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Many systems require large amounts of data to be moved 
between memories and high-speed peripherals. However, in 
the MPC8260 PowerQUICC™ II dual-bus architecture, 
performance is inhibited if the data path is 
60x-bus-to-local-bus and, in particular, if all accesses from 
the core to the local bus are single accesses, not bursts. Using 
the MPC8260 IDMA controller efficiently increases the data 
rate with minimal intervention from the core. 

This document describes the MPC8260 IDMA functionality 
and how to initialize the IDMA channels and other related 
functional areas. Also provided is software for use in an 
MPC8260 design. The software is narrow in scope, using no 
memory management or application-level data stream I/O 
functions.

1 MPC8260 IDMA Overview
The MPC8260 IDMA block is highly optimized for efficient 
memory-copy operations. Four general-purpose, 
independent DMA (IDMA) channels are supported. IDMA 
transfers can be memory-to-memory, peripheral-to-memory 
or memory-to-peripheral in either byte, half word, word, 
double-word, or burst quantities to even or odd source 
destination addresses.
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MPC8260 IDMA Overview

As shown in Figure 1, the IDMA block is situated within the CPM and connects to the 60x and local buses. 
It also has direct access to the dual-port RAM within the CPM.

Figure 1. MPC8260 Block Diagram

Each IDMA transaction, regardless of source and destination type, requires two fundamental operations: 
reading an amount of data from a source address and writing that amount of data to a destination address. 

For MPC8260 IDMA transfers, buffer descriptors are used to contain source and destination addresses and 
the number of bytes to be transferred. The base address for the buffer descriptors is programmed in the 
IDMA channel parameter table stored in dual-port RAM. Each IDMA channel has an associated channel 
parameter table which specifies certain operations for IDMA transfers. Each channel parameter table is 
located within the dual port RAM using a user-programmable pointer (IDMAx_BASE). The address to 
which IDMAx_BASE points must be on a 64-byte boundary. IDMAx_BASE pointers have specific 
locations in Parameter RAM, as shown in Figure 2. This differs from the MPC860 IDMA implementation 
where the actual channel parameters are stored in parameter RAM and not solely a pointer. 

For example, if the IDMA1 channel parameter table is to be placed at address offset 0x2000 in the 
dual-port RAM, write 0x2000 to the IDMA1_BASE pointer register.
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MPC8260 IDMA Overview

Figure 2. Memory Structure for IDMA Operation

IDMA transfers can be dual-address or single-address. Dual-address transfers use an intermediate transfer 
buffer stored in DPRAM. In single-address transfers (or fly-by mode), data is transferred without requiring 
an internal buffer. There are two modes that determine how an IDMA transaction is initiated:

• Internal request mode—The IDMA operates with the START_IDMA without the use of DREQ. 

• External request mode—Every read transfer is triggered by the assertion of DREQ. When the 
transfer buffer is full, the first write transfer is carried out automatically. Additional write transfers 
are triggered by further DREQ assertions. 

Memory-to-memory transfers are dual-address transfers. The IDMA first fills the transfer buffer in 
DPRAM with data read cycles from the source bus. Once the transfer buffer is full, data from the transfer 
buffer is transferred to the destination using write cycles. This is a dual-address transfer (single address 
mode is not valid for memory-to-memory transactions). The transfer sizes are programmed into IDMA 
parameter RAM. Memory-to-memory transfers can be achieved using internal and external request modes. 

In peripheral-to-memory and memory-to-peripheral transfers, external signals DREQ, DACK and DONE 
are used to control data transfers. A read/write request from a peripheral is asserted via DREQ and is either 
rising-/falling-edge sensitive or level sensitive. The data is transferred/sampled when DACK is asserted. 
The peripheral asserts DONE to stop the transfer and terminates the current transfer when DONE and 
DACK are asserted (refer to Section 6, “IDMA Signals,” for more details).

 

Table 1. Valid IDMA transfers 

Transfer Type
Single Address

Internal Request
Single Address

External Request
Dual Address

Internal Request
Dual Address

External Request

Memory-to-memory Invalid Invalid Valid Valid (DONE not supported)

Memory-to-peripheral Valid Valid Valid Valid

Peripheral-to-memory Valid Valid Invalid Valid

IDMA1_BASE0x87FE

IDMA1 Channel
Parameter Table 

IDMA2_BASE0x88FE

IDMA3_BASE0x89FE

IDMA4_BASE0x8AFE

Address
must be 
64 byte
aligned

IDMA Buffer
Descriptors

External Memory

Destination
Data

Source
Data

Dual Port RAM 0x0000

Parameter RAM 0x8000

BD address
must be 
16 bit 
aligned
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2 IDMA Software Initialization
Information that describes the data block to be moved, the transfer methods, and the control options are 
programmed into the IDMA Channel Parameter Table. The user-programmable fields which must be 
defined for IDMA operation are shown in Table 2.

