

Application Not

AN2513/D Rev. 0, 5/2003

3-phase Hall Sensor Decoder TPU Function (3HD)

By Milan Brejl, Ph.D.

Functional Overview

The 3-phase Hall Sensor Decoder (3HD) TPU Function is useful for decoding information from a Hall sensor signal in a motion control system. The function uses three input channels to obtain this information for the CPU:

- position in one of six sectors,
- direction,
- period of last revolution updated 6-times per revolution,
- revolution counter.

Figure 1 illustrates the functionality.

Figure 1. Signals processed by 3HD TPU function and corresponding values

© Freescale Semiconductor, Inc., 2004. All rights reserved.

For More Information On This Go to: www.freescale

Freescale Semiconductor, Inc.

Function Configuration

Unlike most of the functions in the MC TPU Library, the 3HD is single-function, and not a member of a function set. There are no restrictions on channel assignment – it can run on any three channels.

 Table 1 shows the configuration options and restrictions.

Table 1.	3HD TPU	function	configuration	options	and restrictions
----------	---------	----------	---------------	---------	------------------

TPU function	How many channels	Assignable channels
3HD	3	any 3 channels

The three Hall sensor signals are called Phase A, Phase B and Phase C. The Host Sequence (HSQ) bit 0 is used to determine Phase C, which updates the revolution counter in addition to other processing activities common to all phases. The HSQ is also used for other configuration options – refer to the detailed function descriptions.

Table 2 shows an example of configuration. The Phase A signal is connected to channel 0, Phase B to channel 1 and Phase C to channel 2. The TCR1 clock is selected for all timing operations.

	Table 2. Example	or configuration	
Channel	TPU function	HSQ	Priority

00

middle

able 2 Example of configur

3HD

1	3HD	00	middle
2	3HD	01	middle

In this configuration, when no other functions run on the same TPU, the 3HD can receive and process input transitions at a rate of up to 690 kcounts per second at 40MHz IMB clock.

0

 Table 3 shows the TPU function code sizes.

Table 3. TPU function code size

TPU function	Code size
3HD	63μ instructions + 8 entries = 71 long words

Configuration Order	The CPU configures the TPU as follows.
---------------------	--

- 1. Disables the channels by clearing the two channel priority bits on each channel used (not necessary after reset).
- 2. Selects the channel functions on all used channels by writing the function numbers to the channel function select bits.
- 3. Initializes function parameters. The parameters PinAdrPrev_A, PinAdrNext_A, PinAdrPrev_B, PinAdrNext_B and RC initialization value must be set before initialization.
- 4. Set the HSQ (Host Sequence) bits to identify Phase C channel and to select TCR1 or TCR2 clock. The clock selection must be the same on all channels.
- 5. Issues an HSR (Host Service Request) type %10 all 3HD channels to initialize decoding.
- 6. Enables servicing by assigning high, middle or low priority to the channel priority bits. All Phase A, Phase B and Phase C channels should be assigned the same priority.
- **NOTE:** A CPU routine that configures the TPU can be generated automatically using the MPC500_Quick_Start Graphical Configuration Tool.

Detailed Function Description

3-phase Hall Sensor Decoder (3HD)

The 3HD operates on three channels and processes the incoming Hall sensor signals. As a result of this processing, the Sector parameter gets a value that reflects the position of a motion system in one of six sectors. The state of the Hall sensor signals and the corresponding Sector value is listed in Table 4.

Phase A	Phase B	Phase C	Sector
1	0	0	4
1	1	0	6
0	1	0	2
0	1	1	3
0	0	1	1
1	0	1	5
0	0	0	0

Table 4. Hall sensor signal states and corresponding Sector value

A Sector value of 0 or 7 indicates an illegal state of the Hall sensor signals.

1 1 1 1

7

The Sector value history determines the direction of the motion system. The Direction parameter can be assigned a value of 0 or 1. See **Table 5**.

Table 5. Sector value sequence and corresponding Direction value

Sector value sequence	Direction
4, 6, 2, 3, 1, 5, 4,	0
4, 5, 1, 3, 2, 6, 4,	1

The Period value is calculated each time the sector is changed. The Period value is the TCR time of last revolution. It is measured from the last edge of similar type (low-high / high-low), on the same channel, to the current edge – see **Figure 1** and **Figure 2**. This method eliminates inaccuracies in the Hall sensor signals. The Period parameter does not contain a valid value during the first revolution after initialization, or after a change of direction.

Figure 2. Hall sensor signals in opposite direction to Figure 1 and corresponding values

Two function modes are provided:

- TCR1 clock selected
- TCR2 clock selected

The selected mode is determined by the HSQ bit 1. The user has to select the same mode on all channels.

The function provides interpolation support. The parameters LastEdgeT and ActualT are updated on a Host Service Request HSR = 11. LastEdgeT then has the value of the last incoming edge time in the TCR clocks and ActualT has the current value of the TCR clock.

