
© Freescale Semiconductor, Inc., 2005. All rights reserved.

Freescale Semiconductor
Application Note

Document Number: AN2411
Rev. 2, 07/2005

1 Abstract
This document describes the use of the ARM Interrupt
Controller (AITC) in i.MX processors. It describes the
features of the AITC, as well as how to enable interrupts
to the ARM9TDMI� core and in the AITC. This
document also describes the prioritization of interrupts,
and some of the support software needed to initialize the
heap and setup the IRQ and FIQ stack pointers.

This document applies to the following i.MX devices,
collectively called i.MX throughout:

� MC9328MX1
� MC9328MXL
� MC9328MXS

It is assumed that the readers of this document are
familiar with the i.MX processor (especially the AITC
module), and the ARM9TDMI core, as well as have
some understanding of embedded programming, such as
programming in C, and so on. It also assumes the use of
the ARM Developer Suite� (ADS) as it refers to code
examples found in the ADS directories. In addition,

Setup and Use of the ARM Interrupt
Controller (AITC)
MC9328MX1, MC9328MXL, and MC9328MXS

By: Michael Kjar

Contents
1 Abstract . 1
2 Introduction . 2
3 Procedure for Enabling Interrupts 4
4 Scatter Loading . 7
5 Initializing the Heap Using retarget.c 8
6 Interrupt Handlers In C 8
7 Setup the GPIO as an Interrupt Source 9
8 References . 11

Introduction

Setup and Use of the ARM Interrupt Controller (AITC) Application Note, Rev. 2

2 Freescale Semiconductor

these same principles can be applied when using the Metrowerks� CodeWarrior for the ARM Limited tools
suite.

2 Introduction
This section provides an overview of interrupts and how they are handled in the i.MX processor�s
environment, particularly in the ARM9TDMI core and the AITC.

2.1 Interrupt Sources
In the system-on-a-chip architecture, interrupts usually occur from module sources (peripherals such as
UARTS and timers), from external sources (such as the external IRQs), and can also be generated by
software in the AITC via the interrupt force registers. Although this document�s primary focus is on using
the interrupt force registers to force interrupts, this template can be re-used to service interrupts from
peripherals and other sources.

2.2 Interrupts to the ARM Core
The usual sequence of events for interrupts is as follows. Interrupts are enabled at the source (such as a
peripheral), then enabled in the interrupt controller, and finally, enabled to the ARM core. When an
interrupt occurs at the source, its �signal� is routed to the interrupt controller then to the ARM core. The
AITC can be enabled or disabled to the ARM core; the interrupt can be assigned a priority level. The AITC
collects up to 64 interrupt requests and provides and interface to the ARM core. The ARM core is the final
destination for the interrupt. The interrupt will halt the normal processing routines in the ARM core to
allow the interrupt request to be serviced.

The ARM core can handle up to five exceptions, however, our focus is on interrupt handling from an IRQ
or FIQ request. Refer to the ARM Architecture Reference Manual for more information on the other
exceptions.

The IRQ, or normal interrupt request, is used for general purpose interrupt handling. It has a lower priority
than an FIQ and is masked out when an FIQ sequence is entered. The IRQ is enabled to the core by clearing
the I bit in the CPSR and can be disabled by setting this bit. When an IRQ is detected by the core, it vectors
to address 0x18 of the vector table and executes the instruction loaded in that address. Normally, the
instruction found at 0x18 of the vector table is of the form:
LDR PC, IRQ_Handler

Refer to Table 1 for a description of the ARM core vector table.

When an IRQ interrupt is detected, the ARM core saves the address of the next instruction to R14_irq,
enables SPSR_irq as the CPSR, enters the IRQ mode by setting the mode bits in the CSPR to 10010,
disables normal interrupts by setting the I bit in the CPSR, and loads 0x18 into the PC. At address 0x18,
an instruction loads the address of the interrupt handler into the PC. When writing interrupts handlers in
C, it is imperative to include the �__irq� function declaration keyword. See Section 6 on Interrupt Handlers
in C for more information on the �__irq� keyword. Refer to Chapter 5, Handling Processor Exceptions in
the ADS Developer Guide for a full explanation of the interrupt handling process.

