
Rev. 0, 12/2002

A Smart Antenna
System for 3G Wireless
Using the MSC8102
DSP Device

By Leon Turner and
Dipesh Koirala

CONTENTS

1 Adaptive Antenna
Basics............................. 1

1.1 Least Mean Squares
(LMS) 2

1.2 Recursive Least Squares
(RLS) 4

2 AA System 7
3 System Throughput

Estimates 8
4 DSP Memory 10
5 MCPS Estimates for

Software Blocks 10
6 MSC8102

Implementation............ 12
6.1 CRRS Software.......... 14
6.2 CRRS Hardware........ 15
7 References 15

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

© Freescale Semicond
This application note describes the resource requirements for implementing a high-level smart antenna or
adaptive antenna (AA) uplink wideband Code-division multiple access (WCDMA) system using the
StarCore®-based Motorola MSC8102 and ASIC(s). The baseline system supports 128 voice users, and
the resources required to support adaptive antenna, chip rate, and symbol rate processing for a WCDMA
uplink are all included in this implementation.

Two candidate adaptive algorithms are considered, which are based on the Minimum Mean Squared
Error (MMSE), namely, Least Mean Square (LMS) and Recursive Least Squares (RLS). Both algorithms
are computationally simplified, approximate methods of minimizing the mean squared error. The LMS
algorithm was selected for this study, and the system requirements for the LMS adaptive algorithm are
considered. The computations, memory, and input/out estimates for 128 voice or four 384 Kbps high data
rate users for the Third Generation Partnership Project (3GPP) illustrate that the MSC8102 device can be
used effectively and efficiently for smart antennas with LMS in a WCDMA system for 3G wireless
infrastructure.

1 Adaptive Antenna Basics
Within a generic AA uplink system, the AA weight multiplication occurs between the control channel
and data channel despreading (within the beam forming block shown in Figure 1) and conventional
CDMA chip-rate control and data processing, which consists of automatic frequency control, channel
estimation, time tracking, and maximal ratio combining. The AA processing also requires feedback from
the conventional CDMA chip-rate processing. For details on a typical AA system, consult reference [3].
Various algorithms can be used to accomplish the adaptive weight control depicted in Figure 1. Several
are based on the MMSE criterion [4]. The mean squared error is as follows:

where

• W is the weight vector (n_ants × 1 complex vector)
• r (n) is the received de-rotated symbols (n_ants × 1 complex vector)
• d is the target output
• n is the time index

 mean |WH× r (n) – d|2

uctor, Inc., 2004. All rights reserved.

For More Information On This Product,

 Go to: www.freescale.com

Adaptive Antenna Basics

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 1. A Generic Adaptive Antenna (AA) Uplink WCDMA System

1.1 Least Mean Squares (LMS)
The system described in this application note uses ordinary LMS without normalization, with a trade-off
between computational cost and performance. The performance of the normalized LMS algorithm is
generally superior (especially if the signal power varies significantly due to signal propagation anomalies
such as fading). However, normalization involves a division operation that is computationally very
expensive. Flowcharts for the LMS and NLMS algorithms are shown in Figure 2 and Figure 3.

Figure 2. LMS Algorithm

Beam Forming
(One for Each Path)

Data Despread

Correlator

Correlator

Correlator

Weight Multiplier
(Data)

Control Despread

Correlator

Correlator

Correlator

Weight Multiplier
(Control)

Local PN
Generator (Data)

Timing Information
(from Chip-Rate
Control Process)

Local PN
Generator (Control)

Timing Information
(from Chip-Rate
Control Process)

Conventional
CDMA Chip-

Rate Data
Processing

Conventional
CDMA Chip-
Rate Control
Processing

Adaptive
Weight
Control

A/D and
Baseband Filter

A/D and
Baseband Filter

A/D and
Baseband Filter

To Symbol-Rate
Processing

From
Control

Despread

Initial Conditions:
WH (0) = 0

Error Signal Calculation
e(n) = d(n) – WH (n) r (n)

Weight Estimate Update
W(n+1) = W(n) + µ r(n) e* (n)

Iterate:
n → n + 1
2
For More Information On This Product,

 Go to: www.freescale.com

Adaptive Antenna Basics

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 3. Normalized LMS Algorithm

The notation in Figure 2 and Figure 3 is as follows:

• e(n) and d(n) are the complex error and real target outputs, respectively

• W(n) is the N × 1 complex array weight vector

• r(n) represents the N × 1 complex array input vector.

