

© Motorol

AN2400/D
Rev. 3, 07/2003

HCS12 NVM Guidelines

by Stuart Robb
Applications Engineering
Freescale, East Kilbride

Introduction

The HCS12 is the next generation of the industry standard 68HC12 16-bit
microcontrollers. The HCS12 is built around a high performance CPU with bus
frequencies of up to 25MHz, and is complemented by on-chip peripherals such
as timers, analogue-to-digital converters and advanced serial communications
modules such as CAN, SPI, SCI and IIC.

HCS12 microcontrollers incorporate advanced, third generation, non-volatile
Flash EEPROM memory that is used to store the application program code and
constant data. The Flash memory can be erased and reprogrammed many
times over and is ideally suited to the development phase of a product. Flash
memory is also suitable for the production phase as product inventories can be
reduced by having a common microcontroller for similar products. Any software
changes, upgrades or fixes can be implemented immediately during
production, without the delay and costs associated with a new ROM mask.
Furthermore, products in the field can be reprogrammed as required without
having to replace the microcontroller. Over the product lifespan, Flash offers
significant potential cost savings when compared to ROM.

Various sizes of Flash memory are available, from 32k bytes to 512k bytes, to
suit the requirements of different applications.

Most HCS12 microcontrollers also incorporate EEPROM that may be used to
store data variables. The EEPROM on HCS12 microcontrollers is constructed
using the same basic technology as the Flash memory.

This paper is intended to give the reader an understanding of how the non-
volatile memory (NVM) on the HCS12 works and guidelines on how best to
make use of it. Code snippets for all NVM user commands are included, in both
‘C’ and assembly language.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

© Freescale Semiconductor, Inc., 2004. All rights reserved.

AN2400/D

HCS12 NVM Guidelines

The reader should refer to the relevant Flash (or EEPROM) Block User Guide
for complete details of all Flash/EEPROM registers. The reader should also
refer to the relevant microcontroller User Guide for current Flash/EEPROM
electrical specifications, particularly data retention, write-erase cycles and
erase/programming timings.

The author gratefully acknowledges the contributions provided by many
colleagues, in particular Derek Beattie, Ally Gorman and Andy Birnie.

Split-Gate Flash Memory

HCS12 microcontrollers incorporate advanced, 0.25µm non-volatile memory
technology called Split-Gate Flash (SGF). The same basic technology is used
for both Flash and EEPROM on HCS12 microcontrollers.

Split-Gate Flash
Memory Structure

The Flash memory is organised in a basic grid of rows and columns. At the
intersection of each row and column is a split-gate transistor, which has both a
control gate and a floating gate, as depicted in Figure 1. Split-Gate Flash
Transistor. The floating gate is electrically insulated from both the control gate
and the drain-source channel. However, capacitive coupling causes the
floating gate both to influence and be influenced by the potential at the source.

Figure 1. Split-Gate Flash Transistor

Each split-gate transistor corresponds to one bit of Flash memory, called a
bitcell. Sixteen bitcells are grouped together to form each word. Figure 2
illustrates one quarter of a word. Control logic decodes each CPU address to
select the appropriate Flash cells to be read or written, and applies the required
voltages on the drain, source and control gate to read, program or erase each
cell.

D

S

Control
Gate

Floating
Gate

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D
Split-Gate Flash Memory

HCS12 NVM Guidelines

Figure 2. One quarter of a Split-Gate Flash Word

To program a word, a high positive voltage (>>VDD) is applied to the cell
sources. The control gates have ~VDD applied through the wordline. Cells that
are to be programmed to ‘0’ have a low voltage (~0V) applied to the drain
through the bitlines, as depicted in Figure 3. A high electric field is created at
the gap between the floating gate and the control gate which causes some
electrons in the source-drain channel to be injected into the floating gate,
leaving the floating gate with a slightly negative charge. Cells that are to remain
in the erased state have a voltage (~VDD) applied to the drain through the
bitline. This changes the electric field and no electrons are injected into the
floating gate. When the high voltage is switched off, the floating gate retains its
charge indefinitely. Programming is a quick process, taking only a few
microseconds per word.

Figure 3. Programming a ‘0101’ pattern into Split-Gate Flash

To read a word, the cells sources are connected to VSS (0V) and ~VDD is
applied to the control gates through the wordline, as shown in Figure 4. Current
flows through the drain to the source only if the control gate is positively
charged (erased state), so the bitline current is sensed to determine whether
the cell should read as a ‘1’ (erased) or ‘0’ (programmed).

Bitlines

Wordline

Source

0V

VDD

>>VDD

0V VDD VDD

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D

HCS12 NVM Guidelines

Figure 4. Reading a ‘0101’ pattern in Split-Gate Flash

To erase the Flash, the sources and bitlines are connected to VSS (0V) and a
high positive voltage (>>VDD) is applied to the control gate through the
wordline, as illustrated in Figure 5. A high electric field is created between the
floating gate and the control gate. This causes Fowler-Nordheim tunnelling of
electrons from the floating gate to the control gate, leaving the floating gate with
a net positive charge. This is a slow process, requiring up to 20ms to erase a
sector.

Figure 5. Erasing a nibble of Split-Gate Flash

NVM Programming
and Erasure

Programming and erasure of Flash and EEPROM memory is controlled by a
command state machine. The command state machine supervises the writing
sequence of all commands and verifies the validity of the command sequence.
The state machine is also responsible for applying the appropriate voltages to
the Flash block for the required length of time. The state machine requires a
timebase between 150kHz and 200kHz that is derived from the microcontroller
oscillator clock by means of a programmable prescaler. Valid commands are
listed in Table 2. Valid Flash/EEPROM Commands. Error flags in the Flash
or EEPROM Status register indicate any errors. No commands can be
executed unless all error flags are cleared (in all blocks).

All the voltages required for programming and erasure are generated by on-
chip charge-pumps. Each separate NVM block has an independent command

VDD

VSS

VSS

>>VDD

VSS

VSS VSS VSS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D
Split-Gate Flash Memory

HCS12 NVM Guidelines

state machine and charge-pump, thus allowing multiple Flash blocks and
EEPROM to be programmed or erased simultaneously.

The Flash and EEPROM are programmed in units of aligned words, i.e. two
bytes at a time. The data word is written to an even address, i.e. bit 0 of the
address is clear. This will result in the bytes at the even address and the even
address plus one being programmed.

The Flash memory is erased either in 512 byte sectors (1024 byte sectors for
the 128k byte block), or as a mass erase of an entire block. A sector is a distinct
division of Flash: 512 byte sectors start at addresses $x000, $x200, $x400,
$x600, $x800, $xA00, $xC00 and $xE00. 1024 bytes sectors start at addresses
$x000, $x400, $x800 and $xC00.

The EEPROM memory is erased either in 4 byte sectors, or as a mass erase
of the entire block. A sector is a distinct division of EEPROM: EEPROM sectors
start at addresses $xxx0, $xxx4, $xxx8 and $xxxC.

The command register, address register and data registers are buffered to
allow pipelined programming. Pipelined programming allows the next address,
data and command to be loaded while the current command is still executing,
thus reducing the overall programming time.

Flash (but not EEPROM) also has a mode called Burst programming. Burst
programming is invoked by pipelining program commands for words on the
same Flash row. A row is 64 bytes on 32k and 64k byte Flash blocks and 128
bytes on the 128k Flash block. Burst programming reduces the programming
time by keeping the high voltage generation switched on between program
commands on the same row. Burst programming is approximately twice as fast
as single word programming.

Flash and EEPROM are programmed and erased in very similar ways, and so
the following description applies equally to both. The two main registers used
during programming and erase operations are the Flash or EEPROM Status
register and the Flash or EEPROM Command register. The Flash or EEPROM
Clock Divider Register must be correctly initialised before programming or
erasure can begin.

Flash Clock Divider
Register

Figure 6. Flash Clock Divider Register (FCLKDIV)

The Flash Clock Divider register is shared between all Flash Blocks.

The EEPROM Clock Divider Register has identical bit definitions (bit names
start with E instead of F).

7 6 5 4 3 2 1 0

FDIVLD PRDIV8 FDIV5 FDIV4 FDIV3 FDIV2 FDIV1 FDIV0

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D

HCS12 NVM Guidelines

The command state machine requires a timebase that is derived from the
microcontroller oscillator clock via a programmable prescaler. The oscillator is
used as a clock source so that programming and erasure is independent of
changes in the MCU bus frequency, in low power modes for example. The
prescaler value is configured by the FCLKDIV register for Flash and the
ECLKDIV register for EEPROM. These registers must be written with an
appropriate value before programming or erasure can commence. The value
written to the register is chosen so that the timebase is between 150kHz and
200kHz. A flowchart for determining the correct value is shown in Figure 7.
PRDIV8 and FDIV bits Determination Procedure. An incorrect value can
result in incomplete programming or erasure, or damage to the Flash or
EEPROM due to overstress. Furthermore, the microcontroller bus clock must
be 1MHz or greater during programming or erasure.

FDIVLD – Clock Divider Loaded
1 = Register has been written since reset.
0 = Register has not been written, program/erase is not possible.

PRDIV8 – Prescaler Divide by 8

FDIV[5:0] – Clock Divider Bits

Table 1. Clock Divider Values

PRDIV8 FDIV5 FDIV4 FDIV3 FDIV2 FDIV1 FDIV0 Prescaler

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 2

0 0 0 0 0 1 0 3

0 … … … … … … …

0 1 1 1 1 1 1 64

1 0 0 0 0 0 0 8

1 0 0 0 0 0 1 16

1 0 0 0 0 1 0 24

1 … … … … … … …

1 1 1 1 1 1 1 512

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D
Split-Gate Flash Memory

HCS12 NVM Guidelines

Figure 7. PRDIV8 and FDIV bits Determination Procedure

PRDIV8=1

yes

no

PRDIV8=0 (reset)

12.8MHz?

FCLK=(PRDCLK)/(1+FDIV[5:0])

PRDCLK=oscillator clockPRDCLK=oscillator clock/8

PRDCLK[MHz]*(5+Tbus[µs])
no

FDIV[5:0]=PRDCLK[MHz]*(5+Tbus[µs])-1

yes

START

Tbus ≤ 1µs?

an integer?