Introduction

Setup and Use of the ARM Interrupt Controller (AITC) Application Note, Rev. 2

Freescale Semiconductor 3

The FIQ is used to support high-speed data transfer or channel process and has a higher priority than IRQ.
The FIQ is enabled to the core by clearing the F bit in the CPSR and can be disabled by setting this bit.
When an FIQ is detected by the core, it vectors to address 0x1C of the vector table and executes the
instruction loaded in that address. Normally, the instruction found at 0x1C of the vector table is of the
form:
LDR PC, FIQ_Handler

When an FIQ interrupt is detected, the ARM core saves the address of the next instruction to R14_irq,
enables SPSR_fiq as the CPSR, enters the FIQ mode by setting the mode bits in the CSPR to 10001,
disables Normal and fast interrupts by setting the F and I bits in the CPSR, and loads 0x1C into the PC. At
address 0x1C, an instruction loads the address of the interrupt handler into the PC.

2.3 Overview of the AITC
The interrupt controller of the i.MX processor is called the AITC. The interrupt requests are collected and
controlled in the AITC before going to the core. The following is a brief overview of the AITC
programming model. Refer to the specific i.MX processor reference manual for a more detailed
description of the AITC.

The AITC contains twenty-six 32-bit registers. The following is a description of each register:
� INTCNTL�Configures specific control functions of the AITC.
� NIMASK�Controls the Normal interrupt mask level. All Normal interrupt priority levels at or

below what is programmed in the NIMASK register will be masked. Normal interrupt priorities are
programmed via the NIPRIORITY[7:0] registers.

� INTENNUM�Provides hardware accelerated enabling of interrupts. This is done by
programming this register with the interrupt source that is desired to be enabled. Doing so will
immediately enable (set) this interrupt source bit in the INTENABLEH/L register.

� INTDISNUM�Provides hardware accelerated disabling of interrupts. This is done by
programming this register with the interrupt source that is desired to be disabled. Doing so will
immediately disable (clear) this interrupt source bit in the INTENABLEH/L register.

� INTENABLEH�Used to enable pending interrupt source bits [63�32] to the core.
� INTENABEL�Used to enable pending interrupt source bits [31�0] to the core.

Table 1. Vector Table

Exception Type Mode Address

Reset Supervisor 0x00000000

Undefined Instructions Undefined 0x00000004

Software Interrupts (SWI) Supervisor 0x00000008

Prefetch Abort Abort 0x0000000C

Data Abort Abort 0x00000010

IRQ (Normal Interrupt) IRQ 0x00000018

FIQ (Fast interrupt) FIQ 0x0000001C

Procedure for Enabling Interrupts

Setup and Use of the ARM Interrupt Controller (AITC) Application Note, Rev. 2

4 Freescale Semiconductor

� INTTYPEH�Used to select whether an enabled and pending interrupt source bit [63�32] will
create a Normal interrupt or Fast interrupt to the core.

� INTTYPEL�Used to select whether an enabled and pending interrupt source bit [31�0] will create
a Normal interrupt or Fast interrupt to the core.

� NIPRIORITY[7:0]�Provides software prioritization of Normal interrupts. Normal interrupts with
a higher priority level preempts Normal interrupts with a lower priority level. If two Normal
interrupts are programmed with the same priority, the one with the highest source number will be
selected.

� NIVECSR�Provides the priority of the highest pending Normal interrupt and provides the source
number of the highest pending Normal interrupt.