• N is the number of antennas in the smart antenna system

• n is the time index

• µ is the convergence parameter normally called step size in gradient descent-based algorithms.

The LMS algorithm is implemented as specified in [1], according to the following Matlab code:

% Definitions:
% R - Input data vector(complex, n_ants X 1)
% W - Weight vector output matrix (complex, n_ants X n_inputs)
% d_fix - target output (real)
% e - error (complex)
% mu - convergence parameter (supplied by user)
% mu = 0.5 in current simulation

% Initial conditions
W(:,1) = 0;

% Update step
e = d_fix - W(:,iter)’*R;
W(:,iter+1) = W(:,iter) + mu*(e’*R);
iter = iter+1;

Figure 4 shows the directional power response for an 8-element linear antenna array that is adapted using
the Matlab algorithm. Powers values are normalized by the maximum direction power response. Circular
marker size in Figure 4 indicates the relative strength of interfering sources. As the figure shows, the
response is successfully steered towards the desired signal source and away from the strongest interfering
sources.

Initial Conditions:
WH (0) = 0

Error Signal Calculation
e(n) = d(n) – WH (n) r (n)

Normalized Weight

W(n+1) = W(n) +

Iterate:
n → n + 1

Estimate Update
µ r(n) e* (n)

r(n)
3
For More Information On This Product,

 Go to: www.freescale.com

Adaptive Antenna Basics

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 4. Power Coverage for LMS-Steered Antenna Array

1.2 Recursive Least Squares (RLS)
Based on the method of least squares, the recursive implementation of the algorithm starts from known
initial conditions and uses the information contained in new data samples to update the old estimates. An
exponential weighting factor or forgetting factor is defined as follows:

where λ is a positive constant close to but less than 1. Since this factor is used in the cost function, the
algorithm is also called exponentially weighted least squares. When λ equals 1, there is no weighting on
the square errors, so we have the ordinary method of least squares. The inverse of 1 – λ is a measure of
the memory of the algorithm. The special case of λ = 1 corresponds to infinite memory and is the case
considered in this implementation. Figure 5 shows a flowchart for the RLS algorithm.

0 20 40 60 80 100 120 140 160 180
-60

-50

-40

-30

-20

-10

0

Azimuthal angle (degrees)

N
or

m
al

iz
ed

 p
ow

er
 r

es
po

ns
e

Directional response for LMS-steered Antenna

 50 iterations
100 iterations
150 iterations

Source direction
Interferer directions

X

x

ß (n,i) = λn-i , i = 1, 2, . . . , n
4
For More Information On This Product,

 Go to: www.freescale.com

Adaptive Antenna Basics

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 5. RLS Algorithm

The notation in Figure 5 is as follows:

• P(n) is the inverse of the (exponentially weighted) correlation matrix for the input vectors {r (1) . . .
r(n)}.

• V(n) is an N × 1 intermediate complex vector.

• Y(n) is an N × 1 complex vector gain factor.

• W(n) is the N × 1 complex weight vector.

• d(n) is the real target signal (in some applications, d(n) may be complex).

• e(n) is the complex error signal.