FDIV[5:0]=INT(PRDCLK[MHz]*(5+Tbus[µs]))

1/FCLK[MHz] + Tbus[µs] ≥ 5
AND

FCLK ≥ 0.15MHz
?

END
yes

no

FDIV[5:0] ≥ 4?

PROGRAM/ERASE IMPOSSIBLE

yes

no

PROGRAM/ERASE IMPOSSIBLE

no

TRY TO DECREASE Tbus

yes

oscillator clock

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D

HCS12 NVM Guidelines

Flash Status Register

Figure 8. Flash Status Register (FSTAT)

NOTE: CBEIF, PVIOL and ACCER are cleared by writing a ‘1’ to the respective bit.
CCIF, BLANK and bits 3, 1 and 0 are read only (write has no effect).

The Flash Status register is banked on microcontrollers that have multiple
Flash blocks. That is, each Flash block has an independent Flash Status
register but each Flash Status register is accessed at the same address. The
active Block is selected by means of the BKSEL bits in the FCNFG register.

BSET and BCLR instructions should not be used on this register. BSET and
BCLR are ‘read-modify-write’ instructions. This means that the register is read,
the read value is modified by setting or clearing the specified bits, and then the
resulting value is written back to the register. This may result in bits being
cleared unintentionally by the ‘write 1 to clear’ nature of the CBEIF, PVIOL and
ACCERR bits.

The EEPROM Status register has identical bit definitions.

CBEIF — Command Buffer Empty Interrupt Flag

The CBEIF flag indicates whether the address, data and command buffers
are empty so that a new command sequence can be started. A command is
launched by writing a ‘1’ to CBEIF (to clear the bit). CBEIE in the
FCNFG/ECNFG register must be set to enable an interrupt request.

1 = Buffers are ready to accept a new command.
0 = Buffers are full.

CCIF — Command Complete Interrupt Flag

The CCIF flag is cleared by hardware when CBEIF is cleared and is
automatically set when all commands have been completed. This flag is
read only. The Flash or EEPROM cannot be read when CCIF is clear. CCIE
in the FCNFG/ECNFG register must be set to enable an interrupt request.

1 = All commands completed.
0 = Command in progress.

PVIOL — Protection Violation

The PVIOL flag indicates that an attempt was made to program or erase a
protected area of Flash or EEPROM. The PVIOL flag must be cleared by
writing a ‘1’ to PVIOL before starting a new command sequence.

1 = Protection violation has occurred.
0 = No protection violation.

7 6 5 4 3 2 1 0

CBEIF CCIF PVIOL ACCERR 0 BLANK 0 0

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D
Split-Gate Flash Memory

HCS12 NVM Guidelines

ACCERR — Access Error

The ACCERR flag indicates that an illegal access to the Flash or EEPROM
has occurred. The ACCERR flag must be cleared by writing a ‘1’ to
ACCERR before starting a new command sequence.

1 = Access error has occurred.
0 = No access error.

BLANK — Erased Verification

The BLANK flag indicates the result of an Erase Verify command. The
BLANK flag is cleared by hardware when the CBEIF flag is cleared. This flag
is read only.

1 = Flash/EEPROM verified as erased by Erase Verify command.
0 = If an Erase Verify command has been executed, the Flash or

EEPROM is not erased.

Flash Command
Register

Valid commands which may be written to the Flash or EEPROM Command
registers in Normal modes are shown in Table 2. Valid Flash/EEPROM
Commands. Any other value will cause the ACCERR bit in ESTAT to be set.

The Flash Command register is banked on microcontrollers that have multiple
Flash blocks. That is, each Flash block has an independent Flash Command
register but each Flash Command register is accessed at the same address.
The active Block is selected by means of the BKSEL bits in the FCNFG
register.

Table 2. Valid Flash/EEPROM Commands

Command Name Description

$05 Erase Verify
BLANK bit in ESTAT will be set on command

completion if the entire EEPROM block is erased.

$20 Program Program a word (2 bytes)

$40 Sector Erase1

1. An erase sector is 4 bytes for EEPROM, 1024 bytes for a 128k byte Flash block and 512
bytes for all other Flash blocks.

Erase a sector.

$41 Mass Erase Erase an entire block.

$60 Sector Modify2

2. The Sector Modify command is applicable to EEPROM only.

Erase a sector (4 bytes), program a word (2 bytes)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D

HCS12 NVM Guidelines

Flash/EEPROM
Command Sequence

NOTE: A Flash or EEPROM word must be erased before it is programmed.

The general command sequence begins with an initialisation sequence
followed by the command write sequence. The initialisation sequence is
described in the individual sections on Flash or EEPROM programming.

If the CBEIF flag in the FSTAT/ESTAT register is set, the command write
sequence can begin. The following command write sequence must be strictly
adhered to and no intermediate writes to the Flash/EEPROM block or
Flash/EEPROM registers are permitted. Flash/EEPROM registers, but not the
Flash/EEPROM block being programmed/erased, may be read during the
command write sequence.

A command sequence can be aborted prior to being launched by writing $00 to
the FSTAT/ESTAT register, causing the ACCERR flag to be set. Once
launched, a command cannot be safely stopped prior to completion. Avoid
executing a CPU STOP instruction whilst an NVM command is running.

1. Write the data word to be programmed to the word aligned
Flash/EEPROM address (address bit 0 clear). The data and address are
stored in internal buffers. For erase and erase-verify commands, the
data value is irrelevant. For mass erase and erase-verify commands, the
address can be any valid address for the Flash/EEPROM block. For the
sector erase command, the address can be anywhere in the desired
sector.

Figure 9. NVM Address and Data Write

AddressEmpty

Command Register Address Buffer

Empty EmptyIdle

Command State Machine Address Register Data Register

NVM
Address Bus Data Bus

Data

 Data BufferStatus Register

Control

1 1 0 0 0 0 0 0

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D
Split-Gate Flash Memory

HCS12 NVM Guidelines

2. Write the desired command to the FCMD/ECMD register. Valid
commands are listed in Table 2. Valid Flash/EEPROM Commands.

Figure 10. NVM Program Command Write

3. Launch the command by writing $80 to the FSTAT/ESTAT register to
clear the CBEIF bit.

Figure 11. NVM Command Launch

If the command is accepted by the state machine, the CCIF bit will be cleared
indicating that the command is in progress and the CBEIF bit will be set again
indicating that the command, address and data buffers are ready to accept the
next command sequence for pipelined operation. If the command is not
accepted by the state machine, the CCIF bit will not be cleared and the
ACCERR or PVIOL bit will be set indicating an error.

Address$20

Command Register Address Buffer

Empty EmptyIdle

Command State Machine Address Register Data Register

NVM
Address Bus Data Bus

Data

 Data BufferStatus Register

Control

1 1 0 0 0 0 0 0

Address$20

Command Register Address Buffer

Address DataStarting

Command State Machine Address Register Data Register

NVM
Address Bus Data Bus

Data

 Data BufferStatus Register

Control

0 0 0 0 0 0 0 0

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D

HCS12 NVM Guidelines

Figure 12. NVM Command Running

For pipelined operation, the next command sequence can begin as soon as the
CBEIF bit is set. The command sequence is identical, beginning with the data
write, followed by the command write and finally the command launch.

Figure 13. Pipelined NVM Block Write

Figure 14. Pipelined Program Command Write

Address$20

Command Register Address Buffer

Address DataRunning

Command State Machine Address Register Data Register

NVM
Address Bus Data Bus

Data

 Data BufferStatus Register

Control

1 0 0 0 0 0 0 0

Address+1$20

Command Register Address Buffer

Address DataRunning

Command State Machine Address Register Data Register

NVM
Address Bus Data Bus

Data+1

 Data BufferStatus Register

Control

1 0 0 0 0 0 0 0

Address+1$20

Command Register Address Buffer

Address DataRunning

Command State Machine Address Register Data Register

NVM
Address Bus Data Bus

Data+1

 Data BufferStatus Register

Control

1 0 0 0 0 0 0 0

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D
Flash Memory

HCS12 NVM Guidelines

Figure 15. Pipelined Command Launch

As soon as the running command has completed, the new command is started
with the new address and data. The command state machine is then ready to
accept the next command, as indicated by the CBEIF bit being set again, as in
Figure 12. NVM Command Running.

The completion of the command is indicated by the CCIF bit being set. The
CCIF bit is set only when all active and pending commands for the Flash or
EEPROM block have been completed. The Flash or EEPROM block cannot be
read when the CCIF bit is clear.

Figure 16. NVM Command Complete

Flash Memory

Introduction Non-volatile Flash memory is used to store the application program code and
constant data. Once programmed, the Flash memory retains the code until it is
erased and reprogrammed. Flash memory can be erased and reprogrammed
many times over, refer to the microcontroller Electrical Specifications for
current data retention and write/erase endurance figures

Address+1$20

Command Register Address Buffer

Address DataRunning

Command State Machine Address Register Data Register

NVM
Address Bus Data Bus

Data+1

 Data BufferStatus Register

Control

0 0 0 0 0 0 0 0

Address$20

Command Register Address

Address DataIdle

Command State Machine Address Data

NVM
Address Bus Data Bus

Data

 DataStatus Register

Control

1 1 0 0 0 0 0 0

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D

HCS12 NVM Guidelines

The standard Flash block sizes are 32k bytes, 64k bytes and 128k bytes. A
microcontroller may have a single Flash block of 32k, 64k or 128k bytes, or may
have multiple blocks, up to a total of 512k bytes. Each Flash block can be
programmed independently and simultaneously, thus enabling microcontroller
programming times to be minimised.

The Flash memory is programmed in units of aligned words, i.e. two bytes at a
time. The data word is written to an even address, i.e. bit 0 of the address is
clear. This will result in the bytes at the even address and the even address
plus one being programmed.

The Flash erase sector size is 512 bytes for 32k and 64k byte Flash blocks. To
erase an entire sector, any data value is written to any Flash address within the
required sector. That is to say, only address bits [15:9] are required to
determine the erase sector. For a 128k byte Flash block, the erase sector size
is 1024 bytes and address bits [15:10] determine the required sector.

The command register, address register and data registers are buffered to
allow pipelined programming. Pipelined programming allows the next address,
data and command to be loaded while the current command is still executing,
thus reducing the overall programming time.