� FIVECSR�Provides the source number of the highest pending Fast interrupt.
� INTSRCH�Reflects the status of interrupt request inputs (sources 63�32) into the interrupt

controller.
� INTSCRL�Reflects the status of interrupt request inputs (sources 31�0) into the interrupt

controller.
� INTFRCH�Allows for software generation of interrupts for interrupt sources 63�32.
� INTFRCL�Allows for software generation of interrupts for interrupt sources 31�0.
� NIPNDH�Reflects the source number(s) of pending Normal interrupt requests, for interrupt

sources 63�32.
� NIPNDL�Reflects the source number(s) of pending Normal interrupt requests, for interrupt

sources 31�0.
� FIPNDH�Reflects the source number(s) of pending Fast interrupt requests, for interrupt sources

63�32.
� FIPNDL�Reflects the source number(s) of pending Fast interrupt requests, for interrupt sources

31�0.

3 Procedure for Enabling Interrupts
This section outlines the procedure for enabling and setting up the i.MX processor to use interrupts.

3.1 Enabling Interrupts to the Core
This subsection describes how to enable interrupts to the ARM core. To enable IRQ interrupts, clear the
I bit of the CPSR; to enable FIQ interrupts, clear the F bit of the CPSR. Likewise, to disabled these
interrupts, set the respective bits. Example 1 shows how to do this in C.

Procedure for Enabling Interrupts

Setup and Use of the ARM Interrupt Controller (AITC) Application Note, Rev. 2

Freescale Semiconductor 5

Example 1. Inline Assembler Enable and Disable IRQ Functions

__inline void enable_IRQ(void)
{
 int tmp;
 __asm
 {
 MRS tmp, CPSR
 BIC tmp, tmp, #0x80
 MSR CPSR_c, tmp
 }
}

__inline void disable_IRQ(void)
{
 int tmp;
 __asm
 {
 MRS tmp, CPSR
 ORR tmp, tmp, #0x80
 MSR CPSR_c, tmp
 }
}

__inline void enable_FIQ(void)
{
 int tmp;
 __asm
 {
 MRS tmp, CPSR
 BIC tmp, tmp, #0x40
 MSR CPSR_c, tmp
 }
}

__inline void disable_FIQ(void)
{
 int tmp;
 __asm
 {
 MRS tmp, CPSR
 ORR tmp, tmp, #0x40
 MSR CPSR_c, tmp
 }
}

With the inline functions shown in Example 3, the programmer can enable interrupts with the following
function calls:

enable_IRQ();
enable_FIQ();

Alternatively, to disable the interrupts:
disable_IRQ();
disable_FIQ();

3.2 Setting Up and Enabling Interrupts in the AITC
This section describes setting up interrupts in the AITC. For full details about the AITC, refer to the AITC
chapter in the specific i.MX processor reference manual.

Procedure for Enabling Interrupts

Setup and Use of the ARM Interrupt Controller (AITC) Application Note, Rev. 2

6 Freescale Semiconductor

The AITC allows you select whether a pending interrupt source will create a normal interrupt (IRQ) or a
fast interrupt (FIQ) to the core. This is accomplished via the INTTYPEH and INTTYPEL registers. Each
bit in these registers corresponds to an interrupt source available in the system. Setting a bit will select its
corresponding interrupt source as a Fast interrupt, where clearing these bit will select its corresponding bit
as a Normal interrupt. In the INTTYPEL register, bit 0 corresponds to interrupt source 0, bit 1 corresponds
to interrupt source 1, and so on up to bit 31, which corresponds to interrupt source 31. In the INTTYPEH
register, bit 0 corresponds to interrupt source 32, bit 1 corresponds to interrupt source 33, and so on up to
bit 31, which corresponds to interrupt source 63.

After choosing which type of interrupt a pending interrupt source is, the next step is to enable the interrupt.
This can be done via the INTENABLEH and INTENABLEL registers. To enable a pending interrupt to
the core, its corresponding interrupt source bit in the INTENABLEH or INTENABLEL must be set.
Likewise, to disable the interrupt, clear this bit. In the INTENABLEL register, bit 0 corresponds to
interrupt source 0, bit 1 corresponds to interrupt source 1, and so on up to bit 31, which corresponds to
interrupt source 31. In the INTENABLEH register, bit 0 corresponds to interrupt source 32, bit 1
corresponds to interrupt source 33, and so on up to bit 31, which corresponds to interrupt source 63.