The initial conditions shown in Figure 5 are W(0) = 0 and P(0) = δ –1I, whereδ is a positive number
much less than N–1(E[|rHr] (δ = 0.01 in our case). This initialization procedure is normally referred to as
a soft-constrained initialization [1]. The RLS algorithm is implemented as specified in [1], according to
the Matlab code, as follows:

% Definitions:
% PP - Inverse correlation matrix (complex n_ants X n_ants)
% R - Input data vector(complex, n_ants X 1)
% V - Intermediate vector (complex, n_ants X 1)
% W - Weight vector output matrix (complex, n_ants X n_inputs)
% Y - Intermediate vector (complex, n_ants X 1)

Initial Conditions:
WH (0) = 0

Intermediate Vector Update:
V(n) = P(n)r(n)

Iterate:
n → n + 1

Error Signal Calculation:
e(n) = d(n) – WH (n) r (n)

Correlation Matrix Update:
P(n+1) = λ–1(P(n) –Y(n)(r(n)HP(n)))

Weight Estimate Update:
W(n+1) = W(n) + e × (n) Y (n)

Vector Gain Factor Update:

Y(n) = (λ–1(1 + λ–1r(n)HV(n))–1)V(n)

P(0) = δ–1I
5
For More Information On This Product,

 Go to: www.freescale.com

Adaptive Antenna Basics

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

% d_fix - target output (real)
% e - error (complex)
% idelta - initial stiffness parameter (supplied by user)
% idelta = 20 in current simulation
% ilambda - forgetting factor (ilambda=1 means no forgetting) (user suppl.)
% ilambda = 1 in current simulation

% scale = 2^k, where k is chosen large enough to keep parameters in range
% scale = 64 in current implementation

% Initial conditions
PP = idelta*eye(n_ants,n_ants);
W(:,1) = 0;

% Rescaling for proper range in fixed point
PP = PP/scale;

% Update step
V = PP*R;
Y = ilambda / (1/scale + ilambda*R’*V) * V;
e = d_fix - W(:,iter)’*R;
W(:,iter+1) = W(:,iter) + e’*Y;
PP = ilambda * (PP - Y*(R’*PP));
iter = iter + 1;

The parameter scale ensures that all quantities remain fractional so that overflow does not occur during
the fixed-point computations. Figure 6 shows the directional power response for an 8-element linear
antenna array for a system with specifications given in [2] that was adapted using the preceding Matlab
algorithm. As Figure 6 shows, the response is successfully steered towards the desired signal source and
away from interfering sources. The antenna coverage pattern is fairly stable after 50 iterations. Power
values are normalized by the maximum directional power response. Circular marker size indicates the
relative strength of interfering sources.

Figure 6. Power Coverage for RLS-Steered Antenna Array

0 20 40 60 80 100 120 140 160 180
-60

-50

-40

-30

-20

-10

0
Directional response for RLS-adapted linear antenna array

azimuthal angle (degrees)

N
or

m
ai

liz
ed

 p
ow

er
 r

es
po

ns
e

(d
B

)

 50 iterations
100 iterations
150 iterations

Source direction
Interferer directions

X

x

6
For More Information On This Product,

 Go to: www.freescale.com

AA System

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2 AA System
Figure 7 shows a top-level block diagram of an MMSE-based AA system. Options for partitioning the
system between hardware and software are indicated in the figure. Such partitioning is useful because
putting as many functions as possible in the DSP allows you to take advantage of the flexibility inherent
in software. However, some blocks are placed in hardware because they exceed the I/O or MIPS capacity
of the DSP. The beam combiner block is a candidate for either hardware or software. If the beam
combiner is placed in software, the hardware/software interface is more straightforward because no
feedback is required from the beam estimator to the hardware. However, a software beam combiner
requires much greater input bandwidth per user, which limits the number of users the system can
accommodate. Also, a hardware beam combiner adds considerable complexity to the hardware, since
multipliers and control capabilities must be added for the beam combining. The hardware buffer
requirements are also greater, since data symbols must be stored until the channel estimates required for
beam combining are returned from the software.

