK.

Table continued on next page
Using the HCS12 NVM Standard Software Drivers with the Cosmic Compiler, Rev. 0.1

8 Freescale Semiconductor



Revised Standard Software Drivers API
compareAddress UINT32 * Address of the first 
destination address 
that fails to verify.

1. compareAddress should lie within the MCU address 
space.

2. *compareAddress is valid only when the function 
returns SGF_ERROR_NOT_BLANK.

source UINT16 Address of the 
source data buffer.

This address must lie within MCU address space.

size UINT32 The size of the blank 
check region in 
bytes. If size is zero, 
the return value is 
SGF_OK.

1. The dest and size parameters define a continuous 
sequence of NVM words that must lie entirely within 
either Flash or EEPROM but not both.

2. This value must be a multiple of two.

dest UINT32 The first sector 
address.

1. Any location within MCU EEPROM address space 
or the virtual Flash memory.

2. This value must be a multiple of two.

Table 6. ProgramVerity() Parameter Description (Continued)

Argument Type Description Range
Using the HCS12 NVM Standard Software Drivers with the Cosmic Compiler, Rev. 0.1

Freescale Semiconductor 9



Revised Standard Software Drivers API
ParallelProgram()

This function supports both serial (i.e., single-block) programming and parallel (i.e., multi-block) 
programming for Flash. That is, ParallelProgram will program individual pagesets consisting of one or 
more words per pageset. In this context a pageset is defined by the set of words that is taken from one 
or more blocks. By definition, each word within a pageset lies at the same offset from the beginning of its 
block.

In addition, this function will also automatically program buffers containing multiple pagesets. With 
unlimited buffer space, the maximum number of pagesets that can be programmed in one function call is 
0x8000 for Flash block size of 64 Kbytes, 0x4000 for Flash block size of 32 Kbytes. In most systems the 
maximum number of pagesets that can be programmed in one function call is limited by the amount of 
available RAM.

UINT16 ParallelProgram (UINT16 regBase,
void (*CallBack)(void)
BOOL BDMEnable,
UINT16 source,
UINT16 pagesetNumber,
UINT16 offset,
UINT16 flashBlocks);

Figure 7. ParallelProgram() Function Prototype

Table 7. ParallelProgram() Parameter Description

Argument Type Description Range

regBase UINT16 Base address of the register 
block.

This value should be on a 2K byte boundary 
within the first 32K bytes of the 64K byte MCU 
address Space.

CallBack void(*)(void) Address of void callback 
function pointer

Any valid void function address

BDMEnable BOOL Select alternate function 
returns.

FALSE selects a normal function return; TRUE 
executes the BGND instruction at the function 
exit.

source UINT16 Address of the source data 
buffer.

This address must lie within MCU address 
space.

pagesetNumber UINT16 The number of pagesets, where 
a pageset is a group of 2-byte 
data pieces to be programmed.

The pagesetNumber depends on the user’s 
buffer size and the Flash block size, the 
maximum value is 0x8000 for 64KB block size, 
0x4000 for 32KB block size.

offset UINT16 Relative offset within the Flash 
block.

1. The offset should be aligned on a 2-byte 
boundary.

2. For block size of 64KB, 0<=offset<64K, for 
block size of 32KB, 0<=offset<32K.

FlashBlocks UINT16 A bit-mapped argument 
defining the Flash blocks to be 
parallel programmed. The 
return code is SGF_OK if no 
blocks are enabled.

This value should be on a 2K byte boundary 
within the first 32K bytes of the 64K byte MCU 
address space.
Using the HCS12 NVM Standard Software Drivers with the Cosmic Compiler, Rev. 0.1

10 Freescale Semiconductor



Revised Standard Software Drivers API
ParallelProgramVerify()

This function is used to verify the data programmed by the ParallelProgram function. It uses the same 
offset and pageset scheme as the ParallelProgram function. The source buffer will contain the interleaved 
data that will be compared against a corresponding Flash region.

UINT16 ParallelProgramVerify (UNIT16 regBase,
void (*CallBack)(void),
BOOL BDMEnable,
UINT16 *compareSource,
UINT16 *compareData,
UINT32 *compareAddress,
UINT16 source,
UINT16 pagesetNumber,
UINT16 offset,
UINT16 flashBlocks);

Figure 8. ParallelProgramVerify() Function Prototype

Table 8. ParallelProgramVerify() Parameter Description

Argument Type Description Range

regBase UINT16 Base address of the 
register block.