Flash has a mode called Burst programming. Burst programming is invoked by
pipelining program commands for words on the same Flash row. A row is 64
bytes on 32k and 64k byte Flash blocks and 128 bytes on the 128k Flash block.
Burst programming reduces the programming time by keeping the high voltage
generation switched on between program commands on the same row. Burst
programming isapproximately twice as fast as single word programming.

Flash may also be used to emulate EEPROM on microcontrollers that do not
have EEPROM, refer to application note AN2302/D for details and example
software.

The Flash control registers are located at the register base address + $100 to
$10F. The register base address is set by the INITRG register, the base
address after a reset is $0000.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D
Flash Memory

HCS12 NVM Guidelines

Furthermore, when programming through the page window, $8000 to $BFFF,
the PPAGE register must be configured to select a page within the selected
flash block.

The general command sequence is described in Flash/EEPROM Command
Sequence. Flash/EEPROM Command Sequence must be preceded with the
following initialisation sequence:

1. If the FDIVLD bit is clear, initialise the FCLKDIV register.

2. Verify that all ACCERR and PVIOL flags in the FSTAT register are clear.
If the microcontroller has multiple Flash blocks, the FSTAT contents
must be checked for all combinations of the BKSEL bits in the FCNFG
register.

3. If the microcontroller has multiple Flash blocks, write the BKSEL bits in
the FCNFG register to select the bank of registers corresponding to the
Flash block to be programmed, erased or verified.

4. Write the core PPAGE register to select the desired page to be
programmed if programming in the $8000 to $BFFF range. There is no
need to set PPAGE if programming outwith this range, or if the
microcontroller does not have a page window.

Table 3. Flash Register Summary

Address Name

$x100 Flash Clock Divider Register (FCLKDIV)

$x101 Flash Security Register (FSEC)

$x102 Flash Test Mode Register (FTSTMOD)

$x103 Flash Configuration Register (FCNFG)

$x104 Flash Protection Register (FPROT)1

1. For microcontrollers that have multiple Flash Blocks, each Flash block has a
separate Protection register (FPROT), Status register (FSTAT), Command register
(FCMD), Address register (FADDR) and Data register (FDATA). However, these
registers are banked, i.e. the registers for each Flash block share the same
address. The active bank of registers is selected by the BKSEL bits in the
unbanked Flash Configuration register (FCNFG). Thus with the BKSEL bits
cleared, Flash Block 0 is selected, and accesses to address $x105 will access the
Flash Status register of Flash Block 0

$x105 Flash Status Register (FSTAT)1

$x106 Flash Command Register (FCMD)1

$x107 Reserved

$x108–$x109 16-bit Address Buffer (FADDR)1

$x10A–$x10B 16-bit Data Buffer (FDATA)1

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D

HCS12 NVM Guidelines

Illegal Flash
Operations

The ACCERR flag will be set during the command write sequence if any of the
following illegal operations are performed causing the command write
sequence to immediately abort:

1. Writing to the Flash address space before initializing FCLKDIV.

2. If the microcontroller has multiple Flash blocks, writing to the Flash
address space in the range $8000–$BFFF when PPAGE register does
not select a 16K bytes page in the Flash block selected by the BKSEL
bits in the FCNFG register.

3. If the microcontroller has multiple Flash blocks, writing to the Flash
address space $4000–$7FFF or $C000–$FFFF with the BKSEL bits in
the FCNFG register not selecting Flash block 0.

4. Writing a misaligned word or a byte to the valid Flash address space.

5. Writing to the Flash address space while CBEIF is not set.

6. Writing a second word to the Flash address space before executing a
valid command on the previously written word.

7. Writing to any Flash register other than FCMD after writing a word to the
Flash address space.

8. Writing a second command to the FCMD register before executing the
previously written command.

9. Writing an invalid user command to the FCMD register in user mode.

10. Writing to any Flash register other than FSTAT (to clear CBEIF) after
writing to the command register, FCMD.

11. If the microcontroller enters STOP mode while a command is in
progress, the command is aborted and any pending command is
aborted.

12. A “0” is written to the CBEIF bit in the FSTAT register.

The ACCERR flag will not be set if any Flash register is read during the
command sequence.

If the Flash array is read during execution of an algorithm (i.e. CCIF bit in the
FSTAT register is clear) the read will return non valid data and the ACCERR
flag will not be set.

If an ACCERR flag is set in any of the FSTAT registers the Command State
Machine is locked. It is not possible to launch another command on any block
until the ACCERR flag is cleared.

The PVIOL flag will be set during the command write sequence after the word
write to the Flash address space if any of the following illegal operations are
performed, causing the command sequence to immediately abort:

1. Writing a Flash address to program in a protected area of the Flash.

2. Writing a Flash address to erase in a protected area of the Flash.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D
Flash Memory

HCS12 NVM Guidelines

3. Writing the mass erase command to FCMD while any protection is
enabled.

If a PVIOL flag is set in any of the FSTAT registers the Command State
Machine is locked. It is not possible to launch another command on any block
until the PVIOL flag is cleared.

Parallel Flash Block
Programming

On microcontrollers that have multiple Flash blocks, the programming time can
be reduced by programming the Flash blocks in parallel. This is possible
because each Flash block has independent command state machines,
registers, buffers and charge pumps.

The general procedure for programming multiple Flash blocks in parallel is
shown in Figure 17. Parallel Flash Block Programming. The programming
software has to supply the programming algorithm with data words for each
Flash block in turn.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D

HCS12 NVM Guidelines

Figure 17. Parallel Flash Block Programming

Verify that the PVIOL and ACCERR
flags are clear for all combinations of

the BLKSEL bits

Initialise FCLKDIV

Write the BLKSEL bits in FCNFG to
select next desired Flash block

Programming $8000
- $BFFF for selected

block?

Write PPAGE register to
appropriate value.

CBEIF set in
FSTAT?

Write data to word aligned
program address

Write $20 to FCMD

Write $80 to FSTAT

PVIOL or
ACCERR set in

FSTAT?

More data to
program?

Programming failed.

CCIF in
FSTAT set?

Programming successful.

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D
Flash Memory

HCS12 NVM Guidelines

Flash Memory
Paging

The Program Counter on the HCS12 family of microcontrollers is a 16-bit
register, which means that the directly addressable space is limited to 64k
bytes. Larger memory sizes are accessed by using a technique called paging,
or memory banks. As implemented on the HCS12 family, the entire flash
memory is divided into pages 16k bytes in size. One fixed page is always
accessible at $4000 to $7FFF and another fixed page is always accessible at
$C000 to $FFFF. The region of addresses from $8000 to $BFFF are
designated to be the page window. Individual pages of memory are accessible
through this window, the desired page being selected by means of the PPAGE
register. Only one complete page is accessible through the window at any time.
Figure 18 shows the memory map and memory paging scheme for the
HCS12DP256.

Figure 18. MC9S12DP256 Memory Map

$30 $31 $32 $33 $34 $35 $36 $37

Flash Registers

REGISTER BASE + $100

$FF00 - $FF0F, Flash Protection/Security Field

REGISTER BASE + $10F

$8000

(16 bytes)

Flash Protected Low Sectors
0.5K, 1K, 2K, 4K bytes

FLASH_START = $4000

$4800

$4200
$4400

$5000

12K

16K PAGED

MEMORY

$38 $39 $3A $3B

$3E

$3C $3D $3E $3F

FLASH_END = $FFFF

$F800

$F000

$C000

$E000 Flash Protected High Sectors
2K, 4K, 8K, 16K bytes$3F

Block 0Block 1

Block 2Block 3

Flash Array

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D

HCS12 NVM Guidelines

NOTE: $30-$3F correspond to the PPAGE register content.

Support for the paging mechanism is built into the HCS12 instruction set, with
the CALL and RTC instructions. The CALL instruction is like the JSR instruction
(jump to subroutine), but the CALL instruction automatically handles the
PPAGE register to transfer control to a subroutine in paged memory. The CALL
instruction requires one more byte of memory and three extra clock cycles to
execute than the JSR instruction. The CALL instruction need only be used
when a subroutine in a different page than the one currently selected is to be
called. Modern compilers for the HCS12, such as produced by Metrowerks, are
capable of determining whether a CALL or JSR instruction needs to be used
and can also arrange routines in memory to minimise the use of the CALL
instruction. The extra byte required for a CALL instruction is therefore only used
when required, offering enhanced code density over 24-bit instruction sets.

The RTC instruction is the equivalent to the RTS instruction, but restores the
PPAGE register to its value prior to the previous CALL instruction. The RTC
instruction requires one byte of memory, like the RTS instruction, but two extra
clock cycles to execute.

Non-Paged Flash
Memory

On HCS12 microcontrollers that employ flash memory paging, there are two
regions of addresses that access fixed regions of flash memory. These regions
are $4000 to $7FFF and $C000 to $FFFF. Each of these regions corresponds
to a fixed page, usually the two highest numbered pages. These pages may
also be accessed through the page window, although this is not normally done.
Because these fixed pages are permanently present in the memory map, they
are used to store certain items that must be accessible at all times and cannot
be stored in paged memory.

Vector Table In order to service an interrupt or restart after a reset, the CPU must fetch the
address of the interrupt service routine (ISR) or the reset address. These
addresses are called vectors because they redirect the CPU to the appropriate
place to start executing code. The list of ISR addresses is called the Interrupt
Vector Table and this table also includes the reset vectors. The address of the
vector table is fixed in the design of the microcontroller and is located at
addresses $FF80 to $FFFF. As an interrupt or reset is by nature an
asynchronous event the vector table must be permanently accessible, hence
the table is stored at a non-paged address.

Interrupt Service
Routines

An interrupt service routine (ISR) contains code that is executed in order to
process an interrupt. The CPU obtains the address of the appropriate ISR from
the Interrupt Vector Table. As an interrupt is by nature an asynchronous event
each ISR must be permanently accessible and located in non-paged memory.
It is acceptable for an ISR to call subroutines that are located in paged memory,
if the time delay incurred by the page switch is acceptable.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D
Flash Memory

HCS12 NVM Guidelines

Start-up Code Start-up code that is executed in the event of a reset must be permanently
accessible and therefore must be located in non-paged memory.

Constant Data For constant data to be accessible to a function, both the function and the data
must be present in the memory map simultaneously. This is most easily
achieved by locating the constant data in non-paged memory, either in Flash
or EEPROM. If there is a large amount of constant data then sometimes an
alternative must be sought. There are a number of possibilities, for example the
constant data could be located in paged memory, with the functions that access
it located either in the same page or in non-paged memory.