SS_MAX, STS and DTS are used to control the 60x bus bandwidth occupied by the IDMA channel. In all 
modes (except fly-by mode), at least one transfer size parameter must be set to the SS_MAX value. For 
memory-to-memory transfers, one of the size parameters (STS/DTS) can be initialized to a smaller value 
to limit 60x bus bandwidth utilization by the IDMA. Memory to memory transfer sizes must evenly divide 
into SS_MAX and also be a multiple of 32 (for bursting). IDMA transfer buffer size is determined by the 
largest transfer (usually SS_MAX + 32 bytes) needed by one of the buses, while the other transfer size can 
be programmed to control the bandwidth of the other bus. The larger the DMA transfer size, the greater 
the microcode efficiency, which leads to lower DMA bus latency because the DMA does not release the 
60x bus until the transfer completes. 

2.1 IDMA Buffer Descriptors
IDMA channel data is stored in buffers in external memory. Each buffer is referenced by a buffer 
descriptor (BD) that uses a circular table structure in the dual-port RAM (refer to Figure 2). IDMA BDs 
contain source addresses, destination addresses, the byte count and the usual control fields and can be set 
up two modes:

• Auto buffer mode (Continuous mode)—IDMA continuously transfers data to/from the location 
programmed in the BD until a STOP_IDMA command is issued or DONE is asserted externally. 
The CP does not clear the Valid bit after the BD is serviced.

Table 2. IDMAx Channel Parameter Table (User Programmable Fields)

Offset Name Width Description

0x00 IBASE HWord IDMA buffer descriptor base address. Defines the starting location in dual port RAM 
for IDMAx buffer descriptors. It is an offset from the starting address of DPRAM. 
IBASE value must be 16-bit aligned.

0x02 DCM HWord DMA channel mode register. This is a 16-bit field which defines the operation modes 
of the IDMA channel. Programming fields in the DCM register allow the user to 
select dual or single address modes, define the size of the internal transfer buffer (if 
using dual address mode), select internal or external request mode and define the 
source and destination as peripheral device or memory. A full description can be 
found in the IDMA chapter of the MPC8260 PowerQUICC II™ User’s Manual.

0x04 IBDPTR HWord IDMA buffer descriptor pointer. Pointer to current BD during transfer processing. 
Should be initialized to IBASE.

0x06 DPR_BUF HWord IDMA transfer buffer address in dual-port RAM. Contains the base address for the 
internal IDMA transfer buffer. This should be aligned according to the buffer size 
(defined in DCM).

0x0A SS_MAX HWord Steady state maximum transfer size in bytes. Defines the steady state maximum 
transfer size of the IDMA transfer. This is initialized to IDMA transfer buffer size—32 
bytes. 

0x0E STS HWord Source transfer size in bytes.

0x16 DTS HWord Destination transfer size in bytes.
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• Buffer chaining mode—Data is transferred according to the first BD parameters, then the second 
BD and so on. The first BD is reused (if ready) until the BD with the last bit set is reached. IDMA 
transfers stop and restart when the BD table is reinitialized and a START_IDMA command is 
issued. 

3 IDMA Software Initialization Example
These settings are for dual-address, memory-to-memory, internally requested transfers of 512 bytes from 
source address to destination address.

The maximum values of SS_MAX, STS and DTS are chosen to allow longer transfers and optimize bus 
usage. Therefore, a read from memory takes only one IDMA transfer to fill the internal buffer. The data is 
bursted into the internal buffer 32 bytes at a time. Once the internal buffer is full, it is emptied.

As determined by Table 18-7 in the MPC8260 PowerQUICC II™ User’s Manual, for 128 byte internal 
buffer, SS_MAX is 96 bytes, STS can be 96 or 32 bytes and DTS can be 96 or 32 bytes. For 
memory-to-memory transfers, if STS=DTS=SS_MAX, then one read transfer to fill the internal buffer is 
followed automatically by one write transfer to empty the internal buffer. This is done using burst cycles. 
Note that using a larger IDMA internal buffer and maximum transfer sizes (STS, DTS and SS_MAX) 
allows longer transfers, optimizes bus usage and reduces overall load on CP.