For example, to select interrupt source bit 10 as a Normal interrupt, clear bit 10 in the INTTYPEL register.
Then, to enable this interrupt, set bit 10 in the INTENABLEL register. Likewise, to select interrupt source
bit 50 as a Fast interrupt, set bit 18 in the INTTYPEH register. Then, to enable this interrupt, set bit 18 in
the INTENABLEH.

The AITC also allows the programmer to prioritize the pending normal interrupt sources to one of sixteen
different priority levels. This can be in the NIPRIORITY[7:0] registers. A pending normal interrupt source
with a priority level of fifteen is the highest pending normal interrupt source. However, if two pending
normal interrupt sources have a priority level of fifteen, the highest pending interrupt source number has
priority. In any event, a pending fast interrupt source has priority over all pending normal interrupt sources.
The next section lists the priority levels of all pending interrupts.

3.3 Interrupt Prioritization
The following is a list of pending interrupt sources in order of prioritization, from highest to lowest.

� Fast interrupt source 63, 62, 61, � 0
� Normal interrupt source with priority level 15, 14, 13, � 0
� Normal interrupt sources with same priority level, where a higher source number has priority over

a lower source number

3.4 Setting Up the IRQ and FIQ Stack
When the ARM core detects an interrupt, it enters into a different processing mode. In the case of an IRQ
interrupt, the core enters the IRQ mode and in the case of an FIQ, the core enters FIQ mode. Because these
are different modes of operation for the ARM core, the stack must be initialized for each mode in order to
assure proper execution in those modes. This can be achieved using an assembly file known as the init.s
file. Examples of the init.s file can be found in the ADS tools suite from ARM Ltd., and similarly the
Metrowerks� CodeWarrior for ARM Ltd. tools suite. For a complete description of setting up stack
pointers, refer to the ARM Developer Guide, initializing stack pointers in Chapter 6.

Scatter Loading

Setup and Use of the ARM Interrupt Controller (AITC) Application Note, Rev. 2

Freescale Semiconductor 7

Example 2 is an example from the init.s file of setting up stack pointers for the different operating modes
of the ARM processor, including the IRQ and FIQ stack pointers (note, the stack pointer of the Supervisor
mode must always be initialized).

Example 2. Equating Stack Variable Locations

RAM_Limit EQU 0x10020000; change this to accommodate another memory base
SVC_Stack EQU RAM_Limit; 6144 byte SVC stack at top of memory
IRQ_Stack EQU RAM_Limit-6144; followed by IRQ stack
FIQ_Stack EQU IRQ_Stack-128; followed by FIQ stack
USR_Stack EQU FIQ_Stack-128; followed by USR stack

4 Scatter Loading
This section describes the concept of scatter loading and why it is used.

4.1 Using Scatter Files to Place the Vector Table in Memory
Scatter loading requires the use of a scatter file. A scatter file has the extension *.scf. The scatter file is
used to tell the linker where to load files or objects in memory. For detailed reference information on the
linker and scatter-loading, refer to the ARM Developer Suite Linker and Utilities Guide.

It is necessary to place the vector table in a known area of memory, normally at address 0x0. The
Example 3 provides the details of the vector table in assembly, which can be found in the file vectors.s.

Example 3. Vector Table in Assembly

LDR PC, Reset_Addr
LDR PC, Undefined_Addr
LDR PC, SWI_Addr
LDR PC, Prefetch_Addr
LDR PC, Abort_Addr
NOP ; Reserved vector
LDR PC, IRQ_Addr
LDR PC, FIQ_Addr

Example 4 is an example of what is contained in a scat.scf file:

Example 4. Example Scat.scf File

ROM_LOAD 0x0
{
ROM_EXEC 0x0

{
 vectors.o (Vect, +First)
 * (+RO)
 }
 RAM 0x00040000
 {

* (+RW,+ZI)
 }
}

Initializing the Heap Using retarget.c

Setup and Use of the ARM Interrupt Controller (AITC) Application Note, Rev. 2

8 Freescale Semiconductor

In Example 4, the vectors.o object is placed �First� at address 0x0. �First� is a pseudo-attribute in the
scatter-load description file to mark the first input section in an execution region. The vector table region
is then followed by the Read Only (RO) region.