If the data and the functions that access it are located on different pages, then
the data must be accessed through an intermediate function which handles the
page switching. This is to be avoided if at all possible due the inefficiency of this
method.

Unused Flash Surplus Flash memory that is not used by the application is often left in the
erased state ($FF). However, the state of unused Flash does sometimes have
an effect on the microcontroller behaviour. For example, a severe occurrence
of Electromagnetic Interference (EMI) may cause the microcontroller to behave
erratically. One possible effect is that the Program Counter may become
corrupted and then the CPU may read any address, including unused Flash for
the next instruction. This is called code-runaway. The value in the unused Flash
will determine what happens next.

If the Flash is erased, the $FF values will be interpreted as a LDS $FFFF
instruction. The CPU will continue reading increasing Flash addresses until it
reaches some code, and will then behave unpredictably. This situation is
normally undesirable and it is preferable to force a microcontroller reset as
soon as possible.

A simple solution is to fill unused Flash with $3F, the op-code for the SWI
instruction. As this is a single byte instruction, it will always be executed
correctly. The microcontroller will fetch the Software Interrupt vector and
execute the code at this address, as this interrupt cannot be masked. The code
in the interrupt service routine could shut down the microcontroller in an orderly
manner before forcing a reset. A reset can be forced by enabling the COP
watchdog and then writing an illegal value to the ARMCOP register.

If the Software Interrupt is required by the application, an alternative solution is
to use the ‘Unimplemented Instruction’ interrupt. As all page 1 op-codes are
valid, it is necessary to choose a page 2 op-code. Filling unused Flash with
$18A7 will cause an ‘Unimplemented Instruction’ interrupt if the CPU attempts
to execute this op-code. $18 is the pre-byte to select page 2, and $A7 is
unimplemented on page 2. If the $A7 is read first, this will be interpreted as a
NOP instruction and the next $18A7 will be read.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D

HCS12 NVM Guidelines

Filling unused Flash with the op-code for the STOP instruction, $183E, does
not give a good solution for two reasons. First, the STOP instruction is disabled
by the ‘S’ bit in the CPU Condition Codes register. If the S bit is set, the STOP
instruction is treated like a 2-cycle NOP and the microcontroller does not stop.
Furthermore, the $3E op-code may read first, and this corresponds to the WAI
instruction. The WAI instruction stops the CPU but not the peripherals, so the
op-code for the next STOP instruction is not executed.

Flash Memory
Protection

Each Flash block may be protected against accidental erasure or
programming. Flash protection is controlled by a Flash Protection register
(FPROT). On microcontrollers that have multiple Flash blocks, there is a
separate Flash Protection register for each Flash block. In this case the Flash
Protection registers share a common address, with the active register selected
by means of the Bank Select bits within the Flash Configuration register. During
the microcontroller reset sequence, the Flash Protection registers for each
Flash block are loaded from programmed bytes within a Flash block. For
example, for the MC9S12DP256, location $FF0A controls protection for block
three, $FF0B controls protection for block two, $FF0C controls protection for
block one and $FF0D controls protection for block zero, as shown in Table 4.
Flash Protection and Security Memory Locations for MC9S12DP256. The
values of each FPROT register determine whether the entire block or just
subsections are protected from being accidentally erased or programmed.
Software can write to the FPROT registers to increase the amount of protected
Flash by clearing additional bits in the register. It is possible to decrease the
amount of protected Flash by setting bits in the FPROT register only in special
modes.

Each Flash block can be entirely protected, or can have one or two separate
protected areas. One of these areas, known as the lower protected block, starts
at a point 32k bytes below the maximum Flash block address and is extendable
towards higher addresses. The other, known as the upper protected block,

Table 4. Flash Protection and Security Memory Locations for
MC9S12DP256

Address Description

$FF00 – $FF07 Security Backdoor Key

$FF08 – $FF09 Reserved

$FF0A Flash Block 3 Protection Byte

$FF0B Flash Block 2 Protection Byte

$FF0C Flash Block 1 Protection Byte

$FF0D Flash Block 0 Protection Byte

$FF0E Reserved

$FF0F Security Byte

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D
Flash Memory

HCS12 NVM Guidelines

ends at the top of the Flash block and is extendable towards lower addresses.
The lower and upper protected blocks do not meet up. In general, the upper
protected area of Flash Block 0 is used to hold bootloader code since it
contains the reset and interrupt vectors. The lower protected area of Block 0
and the protected areas of the other Flash blocks can be used for critical
parameters that would not change when program firmware is updated.

On some microcontrollers, it is also possible to protect the area between the
upper and lower areas. This feature allows a small area of Flash to remain
unprotected when using Flash to emulate EEPROM. Refer to the relevant
Flash Block Guide for details.

Trying to program or erase any of the protected areas will result in a protection
violation error and bit PVIOL will be set in the Flash Status Register FSTAT. A
mass erase of an entire Flash block is only possible if protection of that block
is fully disabled.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D

HCS12 NVM Guidelines

Figure 19. 64k Flash Block 0 Protection Areas

$8000

$4000

$C000

$FFFF

$3C $3D $3E $3FPPAGE =

Flash Block 0 protected
low areas

Flash Block 0 protected
high areas

$4FFF

$47FF

$E000

$F000

$F800 Flash Protection/Security Field

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D
Flash Memory

HCS12 NVM Guidelines

Figure 20. Flash Protection Register (FPROT)

The Flash Protection Register for each Flash block is loaded from the
appropriate Flash memory bytes during a reset sequence, Table 4. Flash
Protection and Security Memory Locations for MC9S12DP256 lists these
for the MC9S12DP256. The erased state of these Flash memory bytes is $FF,
which corresponds to Flash protection disabled.

The FPOPEN bit in the FPROT register determines whether the entire Flash
block is protected. When the FPOPEN bit is erased, the remainder of the bits
in the register determine the state of protection and the size of each protected
block. In its programmed state the entire Flash block is protected and the state
of the remaining bits within the FPROT register is irrelevant.

The FPHDIS and FPLDIS bits determine the protection state of the upper and
lower areas within each Flash block respectively. The erased state of these bits
allows erasure and programming of the two protected areas and renders the
state of the FPHS[1:0] and FPLS[1:0] bits immaterial. When either of these bits
is programmed, the FPHS[1:0] and FPLS[1:0] bits determine the size of the
upper and lower protected areas. Table 5. Flash Protection High Bits and
Table 6. Flash Protection Low Bits summarize the combinations of the
FPHS[1:0] and FPLS[1:0] bits and the size of the protected area selected by
each for a 64k byte Flash block.

On some microcontrollers, the FPHDIS, FPHS[1:0], FPLDIS and FPLS[1:0] bits
do have an effect on the selection of the protected Flash areas when FPOPEN
= 0. This allows upper or lower areas to be unprotected while the rest of the
Flash is protected. This feature allows a small area of Flash to remain
unprotected when using Flash to emulate EEPROM. Refer to the relevant
Flash Block Guide for details.

Trying to program or erase any of the protected areas will result in a protection
violation error and bit PVIOL will be set in the Flash Status Register FSTAT. A
mass erase of an entire block is only possible if the protection for that block is
fully disabled, i.e. FOPEN = 1, or FPHDIS = 1 and FPLDIS = 1.

NOTE: The Flash protection memory locations are located within the upper protected
block of Flash Block 0. Therefore if the upper protected block of Flash Block 0
is protected, or if the whole of Flash Block 0 is protected, then the Flash
protection memory locations themselves are protected and can no longer be
changed.

7 6 5 4 3 2 1 0

FPOPEN NV6 FPHDIS FPHS1 FPHS0 FPLDIS FPLS1 FPLS0

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D

HCS12 NVM Guidelines

FPOPEN — Flash Protection Open
1 = The Flash block protection depends on the FPHDIS, FPHS[1:0],

FPLDIS and FPLS[1:0] bits.
0 = The entire Flash block is protected against programming and erasure.

The FPHDIS, FPHS[1:0], FPLDIS and FPLS[1:0] bits have no effect.

NOTE: On some microcontrollers, the FPHDIS, FPHS[1:0], FPLDIS and FPLS[1:0] bits
do have an effect on the selection of the protected Flash areas when
FPOPEN = 0. Refer to the relevant Flash Block Guide for details.

FPHDIS — Flash Protection High address range Disable.
1 = The high address range protection is disabled.
0 = The high address range protection is enabled and the size of the

protected area depends on the FPHS[1:0] bits.

FPHS[1:0] — Flash Protection High address Size.

The FPHS[1:0] bits determine the size of the high address range protected
area. Table 5. Flash Protection High Bits gives the available sizes for a
64k byte Flash Block.

FPLDIS — Flash Protection Low address range Disable.
1 = The low address range protection is disabled.
0 = The low address range protection is enabled and the size of the

protected area depends on the FPLS[1:0] bits.

FPLS[1:0] — Flash Protection Low address Size.

The FPLS[1:0] bits determine the size of the low address range protected
area. Table 6. Flash Protection Low Bits gives the available sizes for a
64k byte Flash Block.

Table 5. Flash Protection High Bits

FPHS[1:0] Protected Size (64k
Block)

00 2k bytes

01 4k bytes

10 8k bytes

11 16k bytes

Table 6. Flash Protection Low Bits

FPLS[1:0] Protected Size (64k
Block)

00 512 bytes

01 1k bytes

10 2k bytes

11 4k bytes

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D
Flash Memory

HCS12 NVM Guidelines

Protected
Application Example

The values loaded into each FPROT register during a reset sequence
determine the minimum level of protection: the application software can write
to the FPROT registers to increase (but not decrease) the amount of protected
Flash by clearing additional bits in the register. This feature is useful for
applications which are required to have the ability to reprogram the Flash. For
example, after each reset, start-up code would determine whether
reprogramming is required or not. If reprogramming is required, serial
communication software would download and run first a Flash erase routine
and then a Flash program routine followed by the new Flash code.

The reset vector, start-up code and communication software (bootloader)
should be protected so that reprogramming is always possible, even if the
reprogramming process is interrupted or corrupted in some way. The start-up
code and bootloader should be located in the higher protected area of Flash
Block 0 (page $3F) and address $FF0D is programmed to a suitable value to
permanently protect the required size. Note that this will protect the entire
vector table, so future code revisions will need to have interrupt service routines
located at constant, defined, addresses.