4 Setting IDMA Priorities
The IDMA block resides in the MPC8260 CPM. The communication processor (CP) within the CPM 
controls IDMA accesses, allowing the G2 core to carry out other activities. The priority which the CP 
services these IDMA requests is fixed (refer to Table 13.2, “Peripheral Prioritization,” in the MPC8260 
PowerQUICC II™ User’s Manual). However, the IDMA priority can be programmed independently using 
the DREQx_B field in RCCR (RISC Controller Configuration Register refer to Section 13.3.6 in the 
MPC8260 PowerQUICC II™ User’s Manual). Each IDMA channel can be programmed to have a higher 
or lower priority relative to the other peripherals when it requests service from the CP.

When each IDMA channel has the same the priority setting in RCCR[DRxM], IDMA1 has highest priority 
and IDMA4 has lowest priority. The same priority level exists when the IDMA interrupts the G2 core. 

Table 3. Initialization Example

Name Offset Description

IBASE 0x3800 IDMA BDs start at 0x04703800. 

DCM 0x0040 Dual address; memory-to-memory; 128 byte internal transfer buffer; internal request mode

IBDPTR 0x3800 IDMA BD Pointer, initialized to IBASE value.

DPR_BUF 0x0800 IDMA internal transfer buffer at 0x0470800. This is aligned to internal buffer size (128 bytes).

SS_MAX 0x0060 Steady state value of 96 bytes. SS_MAX = internal buffer size -32 or (64 * 2 DMA_WRAP)-32.

STS 0x0060 Source transfer size of 96 bytes. This is maximum transfer size for internal buffer size used. 
Refer to Table 18-7 in the MPC8260 PowerQUICC II™ User’s Manual.

DTS 0x0060 Destination transfer size of 96 bytes. This is maximum transfer size for internal buffer size used. 
Refer to Table 18-7 in the MPC8260 PowerQUICC II™ User’s Manual.
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5 IDMA Data Alignment
An efficient data-packing algorithm bursts data through the IDMA transfer buffer to minimize the bus 
cycles needed for the transfer. For the DMA to generate bursts on the 60x bus, the address boundaries of 
each burst transfer must be 32-byte aligned. If the transfer does not start on a burst boundary, the IDMA 
controller transfers the end-of-burst (EOB) data (1–31 bytes) in non-burst transactions on the source bus 
and destination bus until reaching the next boundary. When alignment is achieved, subsequent data is 
bursted until the remainder of the data in the buffer is less than a burst size (32 bytes). The remaining data 
is transferred using non-burst transactions. Unaligned data is transferred in single accesses until alignment 
is achieved. Then burst cycles are used to transfer the bulk of the data. Single accesses are again used to 
transfer any remaining data at the end of the transfer.

5.1 Example 
The following is a trace from a simulation of a dual-address IDMA transfer of 100 bytes from 
0x20001(IDMASOURCE) to 0x30000 (IDMADEST) with a 64-byte internal buffer. IDMASOURCE is 
an unaligned address. On unaligned addresses, MPC8260 will perform a 32 byte burst read from 0x20000. 
These 32 bytes are stored in the internal buffer. However, the MPC8260 ignores the data at 0x20000 (data 
is validated from 0x20001). This is followed by a single byte read from 0x20020. At this point, the internal 
buffer is full and a 32 byte burst write to 0x30000 (aligned address) is executed. This is performed two 
more times.

To transfer the remaining 4 bytes, the MPC8260 does a double-word (8 byte) read cycle. This is followed 
by a 4-byte write cycle to 0x30060 to complete the IDMA transfer. In summary, 100 bytes of data are 
transferred from 0x20001 to 0x30000 using a 64-byte internal buffer with the following cycles:

Note that this applies only for non-60x bus mode. The TAs are generated for a 32-byte burst read and the 
single byte access is shown as one long TA. Data beats change on the data bus accordingly. Figure 3 shows 
IDMA transactions 7–11. Transactions 1– 3 and 4–6 are similar to 7–9 and are not shown.