The CPU program should use 32-bit reads to ensure coherency of the two parameters. This applies to coherent reads of LastEdgeT and ActualT as well as the Sector and TCR_VALUE, which is necessary for interpolation calculations.

Host Interface

Written by both CPU and TPU

Not Used

Table 6. 3HD Control Bits

			Name	Options
3	2	1	0 Channel Function Select	3HD function number (Assigned during assembly the DPTRAM code from library TPU functions)
		1	0 Channel Priority	00 – Channel Disabled 01 – Low Priority 10 – Middle Priority 11 – High Priority
		1	0 Host Service Bits (HSR)	00 – No Host Service Request 01 – Not used 10 – Initialization 11 – Get LastEdgeT and ActualT
		1	0 Host Sequence Bits (HSQ)	x0 – Phase A or Phase B x1 – Phase C 0x – TCR1 clock selected 1x – TCR2 clock selected
			0 Channel Interrupt Enable	0 – Channel Interrupt Disabled 1 – Channel Interrupt Enabled
			0 Channel Interrupt Status	0 – Interrupt Not Asserted 1 – Interrupt Asserted

TPU function 3HD generates an interrupt each time the Sector is changed.

Channel	Parameter	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0																
	1																
⊲	2																
se	3							Pin	Adr	Pre	v_A						
has	4							Pin	Adr	Nex	t_A						
<u>م</u>	5							PIN	IST	ATE	E_A						
	6							Ed	geT	_Lŀ	I_A						
	7							Edg	geT	_HL	A						
	0							La	astE	idge	эT						
	1								Acti	JalT	-						
m	2																
se	3	PinAdrPrev_B															
ha:	4	PinAdrNext_B															
<u>م</u>	5							PIN	IST	ATE	Е_В						
	6							Edg	geT	_Lŀ	I_B						
	7							Edg	geT	_HL	B						
	0							Γ	Dire	ctio	n						
	1								R	С							
0	2	TCR_VALUE															
se	3								Se	ctor							
ž 4 Period																	
	5							PIN	IST	ATE	_C						
	6							Edg	geT	_LH	I_C						
7				EdgeT_HL_C													

Table 7. 3HD Parameter RAM

Parameter	Format	Description					
	Parameters written by CP	U					
PinAdrPrev_A	16-bit unsigned integer	\$00XA, where X is a number of Phase C channel					
PinAdrNext_A	16-bit unsigned integer	\$00XA, where X is a number of Phase B channel					
PinAdrPrev_B	16-bit unsigned integer	\$00XA, where X is a number of Phase A channel					
PinAdrNext_B	16-bit unsigned integer	\$00XA, where X is a number of Phase C channel					
Parar	meters written by both TPU	and CPU					
RC	16-bit signed integer	Revolution Counter value					
	Parameters written by TP	U					
LastEdgeT	16-bit unsigned integer	TCR time of last transition *					
ActualT	16-bit unsigned integer	Actual TCR time *					
Direction	0 or 1	0 – Sector sequence 4, 6, 2, 3, 1, 5, 4, 1 – Sector sequence 4, 5, 1, 3, 2, 6, 4,					
TCR_VALUE	16-bit unsigned integer	TCR time of last transition					
Sector	4, 6, 2, 3, 1 or 5	Sector: position in one of six sectors					
Period	16-bit unsigned integer	Period: time of last revolution in TCR clocks.					
PINSTATE_A PINSTATE_B PINSTATE_C	\$0000 or \$0001	The actual state of the pin is \$0001 – high, \$0000 – low					
EdgeT_LH_A EdgeT_LH_B EdgeT_LH_C	16-bit unsigned integer	TCR time of last low-high transition					
EdgeT_HL_A EdgeT_HL_B EdgeT_HL_C	16-bit unsigned integer	TCR time of last high-low transition					
* The parameter values are entered by TPU on Host Service Request 11 (Get LastEdgeT and ActualT).							

Table 8. 3HD parameter description

Performance

State	Max IMB Clock Cycles	RAM Accesses by TPU
INIT	22	5
GET_TIME	8	3
LH1	28	12
HL1	28	12
LH2	32	13
HL2	32	13

NOTE: Execution times do not include the time slot transition time (TST = 10 or 14 IMB clocks)

Figure 3. 3HD timing

Figure 4. 3HD state diagram

Noise Immunity

AN2513/D

The input signals can be disturbed by an impulse noise. The TPU hardware rejects short input pulses of less than a configurable number of IMB clocks. Longer pulses are processed by the TPU. Furthermore, the function itself uses a pin history to reject short error pulses that are long enough to get through the hardware filter, but not long enough to last from the actual transition time to the time that the TPU services the channel. Even longer error pulses are counted on both edges, resulting in a short-time error of the Sector value.

AN2513/D Detailed Function Description

How to Reach Us:

Home Page:

www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

AN2513/D Rev. 0 5/2003 For More Information On This Product, Go to: www.freescale.com