If reprogramming is not required, or when reprogramming has been completed,
the whole of the Flash could be protected by software clearing the FPOPEN bit
in each FPROT register. This will protect the main application from
unintentional corruption until the next reset.

On the other hand, if Flash reprogramming is never required, the FPOPEN bit
in each Flash protection byte should be programmed to ‘0’. This will give
permanent Flash protection.

Flash Program and
Erase Routines

Flash Program
Command

The following code segment demonstrates how to program a number of words
of Flash using the pipelined programming command. For words that are on the
same Flash row, this will invoke Burst programming, reducing the programming
time by half.

The leftmost column contains C code (variable definitions in Appendix A ‘C’
Variable Definitions), the centre column contains equivalent assembly code
assuming the register base address is $0000, and the rightmost column
contains comments.

Prerequisites: FCLKDIV must be configured correctly, the Flash words to be
programmed must be erased and not protected, the first Flash address must
be word aligned (bit 0 = 0). If the Flash program address is in the range $8000
to $BFFF, the PPAGE register must be written to select the desired page. If the
microcontroller has multiple Flash blocks, the ACCERR and PVIOL flags in all
other blocks must be clear and the BKSEL bits in the FCNFG register must be

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D

HCS12 NVM Guidelines

written to select the desired block for programming. This code snippet will not
program over page boundaries.

Registers: X contains first word aligned Flash address to be programmed, Y
contains address of first word of data.

Stack Pointer → number of words to be programmed.

Stack Pointer + 2 → return address.

C function local variables: UINT16* progAddr, UINT16* dataAddr,
UINT16 wordsToDo.

On return, accumulator B contains 0 if the command executed correctly, or 1 if
the command failed.

Flash Sector Erase
Command

The following code segment demonstrates how to erase a sector (512 bytes,
or 1024 bytes on a 128k byte Flash block) of Flash.

The leftmost column contains C code (variable definitions in Appendix A ‘C’
Variable Definitions), the centre column contains equivalent assembly code

FSTAT.byte = ACCERR|PVIOL; MOVB #$30,$105 Clear error flags on selected block

while(wordsToDo != 0)

{

BRA fepsc Check if any more words to be programmed

 if(FSTAT.bit.cbeif == 1)

 {

fepbt:

BRCLR $105,#$80,fepsc

Check command buffer is empty

 *progAddr++ = *dataAddr++; LDD 2,Y+

STD 2,X+

Write data word to Flash address,

increment addresses

 FCMD.byte = PROG; MOVB #$20,$106 Write program command

 FSTAT.byte = CBEIF; MOVB #$80,$105 Write '1' to CBEIF to launch the command

 if((FSTAT.byte & (ACCERR|PVIOL))!= 0)

 {

 return(FAIL);

 }

BRSET $105,#$30,fepf Command failed if either error flag set

 wordsToDo--; DEC 0,SP One word less to be programmed

 }

}

fepsc:

LDD 0,SP

BNE fepbt

Any more words to be programmed?

while(FSTAT.bit.ccif != 1)

{

}

BRCLR $105,#$40,*+0 Wait for last command to finish: this is

optional, but the Flash block cannot be

accessed until CCIF is set.

 return(PASS);

}

CLRB

BRA feprtn

Successful, return

fepf:

LDAB #1

feprtn:

RTS

Fail, return

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D
Flash Memory

HCS12 NVM Guidelines

assuming the register base address is $0000, and the rightmost column
contains comments.

Prerequisites: FCLKDIV must be configured correctly, the sector to be erased
must not be protected, the Flash address must be word aligned (bit 0 = 0). If
the Flash address is in the range $8000 to $BFFF, the PPAGE register must
be written to select the desired page. If the microcontroller has multiple Flash
blocks, the ACCERR and PVIOL flags in all other blocks must be clear and the
BKSEL bits in the FCNFG register must be written to select the desired block
for sector erase.

Registers: X contains word aligned Flash address within the sector to be
erased.

Stack Pointer → return address.

C function local variables: UINT16* sectorAddr, UINT16 dummy.

On return, accumulator B contains 0 if the command executed correctly, or 1 if
the command failed.

Flash Mass Erase
Command

The following code segment demonstrates how to erase an entire Flash block.

Note: A mass erase of the entire block is only possible when the FPLDIS,
FPHDIS and FOPEN bits are set, see section Parallel Flash Block
Programming.

FSTAT.byte = ACCERR|PVIOL; MOVB #$30,$105 Clear error flags on selected block

if(FSTAT.bit.cbeif == 1)

{

BRCLR $105,#$80,fesef Check command buffer is empty

 *sectorAddr = dummy; STD 0,X Write any data to Flash sector address

 FCMD.byte = ERASE; MOVB #$40,$106 Write sector erase command

 FSTAT.byte = CBEIF; MOVB #$80,$105 Write '1' to CBEIF to launch the command

 if((FSTAT.byte & (ACCERR|PVIOL))!= 0)

 {

 return(FAIL);

 }

BRSET $105,#$30,fesef Command failed if either error flag set

 while(FSTAT.bit.ccif != 1)

 {

 }

BRCLR $105,#$40,*+0 Wait for command to finish: this is

optional, but the Flash block cannot be

accessed until CCIF is set.

 return(PASS);

}

CLRB

BRA fesertn

Successful, return

else

{

 return(FAIL);

}

fesef:

LDAB #1

fesertn:

RTS

Fail, return

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D

HCS12 NVM Guidelines

The leftmost column contains C code (variable definitions in Appendix A ‘C’
Variable Definitions), the centre column contains equivalent assembly code
assuming the register base address is $0000, and the rightmost column
contains comments.

Prerequisites: FCLKDIV must be configured correctly, the flash block to be
erased must not be protected, the Flash address must be word aligned (bit 0 =
0). If the Flash address is in the range $8000 to $BFFF, the PPAGE register
must be written to select any page in the Flash block. If the microcontroller has
multiple Flash blocks, the ACCERR and PVIOL flags in all other blocks must
be clear and the BKSEL bits in the FCNFG register must be written to select
the desired block for mass erase.

Registers: X contains word aligned Flash address within the Flash block to be
erased.

Stack Pointer → return address.

C function local variables: UINT16* flashAddr, UINT16 dummy.

On return, accumulator B contains 0 if the command executed correctly, or 1 if
the command failed.

Flash Erase-Verify
Command

The following code segment demonstrates how to verify that a Flash block is
erased using the erase verify command.

The leftmost column contains C code (variable definitions in Appendix A ‘C’
Variable Definitions), the centre column contains equivalent assembly code

FSTAT.byte = ACCERR|PVIOL; MOVB #$30,$105 Clear error flags on selected block

if(FSTAT.bit.cbeif == 1)

{

BRCLR $105,#$80,femef Check command buffer is empty

 *flashAddr = dummy; STD 0,X Write any data to Flash block address

 FCMD.byte = MASS_ERASE; MOVB #$41,$106 Write mass erase command

 FSTAT.byte = CBEIF; MOVB #$80,$105 Write '1' to CBEIF to launch the command

 if((FSTAT.byte & (ACCERR|PVIOL))!= 0)

 {

 return(FAIL);

 }

BRSET $105,#$30,femef Command failed if either error flag set

 while(FSTAT.bit.ccif != 1)

 {

 }

BRCLR $105,#$40,*+0 Wait for command to finish: this is

optional, but the Flash block cannot be

accessed until CCIF is set.

 return(PASS);

}

CLRB

BRA femertn

Successful, return

else

{

 return(FAIL);

}

femef:

LDAB #1

femertn:

RTS

Fail, return

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D
Flash Memory

HCS12 NVM Guidelines

assuming the register base address is $0000, and the rightmost column
contains comments.

Prerequisites: FCLKDIV must be configured correctly, the Flash address must
be word aligned (bit 0 = 0). If the Flash address is in the range $8000 to $BFFF,
the PPAGE register must be written to select any page in the Flash block. If the
microcontroller has multiple Flash blocks, the ACCERR and PVIOL flags in all
other blocks must be clear and the BKSEL bits in the FCNFG register must be
written to select the desired block for erase verify.

Registers: X contains word aligned Flash address within the Flash block to be
verified.

Stack Pointer → return address.

C function local variables: UINT16* flashAddr, UINT16 dummy.

On return, accumulator B contains 0 if the command executed correctly and the
Flash block verified as erased, or 1 if the command failed or the Flash block did
not verify as erased.

FSTAT.byte = ACCERR|PVIOL; MOVB #$30,$105 Clear error flags on selected block

if(FSTAT.bit.cbeif == 1)

{

BRCLR $105,#$80,feevf Check command buffer is empty

 *flashAddr = dummy; STD 0,X Write any data to Flash sector address

 FCMD.byte = ERASE; MOVB #$05,$106 Write erase verify command

 FSTAT.byte = CBEIF; MOVB #$80,$105 Write '1' to CBEIF to launch the command

 if((FSTAT.byte & (ACCERR|PVIOL))!= 0)

 {

 return(FAIL);

 }

BRSET $105,#$30,feevf Command failed if either error flag set

 while(FSTAT.bit.ccif != 1)

 {

 }

BRCLR $105,#$40,*+0 Wait for command to finish: the BLANK bit

is not valid until CCIF is set.

 if(FSTAT.bit.BLANK == 1) BRCLR $105,#$04,feevf Check BLANK bit

 {

 return(PASS);

 }

CLRB

BRA feevrtn

Successful, return

 else

 {

 return(FAIL)

 }

}

else

{

 return(FAIL);

}

feevf:

LDAB #1

feevrtn:

RTS

Fail, return

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D

HCS12 NVM Guidelines

EEPROM

Introduction Most HCS12 microcontrollers also incorporate EEPROM that may be used to
store data variables. HCS12 microcontrollers that do not have EEPROM may
use Flash to emulate EEPROM, refer to application note AN2302/D for details
and example software. The EEPROM on HCS12 microcontrollers is
constructed using the same basic technology as the Flash memory, but with
some adjustments to make it more suitable to data storage applications. The
most obvious of these is the erase sector size, which is 4 bytes.

Once programmed, the EEPROM retains data until it is erased and
reprogrammed. The EEPROM can be erased and reprogrammed many times
over, refer to the microcontroller Electrical Specifications for current data
retention and write/erase endurance figures.