Table 4. Example IDMA Transfer

Transaction Number of Bytes Cycle Address

1 32 READ 0x20000

2 1 READ 0x20021

3 32 WRITE 0x30000

4 32 READ 0x20020

5 1 READ 0x20041

6 32 WRITE 0x30020

7 32 READ 0x20040

8 1 READ 0x20061

9 32 WRITE 0x30040

10 8 (double word) READ 0x20060

11 4 byte WRITE 0x30060
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Figure 3. Single Bus Mode IDMA Transfer (Memory-to-Memory)
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6 IDMA Signals
Each IDMA channel has three signals that are used for peripheral handshaking. The signals are 
multiplexed at the parallel I/O port pins.

7 Technical Description of Software
This example code transfers 512 bytes of data (IDMASIZE_BYTES) from a source buffer 
(IDMASOURCE) to an destination buffer (DST_ADDR_LOCAL) using an internal IDMA transfer buffer 
of 128 bytes. The code uses IDMA2 to implement memory-to-memory transfers, in this case 60x bus 
SDRAM to local-bus SDRAM. The user determines the number of buffer descriptors used with the 
NO_OF_BDs variable declared in the IDMATEST.h file. The code contains a checkbuf() function which 
ensures the transfer has been successful by making sure the destination buffer matches the source buffer. 
If the transfer has been successful the green LED (LD11) will be illuminated. If the buffers do not match, 
the red LED (LD12) is illuminated. 

Table 5. IDMA Signals

Signal Description

DREQ DMA request. Peripheral asserts DREQ when it needs services. DREQ is sampled at the rising edge of 
clock and can be configured as edge or level sensitive. DREQ may also be used to control the transfer 
pace of Memory-to-Memory transfers

DACK DMA Acknowledge. When the IDMA service is in progress, the MPC8260 asserts DACK during accesses 
to the peripheral. The peripheral must validate the transfer by asserting TA or TEA. DACK is the 
acknowledgment of the original request for DMA transactions. 

DONE Indicates last IDMA transfer. DONE can be an output if a previously set up transfer count is exhausted, or 
used as an input to the IDMA controller to indicate that a peripheral being serviced requires no more IDMA 
transactions.

Table 6. Memory/Peripheral IDMA Signals

Address Type STS DTS Explanation

Dual Peripheral-to-memory Port size 
or 32 

SS_MAX Peripheral assert DREQ.

MPC8260 asserts DACK.

Data transferred to internal buffer in STS bytes.

When internal buffer contains SS_MAX, buffer is emptied in 
SS_MAX bytes.

Dual Memory -to -peripheral SS_MAX Port Size 
or 32

Peripheral assert DREQ. MPC8260 responds with DACK

SS_MAX bytes are transferred from memory to internal buffer 
followed by a write of DTS bytes.

Further DREQs initiate further writes of DTS bytes.

If internal buffer contains < DTS bytes, next DREQ initiates read of 
SS_MAX bytes, sequence repeats.

Single Peripheral -to -memory Port size — Peripheral asserts DREQ. MPC8260 responds with DACK at the 
same time as writing to memory. 

Single Memory-to -peripheral — Port Size Peripheral asserts DREQ. MPC8260 responds with DACK at the 
same time as reading from memory. 
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The sources are as follows:

• idma_int.c—IDMA2 channel is set up in internal request mode, that is once the IDMA START 
command is issued, IDMA transactions are started immediately. The IDMA will be complete when 
all associated buffer descriptors have been closed.

• idma_ext.c—IDMA2 channel is set up in external request mode, that is the IDMA transfer is 
performed only when DREQ2 has been asserted. Each IDMA2 transaction needs a DREQ2 signal, 
the general purpose I/O pin, PC[30], is being used for this purpose. A physical connection from 
PC[30] to DREQ2 must be made on the MPC8260VADS board. This is achieved through the CPM 
expansion connector, P4. PC[30] is D2 and DREQ[2]/PC[1] is D31 on this connector.

In both cases, if the IDMA transfer is successful, the source data is transferred to the destination address. 
The source buffer contains 32 bytes of 0’s, followed by 32 bytes of 1’s, and so on up to 32 bytes of F’s.

7.1 Recommended Programming Sequence
1. Establish a pointer to MPC8260 internal memory map.

2. Establish a pointer to IDMA buffer descriptors.

3. Clear the MPC8260 dual-port RAM.

4. Clear destination memory (in this case 0x04000000).

5. Set up interrupt handler code. Copy the code to the specified PowerPC interrupt vector (0x500).

6. Program source memory with IDMASIZE_BYTES (in this case 0x00020001).

7. Initialize IDMA buffer descriptors. No_of_BDS in idmatest.h determines the number of buffer 
descriptors used. 

8. Initialize IDMA. For this example, dual address transfers, 128 bytes IDMA transfer buffer, 
memory to memory, internal or external request mode, transfers and steady state values. 