To allow the ARM linker to use the scatter file (scat.scf), you must include this in the linker section of the
settings dialogue box in your project. Under settings, go to ARM linker under the Linker settings. In the
dialogue box, under Linktype, choose scattered. Then, in the Scatter description file box, choose the
desired scat.scf file.

4.2 Finding Examples of Scatter Files
Scatter file examples, as well as many other examples of how to set up interrupts, can be found in your
ADS_install_directory/Examples/rom_integrator.

5 Initializing the Heap Using retarget.c
One caveat uncovered in dealing with the AITC was the propensity for the heap to overwrite the vector
table. This is especially true when using printf statements (from the standard io library). However, the
lesson learned here is the importance of initializing the heap. Therefore, when initialing the heap, it is best
to place it in an area where it will not corrupt the vector table or any other part of your code.

In the ADS_install_directory/Examples/rom_integrator directory, there are examples of retarget.c files. In
the retarget.c file, there�s a function called: __user_initial_stackheap. This function is called from the C
run-time library file __main. This function is used to initialize the heap, and can also be used to initialize
the stack. Example 5 is as example of the __user_initial_stackheap function.

Example 5. __user_initial_stackheap Function

__value_in_regs struct __initial_stackheap __user_initial_stackheap(unsigned R0, unsigned
SP, unsigned R2, unsigned SL)
{
 struct __initial_stackheap config;
 config.heap_base = 0x10010000; // change this accommodate another base
 config.stack_base = SP;
return config;
}

To use this function in the retarget.c file, make sure to include this file in your build project. To find out
more information on initializing the heap and stack, as well as to find more detailed information on the
retarget.c file, refer to the ARM ADS Compiler and Libraries Guide.

6 Interrupt Handlers In C
As previously stated, when writing interrupt handlers in C, it is imperative to include the �__irq� keyword
in the function name. Example 6 shows an example of a compiled interrupt handler using the �__irq�
keyword. In the example code, the section labeled �interrupt handler code here�, is where the branch to
the interrupt service routine takes place.

Setup the GPIO as an Interrupt Source

Setup and Use of the ARM Interrupt Controller (AITC) Application Note, Rev. 2

Freescale Semiconductor 9

Example 6. Using the __irq keyword

STMFDsp!,{r0-r4,r12,lr}
 ;interrupt handler code here

ADD sp,sp,#4
 LDMFDsp!,{r0-r4,r12,lr}
 SUBS pc,lr,#4

Example 7 shows a compiled interrupt handler without using the __irq keyword.

Example 7. Not Using the __irq keyword

STMFD sp!,{r4,lr}
;interrupt handler code here
LDMFD sp!,{r4,pc}

Example 8 illustrates the interrupt handler used in the AITC test code for the i.MX processor. Refer to this
test code as it provides examples of the topics discussed thus far.

Example 8. __irq Handler Functions

void __irq IRQ_Handler(void)
{

short vectNum;
vectNum = NIVECSR >> 16;// determine highest pending normal interrupt
vect_IRQ[vectNum](); // find the pointer to correct ISR in the look up table

void __irq FIQ_Handler(void)
{

short vectNum;
vectNum = FIVECSR & 0x0000003F;// determine highest pending fast interrupt
vect_FIQ[vectNum]();// find the pointer to correct ISR in the look up table

}

7 Setup the GPIO as an Interrupt Source
Frequently, users need an interrupt mechanism to employ an external interrupt source. The i.MX processor
allows the user to configure one or more GPIO lines as interrupt sources.