The available sizes of EEPROM blocks are 1K, 2K and 4K bytes. The position
of the EEPROM block within the microcontroller address space is set by the
core INITEE register. The EEPROM control registers are located at the register
base address + $110 to $11F. The register base address is set by the core
INITRG register, the base address after a reset is $0000. If the EEPROM is
located at an address that overlaps the RAM, registers, or Flash, then the
EEPROM takes priority over Flash but the RAM and registers take priority over
EEPROM.

The EEPROM is programmed in units of aligned words, i.e. two bytes at a time.
The data word is written to an even address, i.e. bit 0 of the address is clear.
This will result in the bytes at the even address and the even address plus one
being programmed.

The EEPROM erase sector size is four bytes. To erase a sector, any data value
is written to any EEPROM address within the required sector. That is to say,
only address bits [15:2] are used to determine the erase sector.

Address Name

$x110 EEPROM Clock Divider Register (ECLKDIV)

$x111–$x112 Reserved

$x113 EEPROM Configuration Register (ECNFG)

$x114 EEPROM Protection Register (EPROT)

$x115 EEPROM Status Register (ESTAT)

$x116 EEPROM Command Register (ECMD)

$x117–$x119 16-Bit Address Buffer (EADDR)

$x11A–$x11B 16-Bit Data Buffer (EDATA)

Figure 21. EEPROM Register Summary

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D
EEPROM

HCS12 NVM Guidelines

The command register, EEPROM address register and EEPROM data
registers are buffered to allow pipelined programming. Pipelined programming
reduces the programming time by allowing the next address, data and
command to be loaded while the current command is still executing.

The general command sequence is described in Flash/EEPROM Command
Sequence. Flash/EEPROM Command Sequence must be preceded with the
following initialisation sequence:

1. If the EDIVLD bit is clear, initialise the ECLKDIV register.

2. Verify that all ACCERR and PVIOL flags in the ESTAT register are clear.

Illegal EEPROM
Operations

The ACCERR flag will be set during the command write sequence if any of the
following illegal operations are performed causing the command write
sequence to immediately abort:

1. Writing to the EEPROM address space before initializing ECLKDIV.

2. Writing a misaligned word or a byte to the valid EEPROM address
space.

3. Writing to the EEPROM address space while CBEIF is not set.

4. Writing a second word to the EEPROM address space before executing
a program or erase command on the previously written word.

5. Writing to any EEPROM register other than ECMD after writing a word
to the EEPROM address space.

6. Writing a second command to the ECMD register before executing the
previously written command.

7. Writing an invalid user command to the ECMD register in user mode.

8. Writing to any EEPROM register other than ESTAT (to clear CBEIF)
after writing to the command register, ECMD.

9. If the microcontroller enters STOP mode and a program or erase
command is in progress, the command is aborted and any pending
command is aborted.

10. A “0” is written to the CBEIF bit in the ESTAT register.

The ACCERR flag will not be set if any EEPROM register is read during the
command sequence.

If the EEPROM array is read during execution of an algorithm (i.e. CCIF bit in
the ESTAT register is clear) the read will return non valid data and the
ACCERR flag will not be set.

When an ACCERR flag is set in the ESTAT register the Command State
Machine is locked. It is not possible to launch another command until the
ACCERR flag is cleared.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D

HCS12 NVM Guidelines

The PVIOL flag will be set during the command write sequence after the word
write to the EEPROM address space and the command sequence will be
aborted if any of the following illegal operations are performed.

1. Writing a EEPROM address to program in a protected area of the
EEPROM.

2. Writing a EEPROM address to erase in a protected area of the
EEPROM.

3. Writing the mass erase command to ECMD while any protection is
enabled.

When the PVIOL flag is set in the ESTAT register the Command State Machine
is locked. It is not possible to launch another command until the PVIOL flag is
cleared.

Storage of Variables
in EEPROM

Traditionally, EEPROM is characterised by the ability to program and erase
individual bytes. This means that variables can be allocated to EEPROM
without regard to their size or order and the permitted number of write/erase
cycles for each variable was equal to the specified number of write/erase cycles
for a byte EEPROM.

However, the implementation of EEPROM of the HCS12 family of
microcontrollers means that this is no longer the case. The smallest unit that
can be programmed is an aligned word (2 bytes), and the smallest unit that can
be erased is a sector of 4 bytes. This has implications for the way that variables
are allocated to EEPROM if the maximum number of write/erase cycles is to be
realised.

For example, if a sector of EEPROM contains 4 different variables each 1 byte
long, then each time a variable is updated requires that the whole sector is
erased and reprogrammed. This means that the specified maximum
write/erase cycles for the sector is shared between all 4 variables.

Various methods of data storage are examined in the following sections,
grouped according to frequency of update.

Infrequently Updated
Data Variables

Data variables that are updated infrequently may be allocated into EEPROM or
Flash, so long as the total number of updates (over the product lifetime) for all
variables in each sector does not exceed the specified maximum for the sector.
These variables can be packed into EEPROM or Flash without ‘gaps’ to ensure
maximum utilisation. It may be advantageous to store certain variables, such
as end-of-line configuration data or end-of-life diagnostic data, in Flash due to
the faster programming time that may be achieved using burst programming.

Frequently Updated
Variables

Data variables which are updated frequently may need to be allocated a whole
EEPROM sector each. This ensures that the total number of permitted updates

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D
EEPROM

HCS12 NVM Guidelines

of these variables matches the specified maximum of write erase cycles of a
sector. This may be done by defining the variable to be of size 4 bytes (e.g. type
‘long’) and ensuring that it is aligned to a sector boundary by correct linking. If
the ‘natural’ size of the variable is less than 4 bytes, the remaining bytes in the
sector are unused, and the variable should be cast to its ‘natural’ size in
expressions to avoid unnecessary computation.

Very Frequently
Updated Variables

If a data variable must be updated more than the maximum permitted number
of write/erase cycles for a sector of EEPROM, then an alternative approach is
necessary. First, consider that it may be possible to store the variable in RAM
whilst the microcontroller is powered and to update a copy in EEPROM only
when a power-down is imminent. If this is not possible and the variable must be
stored in EEPROM at all times, then it becomes necessary to allocate a number
of separate sectors for the variable. This can be done by creating a circular
buffer in EEPROM, with each element of the buffer corresponding to one or
more EEPROM sectors. A pointer in RAM can be used to store the address of
the most recent data. When the variable is to be updated, the next element of
the buffer is written, the ‘old’ data is erased, and the pointer is updated. In this
way, the maximum number of updates for the variable becomes the maximum
permitted number of write/erase cycles for a sector of EEPROM multiplied by
the number of elements in the circular buffer.

EEPROM Protection The EEPROM block may be protected against accidental erasure or
programming. EEPROM protection is controlled by an EEPROM Protection
register (EPROT). During the microcontroller reset sequence, the EEPROM
Protection register is loaded from the EEPROM Protection byte, located within
EEPROM. The EEPROM Protection byte is located within the smallest
EEPROM protected area, so protecting EEPROM always protects the
EEPROM protection byte, thus guaranteeing the reset state of EEPROM
protection. The value of the EPROT register determines whether the entire
EEPROM or just subsections are protected from being accidentally erased or
programmed. Software can write to the EPROT register to increase the amount
of protected EEPROM by clearing additional bits in the register. It is possible to
decrease the amount of protected EEPROM by setting bits in the EPROT
register only in special modes.

Figure 22. EEPROM Protection Register (EPROT)

The EEPROM Protection Register is loaded from the EEPROM memory during
a reset sequence. The erased state of these EEPROM memory bytes is $FF,
which corresponds to EEPROM protection disabled.

7 6 5 4 3 2 1 0

EPOPEN NV6 NV5 NV4 EPDIS EP2 EP1 EP0

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D

HCS12 NVM Guidelines

The EPOPEN bit in the EPROT register determines whether the entire
EEPROM block is protected. When the EPOPEN bit is erased, the remainder
of the bits in the register determine the state of protection and the size of the
protected block. When the EPOPEN bit is programmed the entire EEPROM
block is protected and the state of the remaining bits within the EPROT register
is irrelevant.

Trying to program or erase any of the protected areas will result in a protection
violation error and bit PVIOL will be set in the EEPROM Status Register
ESTAT. A mass erase of the entire EEPROM block is only possible if protection
is fully disabled, i.e. EPOPEN = 1 or EPDIS = 1.

NOTE: The EEPROM protection memory locations are located within the upper
protected area of EEPROM block. Therefore if the upper area of EEPROM is
protected, or if the whole of EEPROM is protected, then the EEPROM
protection memory locations themselves are protected and can no longer be
changed.

EPOPEN — EEPROM Protection Open
1 = The EEPROM block protection depends on the EPDIS and EP[2:0] bits.
0 = The entire EEPROM block is protected against programming and

erasure. The EPDIS and EP[2:0] bits have no effect.

EPDIS — EEPROM Protection Disable
1 = The high address range protection is disabled.
0 = The high address range protection is enabled and the size of the

protected area depends on the EP[2:0] bits.

EP[2:0] — EEPROM Protection Size

The FPHS[1:0] bits determine the size of the protected area. Table 5. Flash
Protection High Bits gives the available sizes for a 4k byte EEPROM
Block.

Table 7. EEPROM Protection High Bits

FPHS[2:0] Protected Size (4k Block)

000 64 bytes

001 128 bytes

010 192 bytes

011 256 bytes

100 320 bytes

101 384 bytes

110 448 bytes

111 512 bytes

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D
EEPROM

HCS12 NVM Guidelines

EEPROM Program
and Erase Routines

EEPROM Program
Command

The following code segment demonstrates how to program a word (2 bytes) of
EEPROM.

The leftmost column contains C code (variable definitions in Appendix A ‘C’
Variable Definitions), the centre column contains equivalent assembly code
assuming the register base address is $0000, and the rightmost column
contains comments.

Prerequisites: ECLKDIV must be configured correctly, the EEPROM word to be
programmed must be erased and not protected, the EEPROM address must
be word aligned (bit 0 = 0).

Registers: X contains word aligned EEPROM address to be programmed, D
contains new data value.

Stack Pointer → return address.

C function local variables: UINT16* progAddr, UINT16 data.

On return, accumulator B contains 0 if the command executed correctly, or 1 if
the command failed.