9. Set up ports for DREQ2. Initialize ports and set PC[1] as DREQ2. (idma_ext.c only).

10. Initialize interrupt controller. Set up interrupts for IDMA2 and enable external interrupts.

11. Set up ports for input to DREQ2. For this example, PC[30] is used as an input to DREQ2. 
(idma_ext.c only).

12. Issue IDMA START command by writing to CPCR register.

13. Check transfer was successful. Compare source and destination buffers.

7.2 Using This Program
This code is designed to run on an MPC8260ADS board. It does not initialize the PowerPC core. Useful 
addresses for this example include the following:

• 0x00020001—Source data buffer 

• 0x04000000—Destination data buffer

• 0x04700000—IDMA buffer descriptors

• 0x04700800— IDMA Internal transfer buffer

• 0x04703800—IDMA channel parameters
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7.3 Modifying the Software
When modifying the software for other applications, note the following:

• Always consult the latest version of the MPC8260 device errata (see Section 8, “References”). 

• If the software is changed to use IDMA 1, 3 or 4, it should be noted that the RCCR contains a 
DRxM bit for each IDMA and will need to be modified to ensure that the DREQx is level sensitive.

• Care should be taken when modifying the port settings. The programming of a DREQ pin generates 
a transition on the internal DREQ signals. This may cause an IDMA transaction, and if the IDMA 
is not initialized at that time the CPM may lock. To prevent this the example software holds the 
input to DREQ (PC30) low until after the DREQ pin has been programmed.

7.4 File Structure
The following files are included:

1. idma_int.c—Main source file for internal request mode example.

2. idma_ext.c—Main source file for external request mode example.

3. idmatest.h—Main header file.

4. startup.s—The assembly file that contains definitions for the stack frame and interrupt structures. 
Can also contain the initialization code when using other development systems.

5. masks8260.h—This header file contains standard masks used to develop MPC8260 software.

6. mpc8260.h—This header file contains the Internal Memory Map (IMM) structure declarations for 
the MPC8260.

7. netcomm.h—This header file contains global data type definitions.

8. idma_int.map & idma_ext.map—Compiler Generated address map files.

9. comp.bat—DOS batch file for compilation and linking. To compile a file, at DOS prompt type 
comp idma_int.

10. idma_int.elf & idma_ext.elf—Downloadable ELF files.

11. idma.lnx—Compiler Generated mixed source and assembler file.

12. startup.L—Compiler Generated mixed source and assembler file.

7.5 Development Environment
The following development tools were used:

• DIAB 4.3f C/C++ Compiler, Assembler and Linker

• SDS Singlestep 7.5 Debugger

• MPC8260 ADS development board (PILOT version)

• Windows 2000 platform

The DIAB toolset was used to produce an ELF file that was downloaded using the SDS Singlestep 
Debugger. This software was only tested and compiled on a Windows 2000 platform. 
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The development tools mentioned here are not an expressed or implied endorsement, and does not 
communicate preference of one manufacturer’s product over another. We simply chose to use these 
particular manufacturer’s products in this example.

7.6 Testing
All tests were conducted using SDS SingleStep software debugger environment Version 7.5 and a 
Macraigor RAVEN probe. The memory map values, buffer descriptor set-up, and source and destination 
buffers in external memory were all verified with SDS Singlestep 7.5 debugging suite.

8 References
The following relevant reference materials are available at the web site listed on the back cover of this 
document.

Table 7. References

Document Type Document Identification Number

User’s Manual MPC8260 PowerQUICC II™ User’s Manual MPC8260UM/D

MPC8260 PowerQUICC II™ User’s Manual Errata MPC8260UMAD/D

MPC603e RISC Microprocessor Users Manual MPC603EUM/AD

Programming Environments Manual for 32-Bit Implementations of the 
PowerPC Architecture

MPCFPE32B/AD

Errata MPC826x Family Device Errata Reference (HiP3) MPC8260CE/D

XPC826xA Family Device Errata Reference (HiP4) XPC8260ACE/D

Application Note MPC8260 Dual-Bus Architecture and Performance Considerations AN2335/D
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