There are four GPIO ports on an i.MX processor. These are Port A, Port B, Port C, and Port D. Each GPIO
signal on each port is multiplexed with another signal on the i.MX processor. Refer to Chapter 2 Signals
Descriptions and Pin Assignments in the i.MX reference manual for list of GPIO signals and their
multiplexed functions. Refer to the GPIO chapter for more details on the GPIO module and the available
port signals.

Each GPIO port may contain up to 32 GPIO signals. These signals for each port are ORed together to form
one interrupt signal per port to the i.MX processor�s interrupt controller (AITC). Referring to the Interrupt
Controller chapter in the reference manual there is a table depicting each interrupt source assignment. For
the GPIO in particular, the following are listed:

� Port A which is called GPIO_INT_PORTA is assigned interrupt source number 11
� Port B which is called GPIO_INT_PORTB is assigned interrupt source number 12
� Port C which is called GPIO_INT_PORTC is assigned interrupt source number 13
� Port D which is called GPIO_INT_PORTD is assigned interrupt source number 62

Setup the GPIO as an Interrupt Source

Setup and Use of the ARM Interrupt Controller (AITC) Application Note, Rev. 2

10 Freescale Semiconductor

To re-iterate the procedure for enabling interrupts, these steps are to:
1. Set up and enable the interrupt source (in this case the GPIO module)
2. Set up and enable the interrupts in the AITC
3. Enabled the interrupts to the ARM core (IRQ or FIQ)

7.1 Enabling Interrupts in the GPIO Module
The previous sections discuss how to enable interrupts in the AITC and to the ARM core. This section
focuses on enabling interrupts in the GPIO module.

To enable the interrupts in the GPIO module, the user must first determine which GPIO Port signal to use
that will not interfere with their other functionality. Then the following procedure must be followed to
enable the GPIO for interrupt operation:

1. For each pin [i] that is to be used as a GPIO, set bit [i] in the Port A, B, C, or D GPIO in use register
(GIUS_A, GIUS_B, GIUS_C, or GIUS_D).

2. For each pin [i], configure that bit [i] as an input by clearing the desired bit [i] in the data direction
register (DDR_A, DDR_B, DDR_C, or DDR_D).

3. Configure the pin [i] for the desired external interrupt condition in the corresponding port interrupt
configuration register. There are two configuration bits per pin [i] in the interrupt configuration
register allowing the choice of positive or negative edge sensitive, or positive or negative level
sensitive. Refer to the reference manual for more details.

4. Configure the interrupt mask register (IMR_A, IMR_B, IMR_C, or IMR_D) to unmask the desired
pin [i] interrupt by setting the corresponding bit [i]. When an interrupt occurs and the
corresponding bit is set (active), the corresponding bit in the interrupt status register (ISR_A,
ISR_B, ISR_C, or ISR_D) will be set.

5. Option: It may be desirable to disable the pull up in the pull up enable register (PUEN_A,
PUEN_B, PUEN_C, or PUEN_D) depending on the interrupt and system conditions used to
generate the interrupt.

6. After the interrupt has been triggered, clear the corresponding bit in the interrupt status register in
the interrupt service routine.

7.2 Example
Take for example the use of GPIO Port A signals PA0, PA22, and PA23 as interrupt sources. Referring to
Chapter 2, Signals Descriptions and Pin Assignments in the specific i.MX processor�s reference manual,
we see that PA0 is multiplexed with A24, PA22 is multiplexed with CS4, and PA23 is multiplexed with
CS5. So if this were an actual application, it is assumed that these functions are not needed for the
application. Next, assume for this example, PA0 and PA23 are positive level sensitive interrupts while
PA22 is a negative edge sensitive interrupt.