This value should be on a 2K byte boundary 
within the first 32K bytes of the 64K byte MCU 
address space.

CallBack void(*)(void) Address of void callback 
function pointer

Any valid void function address

BDMEnable BOOL Select alternate function 
returns.

FALSE selects a normal function return; TRUE 
executes the BGND instruction at the function 
exit.

compareSource UINT16 * The value at the first 
source address that fails 
to verify.

1. compareSource should lie within the MCU 
address space.

2. *compareSource is valid only when the 
function returns SGF_ERROR_VERIFY.

compareData UINT16 * The value of the first 
destination address that 
fails to verify.

1. compareData should lie within the MCU 
address space.

2. *compareData is valid only when the 
function returns 
SGF_ERROR_NOT_BLANK.

compareAddress UINT32 Address of the first 
destination address that 
fails to verify.

1. compareAddress should lie within the MCU 
address space.

2. *compareAddress is valid only when the 
function returns 
SGF_ERROR_NOT_BLANK.

source UINT16 Address of the source 
data buffer.

This address must lie within MCU address 
space.

Table continued on next page
Using the HCS12 NVM Standard Software Drivers with the Cosmic Compiler, Rev. 0.1

Freescale Semiconductor 11



Revised Standard Software Drivers API
pagesetNumber UINT16 The Number of pagesets, 
where a pageset is a 
group of 2-byte data 
pieces to be programmed.

The pagesetNumber depends on the user’s 
buffer size and the Flash block size, the 
maximum value is 0x8000 for 64KB block size, 
0x4000 for 32KB block size.

offset UINT16 Relative offset within the 
Flash block.

1. The offset should be aligned on a 2-byte 
boundary.

2. For block size of 64KB, 0<=offset<64K, for 
block size of 32KB, 0<=offset<32K.

FlashBlocks UINT16 A bit-mapped argument 
defining the Flash blocks 
to be parallel 
programmed. The return 
code is SGF_OK if no 
blocks are enabled.

This value should be on a 2K byte boundary 
within the first 32K bytes of the 64K byte MCU 
address space.

Table 8. ParallelProgramVerify() Parameter Description (Continued)

Argument Type Description Range
Using the HCS12 NVM Standard Software Drivers with the Cosmic Compiler, Rev. 0.1

12 Freescale Semiconductor



Revised Standard Software Drivers API
CheckSum()

This function performs a 16-bit word sum without carry over the specified memory range. This function 
provides a rapid method of checking data integrity. The scope of this function is either Flash or EEPROM, 
but only one NVM region can be checked per function call.

UINT16 Checksum (UINT16 funcPtr,
UINT16 regBase,
void (*CallBack)(void),
BOOL BDMEnable,
UINT16 *sum,
UINT32 size,
UINT32 dest);

Figure 9. CheckSum() Function Prototype

Table 9. CheckSum() Parameter Description

Argument Type Description Range

funcPtr UINT16 Function pointer to 
RangeCheck.

If this value is 0xFFFF the RangeCheck function is not 
called. In this case memory resource intersections are the 
user's responsibilities. Otherwise, the RangeCheck 
function is called to verify that the requested NVM 
operation is consistent with the user-defined memory 
map.

regBase UINT16 Base address of the 
register block.

This value should be on a 2K byte boundary within the first 
32K bytes of the 64K byte MCU address space.

CallBack void(*)(void) Address of void 
callback function 
pointer

Any valid void function address

BDMEnable BOOL Select alternate 
function returns.

FALSE selects a normal function return; TRUE executes 
the BGND instruction at the function exit.

sum UINT16 * The checksum value for 
the specified memory 
range.

1. sum should lie within the MCU address space.
2. sum is valid only when the function returns SGF_OK

Size UINT32 The size of the 
checksum region in 
bytes. If size is zero, 
the return value is 
SGF_OK.

1. The dest and size parameters define a continuous 
sequence of NVM words that must lie entirely within 
either Flash or EEPROM but not both.

2. The value must be a multiple of two.

dest UINT32 The first sector 
address.