ESTAT.byte = ACCERR|PVIOL; MOVB #$30,$115 Clear error flags

if(ESTAT.bit.cbeif == 1)

{

BRCLR $115,#$80,eepwf Check command buffer is empty

 *progAddr = data; STD 0,X Write data to EEPROM aligned word address

 ECMD.byte = PROG; MOVB #$20,$116 Write program command

 ESTAT.byte = CBEIF; MOVB #$80,$115 Write '1' to CBEIF to launch the command

 if((ESTAT.byte & (ACCERR|PVIOL))!= 0)

 {

 return(FAIL);

 }

BRSET $115,#$30,eepwf Command failed if either error flag set

 while(ESTAT.bit.ccif != 1)

 {

 }

BRCLR $115,#$40,*+0 Wait for command to finish: this is

optional, but the EEPROM cannot be

accessed until CCIF is set.

 return(PASS);

}

CLRB

BRA eepwrtn

Successful, return

else

{

 return(FAIL);

}

eepwf:

LDAB #1

eepwrtn:

RTS

Fail, return

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D

HCS12 NVM Guidelines

EEPROM Sector
Erase Command

The following code segment demonstrates how to erase a sector (4 bytes) of
EEPROM.

The leftmost column contains C code (variable definitions in Appendix A ‘C’
Variable Definitions), the centre column contains equivalent assembly code
assuming the register base address is $0000, and the rightmost column
contains comments.

Prerequisites: ECLKDIV must be configured correctly, the sector to be erased
must not be protected, the EEPROM address must be word aligned (bit 0 = 0).

Registers: X contains word aligned EEPROM address within sector to be
erased.

Stack Pointer → return address.

C function local variables: UINT16* sectorAddr, UINT16 dummy.

On return, accumulator B contains 0 if the command executed correctly, or 1 if
the command failed.

ESTAT.byte = ACCERR|PVIOL; MOVB #$30,$115 Clear error flags

if(ESTAT.bit.cbeif == 1)

{

BRCLR $115,#$80,eesef Check command buffer is empty

 *sectorAddr = dummy; STD 0,X Write any data to EEPROM sector address

 ECMD.byte = ERASE; MOVB #$40,$116 Write sector erase command

 ESTAT.byte = CBEIF; MOVB #$80,$115 Write '1' to CBEIF to launch the command

 if((ESTAT.byte & (ACCERR|PVIOL))!= 0)

 {

 return(FAIL);

 }

BRSET $115,#$30,eesef Command failed if either error flag set

 while(ESTAT.bit.ccif != 1)

 {

 }

BRCLR $115,#$40,*+0 Wait for command to finish: this is

optional, but the EEPROM cannot be accessed

until CCIF is set.

 return(PASS);

}

CLRB

BRA eesertn

Successful, return

else

{

 return(FAIL);

}

eesef:

LDAB #1

eesertn:

RTS

Fail, return

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D
EEPROM

HCS12 NVM Guidelines

EEPROM Mass Erase
Command

The following code segment demonstrates how to erase the entire EEPROM.

The leftmost column contains C code (variable definitions in Appendix A ‘C’
Variable Definitions), the centre column contains equivalent assembly code
assuming the register base address is $0000, and the rightmost column
contains comments.

Prerequisites: ECLKDIV must be configured correctly, no part of EEPROM
must be protected, the EEPROM address must be word aligned (bit 0 = 0).

Registers: X contains any word aligned EEPROM address.

Stack Pointer → return address.

C function local variables: UINT16* eepromAddr, UINT16 dummy.

On return, accumulator B contains 0 if the command executed correctly, or 1 if
the command failed.

EEPROM Erase
Verify Command

The following code segment demonstrates how to verify whether the entire
EEPROM is erased.

The leftmost column contains C code (variable definitions in Appendix A ‘C’
Variable Definitions), the centre column contains equivalent assembly code
assuming the register base address is $0000, and the rightmost column
contains comments.

Prerequisites: ECLKDIV must be configured correctly, no part of EEPROM
must be protected, the EEPROM address must be word aligned (bit 0 = 0).

ESTAT.byte = ACCERR|PVIOL; MOVB #$30,$115 Clear error flags

if(ESTAT.bit.cbeif == 1)

{

BRCLR $115,#$80,eemef Check command buffer is empty

 *eepromAddr = dummy; STD 0,X Write any data to EEPROM address

 ECMD.byte = MASS_ERASE; MOVB #$41,$116 Write mass erase command

 ESTAT.byte = CBEIF; MOVB #$80,$115 Write '1' to CBEIF to launch the command

 if((ESTAT.byte & (ACCERR|PVIOL))!= 0)

 {

 return(FAIL);

 }

BRSET $115,#$30,eemef Command failed if either error flag set

 while(ESTAT.bit.ccif != 1)

 {

 }

BRCLR $115,#$40,*+0 Wait for command to finish: this is

optional, but the EEPROM cannot be accessed

until CCIF is set.

 return(PASS);

}

CLRB

BRA eemertn

Successful, return

else

{

 return(FAIL);

}

eemef:

LDAB #1

eemertn:

RTS

Fail, return

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D

HCS12 NVM Guidelines

Registers: X contains any word aligned EEPROM address.

Stack Pointer → return address.

C function local variables: UINT16* eepromAddr, UINT16 dummy.

On return, accumulator B contains 0 if the command executed correctly and the
EEPROM verified as erased, or 1 if the command failed or the EEPROM was
not erased.

EEPROM Sector
Modify Command

The following code segment demonstrates how to reprogram a sector (4 bytes)
of EEPROM using the sector modify command followed by a pipelined program
command.

The leftmost column contains C code (variable definitions in Appendix A ‘C’
Variable Definitions), the centre column contains equivalent assembly code
assuming the register base address is $0000, and the rightmost column
contains comments.

Prerequisites: ECLKDIV must be configured correctly, the sector to be
programmed must not be protected, the EEPROM address must be word
aligned (bit 0 = 0).

ESTAT.byte = ACCERR|PVIOL; MOVB #$30,$115 Clear error flags

if(ESTAT.bit.cbeif == 1)

{

BRCLR $115,#$80,eeevf Check command buffer is empty

 *eepromAddr = dummy; STD 0,X Write any data to EEPROM address

 ECMD.byte = ERASE_VERIFY; MOVB #$05,$116 Write mass erase command

 ESTAT.byte = CBEIF; MOVB #$80,$115 Write '1' to CBEIF to launch the command

 if((ESTAT.byte & (ACCERR|PVIOL))!= 0)

 {

 return(FAIL);

 }

BRSET $115,#$30,eeevf Command failed if either error flag set

 while(ESTAT.bit.ccif != 1)

 {

 }

BRCLR $115,#$40,*+0 Wait for command to finish: the BLANK flag

is not valid until CCIF is set.

 if(ESTAT.bit.BLANK == 1) BRCLR $115,#$04,eeevf Check BLANK bit

 {

 return(PASS);

 }

CLRB

BRA eeevrtn

Successful, return

 else

 {

 return(FAIL)

 }

}

else

{

 return(FAIL);

}

eeevf:

LDAB #1

eeevrtn:

RTS

Fail, return

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D
EEPROM

HCS12 NVM Guidelines

Registers: X contains word aligned EEPROM sector address to be
reprogrammed, Y contains address of first word of data.

Stack Pointer → return address.

C function local variables: UINT16* progAddr, UINT16* dataAddr.

On return, accumulator B contains 0 if the commands executed correctly, or 1
if either command failed.

ESTAT.byte = ACCERR|PVIOL; MOVB #$30,$115 Clear error flags

if(ESTAT.bit.cbeif == 1)

{

BRCLR $115,#$80,eesmf Check command buffer is empty

 *progAddr = *dataAddr; LDD 0,Y

STD 0,X

Write first data word to first word of

EEPROM sector

 ECMD.byte = SECTOR_MODIFY; MOVB #$60,$116 Write sector modify command

 ESTAT.byte = CBEIF; MOVB #$80,$115 Write '1' to CBEIF to launch the command

 if((ESTAT.byte & (ACCERR|PVIOL))!= 0)

 {

 return(FAIL);

 }

BRSET $115,#$30,eesmf Command failed if either error flag set

 while(ESTAT.bit.cbeif != 1)

 {

 }

BRCLR $115,#$80,*+0 Wait for buffers to empty

 *(progAddr+1) = *(dataAddr+1); LDD 2,Y

STD 2,X

Write second data word to second word of

EEPROM sector

 ECMD.byte = PROG MOVB #$20,$116 Write program command

 ESTAT.byte = CBEIF; MOVB #$80,$115 Write '1' to CBEIF to

launch the command

 if((ESTAT.byte & (ACCERR|PVIOL))!= 0)

 {

 return(FAIL);

 }

BRSET $115,#$30,eesmf Command failed if either error flag set

 while(ESTAT.bit.ccif != 1)

 {

 }

BRCLR $115,#$40,*+0 Wait for command to finish: this is

optional, but the EEPROM cannot be accessed

until CCIF is set.

 return(PASS);

}

CLRB

BRA eesmrtn

Successful, return

else

{

 return(FAIL);

}

eesmf:

LDAB #1

eesmrtn:

RTS

Fail, return

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D

HCS12 NVM Guidelines

NVM Security

HCS12 microcontrollers offer a memory security feature. This security feature
is designed to prevent unauthorised access to the non-volatile memory. Note
that memory security is not the same as memory protection, which is designed
to prevent accidental modification of the NVM and is discussed in section Flash
Memory Protection.

Secured Operation The memory contents are secured by programming the security bits within the
Flash Options/Security byte at address $FF0F. The Flash Options/Security
byte is located within the Flash memory at address $FF0F and is erased and
programmed like any other Flash location. On devices that have a memory
page window, the Flash Options/Security byte is also available at address
$BF0F by selecting page $3F with the PPAGE register. The contents of this
byte are copied into the Flash Security Register (FSEC) during a reset
sequence.

The Flash sector $FE00 to $FFFF must be erased before the Flash
Options/Security byte is programmed. The Flash is programmed by aligned
word only, so address $FF0E must be written as the word address to be
programmed, to program the Flash Options/Security byte. The Flash
Options/Security byte can only be erased or programmed when this sector is
not protected (see Flash Memory Protection).

Figure 23. Flash Options/Security Byte

KEYEN[1:0] – Backdoor Key Enable Bits

The KEYEN[1:0] bits define the enabling of the Backdoor Key access, as
shown in Table 8. Backdoor Key States.