Following the conditions stated previously, to enable interrupts in the GPIO module:
1. Configure port A pins PA0, PA22, and PA23 as GPIO, by setting each of the corresponding bits in

the GIUS_A register. Therefore:
GIUS_A = 0x00C00001

References

Setup and Use of the ARM Interrupt Controller (AITC) Application Note, Rev. 2

Freescale Semiconductor 11

2. Configure port A pins PA0, PA22, and PA23 as inputs, by clearing the corresponding bits in the
DDR_A register. Using an AND operation, this would be:
DDR_A &= 0xFF3FFFFE

3. Configure port A pins PA0, PA22, and PA23 for the desired external interrupt condition. In this
case, PA0 and PA23 are positive level, so their corresponding bit settings in the interrupt
configuration register would be 10, while PA22 is negative edge sensitive, so its corresponding bit
setting would be 01. So, the register settings for the Interrupt configuration registers yield:
ICR1_A = 0x00000002, for PA0 positive level
ICR2_A = 0x00009000, for PA22 negative edge and PA23 positive level

4. Unmask or enable Port A pins PA0, PA22, and PA23 as interrupts by setting their corresponding
bits in the IMR_A register:
IMR_A = 0x00C00001

5. In this example, disable the pull ups for the PA0, PA22, and PA23 pins. Thus, using an AND
operation yields:
PUEN_A &= 0xFF3FFFFE, bits 22, 23, and 0 are cleared

The next step is to enable the interrupts in the AITC module. In the example given here, we assign these
interrupts or normal interrupts or IRQs in the interrupt type registers and not assign any particular priority
to these interrupts in the normal interrupt priority registers. However, it must be noted that normal
interrupts with a higher source number have a higher priority than normal interrupts with a lower source
number, given their priority levels are assigned the same value in the normal interrupt priority register. The
interrupts also must be enabled in the AITC via the interrupt enable registers. Thus the settings for the
AITC module will be as follows:

INTTYPEL &= 0xFF3FFFFE, use an AND operation to clear bits 23, 22, and 0
INTENABLEL = 0x00C00001, set bits 23, 22, and 0 to enable

The final step is to enable the interrupts to the core. In this case, we would only need to enable normal or
IRQ interrupts, by using the sequence described in section 3.1.

8 References
The following i.MX technical reference manuals may be found at the Freescale Semiconductor Inc. World
Wide Web site at http://www.freescale.com/imx. These documents may be downloaded directly from the
World Wide Web site, or printed versions may be ordered.
MC9328MXS Reference Manual (order number MC9328MXSRM)
MC9328MX1 Reference Manual (order number MC9328MX1RM)
MC9328MXL Reference Manual (order number MC9328MXLRM)

The following ARM Limited documentation such as the ARM920T technical reference manual and the
ARM architecture reference manual, may be accessed at: www.arm.com.
ADS Compiler and Libraries Guide, ARM Limited (ARM DUI0067)
ADS Developer Guide, ARM Limited (ARM DUI0056)

Document Number: AN2411
Rev. 2
07/2005

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating parameters,
including “Typicals”, must be validated for each customer application by customer’s technical experts.
Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as components
in systems intended for surgical implant into the body, or other applications intended to support or
sustain life, or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was
negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. ARM and the
ARM Powered Logo are registered trademarks of ARM Limited. ARM9TDMI and ARM Developer
Suite are trademarks of ARM Limited. All other product or service names are the property of their
respective owners.

© Freescale Semiconductor, Inc. 2005. All rights reserved.

	1 Abstract
	2 Introduction
	2.1 Interrupt Sources
	2.2 Interrupts to the ARM Core
	2.3 Overview of the AITC

	3 Procedure for Enabling Interrupts
	3.1 Enabling Interrupts to the Core
	3.2 Setting Up and Enabling Interrupts in the AITC
	3.3 Interrupt Prioritization
	3.4 Setting Up the IRQ and FIQ Stack

	4 Scatter Loading
	4.1 Using Scatter Files to Place the Vector Table in Memory
	4.2 Finding Examples of Scatter Files

	5 Initializing the Heap Using retarget.c
	6 Interrupt Handlers In C
	7 Setup the GPIO as an Interrupt Source
	7.1 Enabling Interrupts in the GPIO Module
	7.2 Example

	8 References