1. Any location within MCU EEPROM address space or 
the virtual Flash memory.

2. This value must be a multiple of two.
Using the HCS12 NVM Standard Software Drivers with the Cosmic Compiler, Rev. 0.1

Freescale Semiconductor 13



Revised Standard Software Drivers API
FlashSecurityBypass()

This function temporarily bypasses the HCS12 security if the correct security keys are provided and if 
backdoor access is enabled. 

NOTE
This function can only temporarily bypass the security – the contents of the 
Flash Protection/Options Field that determine the post-reset security state 
are not changed by this function.

UINT16 FlashSecurityBypass (UINT16regBase,
void (*CallBack)(void)
BOOL BDMEnable
UINT16 *key);

Figure 10. FlashSecurityBypass() Function Prototype

Table 10. FlashSecurityBypass() Parameter Description

Argument Type Description Range

regBase UINT16 Base address of the register 
block.

This value should be on a 2K byte 
boundary within the first 32K bytes of the 
64K byte MCU address space.

CallBack void(*)(void) Address of void callback 
function pointer

Any valid void function address

BDMEnable BOOL Select alternate function 
returns.

FALSE selects a normal function return; 
TRUE executes the BGND instruction at 
the function exit.

key UINT16 * A pointer to the four 16-bit key 
words.

key should lie within the MCU address 
space.
Using the HCS12 NVM Standard Software Drivers with the Cosmic Compiler, Rev. 0.1

14 Freescale Semiconductor



Revised Standard Software Drivers API
RangeCheck()

This function performs range checking for the given destination range and returns the memory type of the 
destination range only if the destination range is entirely of one memory type. If a memory resource of 
higher precedence overlaps the destination range, an error code is returned.

UINT16 RangeCheck (Descriptor *config,
UNIT16 regBase,
UNIT32 size,
UINT32 dest);

Figure 11. RangeCheck() Function Prototype

Table 11. RangeCheck() Parameter Description

Argument Type Description Range

config Descriptor * Pointer to the configuration 
descriptor.

Any address within MCU address space.

regBase UINT16 Base address of the register 
block.

This value should be on a 2K byte boundary 
within the first 32K bytes of the 64K byte 
MCU address space.

size UINT32 Size of the region to be 
checked in bytes.

Any 32-bit value.

dest UINT32 Destination starting address. Any address within MCU address space or 
the virtual address space.
Using the HCS12 NVM Standard Software Drivers with the Cosmic Compiler, Rev. 0.1

Freescale Semiconductor 15



AN2678
Rev. 0.1, 07/2005

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software 
implementers to use Freescale Semiconductor products. There are no express or 
implied copyright licenses granted hereunder to design or fabricate any integrated 
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to 
any products herein. Freescale Semiconductor makes no warranty, representation or 
guarantee regarding the suitability of its products for any particular purpose, nor does 
Freescale Semiconductor assume any liability arising out of the application or use of any 
product or circuit, and specifically disclaims any and all liability, including without 
limitation consequential or incidental damages. “Typical” parameters that may be 
provided in Freescale Semiconductor data sheets and/or specifications can and do vary 
in different applications and actual performance may vary over time. All operating 
parameters, including “Typicals”, must be validated for each customer application by 
customer’s technical experts. Freescale Semiconductor does not convey any license 
under its patent rights nor the rights of others. Freescale Semiconductor products are 
not designed, intended, or authorized for use as components in systems intended for 
surgical implant into the body, or other applications intended to support or sustain life, 
or for any other application in which the failure of the Freescale Semiconductor product 
could create a situation where personal injury or death may occur. Should Buyer 
purchase or use Freescale Semiconductor products for any such unintended or 
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and 
its officers, employees, subsidiaries, affiliates, and distributors harmless against all 
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, 
directly or indirectly, any claim of personal injury or death associated with such 
unintended or unauthorized use, even if such claim alleges that Freescale 
Semiconductor was negligent regarding the design or manufacture of the part. 

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2005 All rights reserved.


	Introduction
	CallBack Functions
	Compiler Command Line Option
	Revised Standard Software Drivers API
	NVMInit()
	NVMMass Erase()
	NVMSectorErase()
	BlankCheck()
	NVMProgram()
	ProgramVerify()
	ParallelProgram()
	ParallelProgramVerify()
	CheckSum()
	FlashSecurityBypass()
	RangeCheck()