7 6 5 4 3 2 1 0

$FF0F KEYEN1 KEYEN0 NV5 NV4 NV3 NV2 SEC1 SEC0

Table 8. Backdoor Key States

KEYEN[1:0] Description

00 Disabled

01 Disabled

10 Enabled

11 Disabled

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D
NVM Security

HCS12 NVM Guidelines

NOTE: Some older versions of HCS12 have only a single Backdoor Key Enable bit,
KEYEN, equivalent to KEYEN1. In this case, KEYEN = 0 means disabled and
KEYEN = 1 means enabled.

SEC[1:0] – Memory Security Bits

The SEC[1:0] bits define the security state of the microcontroller at reset as
shown in Table 9. Security States.

Secured operation takes effect on the next reset after programming the security
bits to a secure value. When enabled, secured operation has the following
effects on the microcontroller:

Normal Single Chip
Mode

• Background Debug Module (BDM) operation is completely disabled.

• Flash and EEPROM commands PROG, Mass Erase, Sector Erase,
Erase Verify and Sector Modify remain enabled.

Special Single Chip
Mode

• BDM firmware commands are disabled.

• BDM hardware commands are restricted to the register space.

• Flash and EEPROM commands limited to MASS ERASE only.

Expanded Modes • BDM operation is completely disabled.

• External access to internal Flash and EEPROM is disabled.

• Internal visibility (IVIS) and CPU pipe (IPIPE) information is disabled.

• Flash and EEPROM commands cannot be executed from external
memory in Normal Expanded mode.

By these actions, unauthorised access to the EEPROM and Flash memory
contents can be prevented. However, it must be realised that the security of the
EEPROM and Flash memory contents also depends on the design of the
application program. For example, if the application has the capability of
downloading code through a serial port and then executing that code (e.g. an
application containing bootloader code), then this capability could potentially be
used to read the EEPROM and Flash memory contents even when the
microcontroller is in the secure state. In this example, the security of the
application could be enhanced by requiring a challenge/response
authentication before any code can be downloaded.

Table 9. Security States

SEC[1:0] Description

00 Secured

01 Secured

10 Unsecured

11 Secured

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D

HCS12 NVM Guidelines

Unsecuring the
Microcontroller

When secure, the microcontroller can be unsecured by one of the following
methods.

Backdoor Key Access In Normal modes (Single Chip and Expanded), security can be temporarily
disabled by means of the Backdoor Key access method. This method requires
that:

• The Backdoor Key at $FF00 to $FF07 has been programmed to a valid
value.

• The KEYEN[1:0] bits within the Flash Options/Security byte select
‘enabled’.

• In Single Chip mode, the application program programmed into the
microcontroller must be designed to have the capability to write to the
Backdoor Key locations.

The Backdoor Key values themselves would not normally be stored within the
application data, and so the application program would have to be designed to
receive the Backdoor Key values from an external source, through a serial port
for example. It is not possible to download the backdoor keys using
Background Debug Mode.

The Backdoor Key Access method is useful because it allows debugging of a
secured microcontroller, without having to erase the Flash. This is particularly
useful for failure analysis.

NOTE: No word of the Backdoor Key is allowed to have the value $0000 or $FFFF.

Backdoor Key
Access Sequence:

1. Set the KEYACC bit in the Flash Configuration register FCNFG.

2. Write the first 16-bit word of the backdoor key to $FF00.

3. Write the second 16-bit word of the backdoor key to $FF02.

4. Write the third 16-bit word of the backdoor key to $FF04.

5. Write the fourth 16-bit word of the backdoor key to $FF06.

6. Clear the KEYACC bit in the Flash Configuration register FCNFG.

NOTE: Flash cannot be read while KEYACC is set. Therefore the code for the
Backdoor Key access sequence must exceute from RAM.

If all four 16-bit words match the Flash contents at $FF00 to $FF07, the
microcontroller will be unsecured and the security bits SEC[1:0] in the Flash
Security register FSEC will be forced to the unsecured state, ‘10’. The contents
of the Flash Options/Security byte are not changed by this procedure, and so
the microcontroller will revert to the secure state after the next reset, unless
further action is taken as detailed below.

If any of the four 16-bit words do not match the Flash contents at $FF00 to
$FF07, the microcontroller will remain secured.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D
NVM Security

HCS12 NVM Guidelines

Reprogramming the
Security Bits

In Normal Single Chip Mode, security can also be disabled by means of erasing
and reprogramming the security bits within Flash Options/Security byte to the
unsecured value. As the erase operation will erase the entire sector from
$FE00 to $FFFF, the Backdoor Key and the interrupt vectors will also be
erased and so this method is not recommended for Normal Single Chip mode.
The application software can only erase and program the Flash
Options/Security byte if the Flash sector containing the Flash Options/Security
byte is not protected (see Flash Protection). Thus Flash protection is a useful
means of preventing this method. The microcontroller will enter the unsecured
state after the next reset following the programming of the security bits to the
unsecured value.

This method requires:

• That the application software previously programmed into the
microcontroller has been designed to have the capability to erase and
program the Flash Options/Security byte, or

• That security is first disabled using the Backdoor Key method, allowing
BDM to be used to issue commands to erase and program the Flash
Options/Security byte, and

• The Flash sector containing the Flash Options/Security byte is not
protected.

Complete Memory
Erase (Special
modes)

The microcontroller can be unsecured in Special modes by erasing the entire
EEPROM and Flash contents.

When a secure microcontroller is reset into Special Single Chip mode, the BDM
firmware verifies whether the EEPROM and Flash are erased. If any EEPROM
or Flash address is not erased, only BDM hardware commands are enabled.
BDM hardware commands can then be used to write to the EEPROM and
Flash registers, and so to Mass Erase the EEPROM and all Flash blocks.

When next reset into Special Single Chip mode, the BDM firmware will again
verify whether all EEPROM and Flash are erased, and this being the case, will
enable all BDM commands, allowing the Flash Options/Security byte to be
programmed to the unsecured value. The security bits SEC[1:0] in the Flash
Security register will indicate the unsecure state following the next reset.

Special Single Chip Erase and Unsecure:

1. Reset into Special Single Chip mode

2. Write an appropriate value to the ECLKDIV register for correct timing.

3. Write $FF to the EPROT register to disable protection.

4. Write $30 to the ESTAT register to clear the PVIOL and ACCERR bits.

5. Write $0000 to the EDATA register ($011A–$011B)

6. Write $0000 to the EADDR register ($0118–$0119)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D

HCS12 NVM Guidelines

7. Write $41 (Mass Erase) to the ECMD register.

8. Write $80 to the ESTAT register to clear CBEIF.

9. Write an appropriate value to the FCLKDIV register for correct timing.

10. Write $00 to the FCNFG register to select Flash block 0.

11. Write $10 to the FTSTMOD register ($0102) to set the WRALL bit, so the
following writes affect all flash blocks.

12. Write $FF to the FPROT register to disable protection.

13. Write $30 to the FSTAT register to clear the PVIOL and ACCERR bits.

14. Write $0000 to the FDATA register ($010A–$010B)

15. Write $0000 to the FADDR register ($0108–$0109)

16. Write $41 (Mass Erase) to the FCMD register.

17. Write $80 to the FSTAT register to clear CBEIF.

18. Wait until all CCIF flags are set.

19. Reset back into Special Single Chip mode

20. Write an appropriate value to the FCLKDIV register for correct timing.

21. Write $00 to the FCNFG register to select Flash block 0.

22. Write $FF to the FPROT register to disable protection.

23. Write $FFBE to Flash address $FF0E

24. Write $20 (Program) to the FCMD register.

25. Write $80 to the FSTAT register to clear CBEIF.

26. Wait until the CCIF flag in FSTAT is are set.

27. Reset into any mode.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D
Appendix A ‘C’ Variable Definitions

HCS12 NVM Guidelines

Appendix A ‘C’ Variable Definitions

#define PASS 0u /*function return values */
#define FAIL 1u

#define REG_BASE 0x0000 /*register base address */

#define BLANK 0x04 /*FSTAT/ESTAT bit masks */
#define ACCERR 0x10
#define PVIOL 0x20
#define CCIF 0x40
#define CBEIF 0x80

#define ERASE_VERIFY 0x05 /*FCMD/ECMD commands*/
#define PROG 0x20
#define ERASE 0x40
#define MASS_ERASE 0x41
#define MODIFY 0x60

typedef unsigned char UINT8; /*basic types */
typedef unsigned short UINT16;
typedef signed char INT8;
typedef signed short INT16;

typedef union /*MCU register types */
{
 UINT8 byte;
 struct
 {
 UINT8 :2; /*not used */
 UINT8 blank :1; /*blank verify flag */
 UINT8 :1; /*not used */
 UINT8 accerr :1; /*access error flag */
 UINT8 pviol :1; /*protection violation flag */
 UINT8 ccif :1; /*command complete interrupt flag */
 UINT8 cbeif :1; /*command buffer empty interrupt flag */
 }bit;
}tFSTAT;

typedef union
{
 UINT8 byte;
 struct
 {
 UINT8 :8; /*bitfield not used */
 }bit;
}tFCMD;

/*MCU register variables */
volatile tFSTAT FSTAT @(REG_BASE + 0x105); /*Flash status register */
volatile tFCMD FCMD @(REG_BASE + 0x106); /*Flash command buffer */
volatile tFSTAT ESTAT @(REG_BASE + 0x115); /*EEPROM status register */
volatile tFCMD ECMD @(REG_BASE + 0x116); /*EEPROM command buffer */

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2400/D

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	Introduction
	Split-Gate Flash Memory
	Split-Gate Flash Memory Structure
	NVM Programming and Erasure

	Flash Memory
	Introduction
	Illegal Flash Operations
	Parallel Flash Block Programming
	Flash Memory Paging
	Non-Paged Flash Memory
	Unused Flash
	Flash Memory Protection
	Protected Application Example
	Flash Program and Erase Routines

	EEPROM
	Introduction
	Illegal EEPROM Operations
	Storage of Variables in EEPROM
	EEPROM Protection
	EEPROM Program and Erase Routines

	NVM Security
	Secured Operation
	Unsecuring the Microcontroller
	Backdoor Key Access Sequence:

	Appendix A ‘C’ Variable Definitions