Figure 7. MMSE-based AA System with Partitioning

The system blocks shown in Figure 7 are as follows:

• Antenna buffer. This buffer consists of two banks, one to read in antenna samples and the other to
write the samples out to the correlator. This two-bank structure is called a ping pong buffer. The
antenna buffer structure consists of one ping-pong buffer for each antenna element in the system.

• Correlator pool. Correlators are shared among all users, beams, and antenna elements. For each
specific user/beam/antenna element, four correlations are required: one for DPDCH and three for
DPCCH (early, on-time, and late). Beams are sector-specific. That is, if two sectors lock onto the
same multipath, each sector forms its own beam.

Antenna
Buffer

Correlator
Pool

Beam Former
(DPDCH and
DPCCH E/L)

2

2 2

2

1

3

Beam Former
Combiner
(DPDCH)

3

MMSE
Weight

Adjustor

1

Beam Former
(DPCCH)

1

Frame Antennas

Beam Estimator
(DPCCH)

1

DLL
(DPCCH E/L)

1

Symbol Rate
Processing

1

To the
Network

Software Blocks

Hardware Blocks

Hardware or Software

Legend
7
For More Information On This Product,

 Go to: www.freescale.com

System Throughput Estimates

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

8

• Beam former. Beams are formed via the weighted combination of despread antenna data. The MMSE
weight adjustment algorithm (RLS or LMS) determines the weights. Beams must be formed for
DPDCH (for data demodulation), DPCCH early/late (for time tracking in the DLL), and for on-time
DPCCH (for channel estimation)

• DLL (Early/Late DPCCH). This function is the same as in conventional (non-AA) systems. The DLL
estimates the timing drift of the beam, with the aid of data obtained from the early/late DPCCH
beams. The DLL requires AFC correction and channel estimation, which is supplied by the beam
estimation block.

• Beam combiner (DPDCH). For the DPDCH, this function is analogous to path combining in non-AA
systems. Each user’s data signal is computed via a weighted combination of the user’s AFC-corrected
beams. The weights come from the output of the MMSE weight adjuster block and are updated
periodically (in our computations we assume an update rate of 1 weight update per slot).

• Beam estimation (on-time DPCCH). This is analogous to channel estimation in non-AA systems.
Automatic frequency control (AFC) and channel estimation functions are performed on each on-time
DPCCH beam. AFC estimates and corrects the overall frequency offsets of the beams on a per-user
basis, and the channel estimation estimates the residual beam variation (subsequent to AFC
correction) in the baseband (IQ) plane.

• MMSE weight adjuster. Uses the overall beam estimation (AFC plus channel estimation) plus the
despread antenna data for the DPCCH to update the weights for antenna combination.

3 System Throughput Estimates
This section presents estimates of throughputs between system blocks shown in Figure 7. The
throughputs of greatest concern are those from hardware blocks to software blocks, since the
hardware-to-DSP I/O throughput is the bottleneck that limits the number of users the system can handle.
Hardware block-to-hardware block throughputs are less of an issue because they can be decreased by
pipelining. Throughputs from software block-to-software block are not computed because these do not
correspond to physical data throughput (since all software blocks perform on the same device). Table 1
lists the parameters used in the throughput analysis.

Table 1. Parameters Used in System Analysis

Parameter Description

N_ants Number of antenna elements per smart antenna per sector. Typically, N_ants
ranges from 4 to 8. In the current analysis, N_ants has a value of 6.

N_sectors Number of sectors. Typically, there are 3 or 6 sectors. In the current analysis
N_sectors has a value of 3.

N_beams Maximum number of beams per user.

N_users Number of users supported by the system (including all sectors). In the current
analysis, N_users has a value of 128.

N_multicodes Maximum number of DPDCH code channels per physical channel (currently 6
according to 3GPP)

Chip_rate System chip rate (3.84 Mcps for 3GPP).

DPCCH_sym_rate Symbol rate for control symbols (15 Ksps for 3GPP)

mean_max_DPDCH_sym_rate Mean of all users’ maximum data symbol rates

Slot_rate Equal to 1.5 ksps for 3GPP

B_1 DPCCH and DPDCH correlator output byte width (B_1 = 1 is assumed)

B_2 DPCCH and DPDCH beam former output byte width (B_2 = 1 is assumed)

For More Information On This Product,

 Go to: www.freescale.com

System Throughput Estimates

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

9

The mean_max_DPDCH_sym_rate parameter requires additional explanation. The system is configured
so that a minimum spreading factor is determined for each user. For instance, users designated as voice
users are allowed a minimum spreading factor of 64, corresponding to a maximum DPDCH symbol rate
of Chip_rate/64. These voice users have the option of using a larger spreading factor (for example, lower
data rate), but not a smaller one. In addition, different data users could be assigned different minimum
spreading factors from the set {2k, k=2,3,4,5}, corresponding to a maximum DPDCH symbol rate of
Chip_rate/2k. The mean_max_DPDCH_sym_rate parameter is defined as the average over all users of
these maximum symbol rates. The maximum system data symbol throughput is given by N_users ×
mean_max_DPDCH_sym_rate.

Table 2 shows the throughputs (in MB/sec) between the individual blocks of the smart antenna system
shown in Figure 7. The system scenario is for 128 voice users at minimum spreading factor 64,
corresponding to mean_max_DPDCH_sym_rate = Chip_rate/64 and a total maximum DPDCH symbol
throughput of 2 × Chip_rate.

B_3 Beam estimator output byte width (B_3 = 1 is assumed)

B_4 DPCCH and DPDCH Beam combiner output byte width (B_4 = 1 is assumed)

B_5 DLL output byte width (B_5 = 4 is assumed, as in current CRRS design)

B_6 Weight adjuster output byte width (B_6 = 1 is assumed)

Table 2. System Throughput Estimates

System Parameters Output Byte Widths

Number of antennas/beam 6 Correlator output 1

Number of beams/user 6 Beam former output 1

Number of users 128 Beam estimator output 1

Chip Rate 3.84E+06 Beam combiner output 1

DPCCH symbol rate 15000 DLL output 4

Mean Max DPDCH symbol rate 60000 Weight adjustor output 1

Slot Rate 1500

Number of real DPDCH for
multicode

6

Throughput Estimates

Output From Input To

Maximum Throughput (MB/Second)

DPCCH
On-Time

DPCCH
Early/Late

DPDCH Control

Correlator pool Beam former 276.48 276.48

Correlator pool Weight adjustor 138.24

Beam former DLL 46.08

Beam former Beam combiner 46.08

Beam estimator Beam combiner 2.304

Beam combiner Symbol rate
process

7.68

DLL Antenna buffer and
correlator bank

4.608

Weight adjustor Beam former 13.824

Table 1. Parameters Used in System Analysis (Continued)

Parameter Description

For More Information On This Product,

 Go to: www.freescale.com

DSP Memory

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4 DSP Memory
Memory can be conveniently divided into DPDCH memory and DPCCH memory, which is described in
this section. These buffers all reside within the DSP.

• DPDCH memory requirements:

— DPDCH interface buffer. The buffer to which the hardware writes. This buffer stores one slot
worth of data symbols.

— DPDCH intermediate buffer. Holds the data symbols prior to spread factor combining and
frequency correction.

• DPCCH memory requirements:

— DPCCH interface buffer. The buffer to which the hardware writes. This buffer stores one slot
worth of control symbols.

— DPCCH intermediate buffer. The working buffer for the DSP. The types of buffers required are
on-time DPCCH before beam forming, on-time DPCCH after beam forming, and early and late
DPCCH.

• Control buffer requirements. Provides control information to the hardware, along with antenna
coefficients and channel estimates:

— Channel estimate coefficient. Buffers to store channel estimate coefficients.

— Antenna coefficients. Buffers to store antenna coefficients.

— Hardware control fields. Buffers to store hardware control information.

5 MCPS Estimates for Software Blocks
Estimations of the computational requirements for the proposed AA system must include both AA and
chip rate processing. The computational load is measured in million cycles per second (MCPS). The
MCPS requirements are computed only for software blocks, as indicated in Figure 7. AA is an
enhancement to the fundamental chip rate system. Therefore, to evaluate resource requirements for an
AA-enhanced system, we require a reference chip rate receiver architecture, to which we add AA
features. Figure 8 shows the reference chip-rate architecture, which we refer to as the Chip Rate
Reference System (CRRS). Of course, if the basic underlying chip rate architecture is changed, the
resource requirements may also change. Although CRRS is the reference system, some changes in CRRS
may be required when it is incorporated into an AA system. As indicated in Figure 7, the beam combiner
function (corresponding to the path combiner in CRRS) can be moved from software to hardware to meet
resource requirements.

The AA system is differentiated from a non-AA system by the addition of the beam former and MMSE
weight adjuster blocks (see Figure 7). Also, the AA system has an increased correlator load because
separate correlators are required for each antenna in the array for each beam. However, for the systems
blocks assigned to the DSP according to Figure 7, the MCPS load is equal for AA and non-AA systems.
Therefore, estimates of MCPS requirements need only compute the MCPS requirements for the two
AA-specific system blocks. All other MCPS estimates can be carried over from previous estimates
computed for the non-AA chip-rate system.
10
For More Information On This Product,

 Go to: www.freescale.com

MCPS Estimates for Software Blocks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11

Figure 8. Chip Rate Reference System (CRRS) Architecture

Following are MCPS formulas for the system blocks specific to the AA. Table 3 lists the number of
MCPS for all system blocks (including those not specific to the AA). The following estimates are based
on four MAC operations per complex multiply:

• MCPS cost for LMS algorithm. The single beam estimate of 0.44 MCPS for 8 antennas is obtained
from reference [5] and is based on measurements taken from an actual implementation of LMS on an
MSC8101 device.

• MCPS cost for RLS algorithm. The single beam estimate of 5.93 MCPS for 8 antennas is obtained
from reference [5] and is based on measurements taken from an actual implementation of RLS on an
MSC8101 device.

In Table 3, the MCPS is for 128 voice users with 6 fingers (beams) per user. The columns labeled
CRRS+AA(1) refer to AA systems with the beam combiner in hardware.

Table 3. Resource Requirement Computations for AA System

MCPS Comparisons

6 Antenna Elements

CRRS CRRS + AA(1)

Buffer input management 460.800 691.20

DPCCH beam combining 56.256 43.96

DPDCH frequency correction 0 0

SF combining 184.520 21.12

Extract pilots 150.530 112.89

2

1

3

Software Tasks

Hardware Tasks

Tasks that can be grouped with symbol rate processing

Legend

4 For AA, this could be moved to hardware (corresponds to AA beam combiner)

Finger
Management

Path
Combiner

AFC
Despin

SF
Combiner

Channel
Estimation

AFC
Despin

Extract
Pilots

AFC
Adjust

Extract
TPC, FBI, . . .

TFCI
Decoding

Chip Skew
Register

DPCCH
Correlation

Sample
Multiplex

Interpolator
Filter

DPDCH
Correlation

PN Code
Generator

2
1

1

4

3

4

DLL

Soft
Decision
Symbols to
Symbol
Processing

Received
Chips (from
Antenna
Data
Multiplex)

DPDCH Processing

DPCCH Processing

1

1

For More Information On This Product,

 Go to: www.freescale.com

MSC8102 Implementation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

12

6 MSC8102 Implementation
The current CRRS chip rate architecture can be implemented with a single MSC8101 device [6].
However, since a practical AA system implementation has more stringent resource requirements, we
migrated the implementation to a multi-core processor, that is, a CRRS-based AA system on the
MSC8102, which is a 4-core device. Our study shows that for our benchmark system (128 voice users
with 6 beams/user and 6 antennas/beam), two MSC8102 devices can perform all required AA and chip
rate processing. For a complete system with chip and symbol rate processing, a third MSC8102 is
required. The MSC8102 implementation incurs minimal software changes in the chip rate portion of the
system because both the MSC8101 and the MSC8102 processors use the same instruction set (although
changes are necessary because of the transition from a single core to a multi-core architecture). Additions
to the software to incorporate AA functions include the following:

• a module for performing MMSE (to recalculate antenna coefficients dynamically)

• an on-time beam-forming algorithm, which is identical to the beam combiner, except for changes in
the input and weight coefficients

MCPS Comparisons cont.

6 Antenna Elements

CRRS CRRS + AA(1)

DPCCH frequency correction 176.640 132.480

Channel estimation 43.000 32.200

Frequency estimation 54.530 43.800

TFCI decoding 27.648 27.648

DLL + energy computation 119.350 89.840

Finger management + control 459.200 334.400

Target generation 0 81.790

Beam former (DPCCH on-time) 0 172.800

MMSE weight adjuster (LMS) 0 350.000

Total 1732.474 2134.338

I/O Comparisons (MByps)

DPDCH 92.160 15.360

DPCCH early/late 46.080 46.080

DPCCH on-time 23.040 138.240

Control feedback 2.304 20.736

Total 163.584 220.416

Memory Comparisons (KB)

CRRS CRRS + AA(1)

DPDCH 148.224 96.328

DPCCH 72.960 285.696

Control feedback 6.144 13.824

Total 227.328 398.848

Table 3. Resource Requirement Computations for AA System (Continued)

For More Information On This Product,

 Go to: www.freescale.com

MSC8102 Implementation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

13

The transition from the current CRRS architecture to the suggested AA system also requires some
changes in the hardware, as follows:

• An increased number of correlators to perform correlations for each antenna element

• Complex multipliers to perform beam forming and subsequent beam combining.

Figure 9 depicts a complete AA system (including all AA, chip rate, and symbol rate processing) for 128
voice users, using three MSC8102 devices. The hardware/software partitioning is as shown in Figure 7,
with the beam combiner in hardware. The system can accommodate the indicated number of voice users
performing both symbol rate and chip rate processing. The chip rate+AA(1) processing load of 2135
MCPS is based on scaled results from a 32-voice users chip rate system implemented on an
MSC8101ADS board [6] and on measurements taken from an actual implementation of LMS on an
MSC8101 device[5]. The symbol rate estimate of 611 MCPS is based on scaled results from a 32-voice
users symbol rate system implemented on an MSC8101ADS board. Three buffers reside in hardware
(antenna buffer, correlator buffer, and control buffer). The buffer size estimates derive from our analysis
of the CRRS system [6]. The buffers described in Section 4, DSP Memory are all contained within the
MSC8102 devices, except for the DPDCH symbol rate buffer, which is shown in Figure 9. The resource
requirements for the system are based on the number of voice users. Each MSC8102 device is capable of
1.2 Giga instructions per second at 300 MHz, and it has a bus bandwidth I/O of 560 MB per second on
the 60x-compatible system bus/280 MB per second on the direct slave interface (DSI) bus (or 280 MB
per second on the system bus/560 Mbyps on the DSI bus), assuming 70 MHz, 224 × 4 KB of L1 memory,
and 476 KB of L2 shared memory.

Figure 9. Complete Smart Antenna System

MSC8102

Cycles:
1.2 G Instructions
Per Second
@ 300 MHz

I/O:
280 MByps System Bus
560 MByps DSI Bus
(assuming 70 MHz)

Memory:
224 × 4 KB (L1)
476 KB (L2)

MSC8102

Cycles:
1.2 G Instructions
Per Second
@ 300 MHz

I/O:
560 MByps System Bus
280 MByps DSI Bus
(assuming 70 MHz)

Memory:
224 × 4 KB (L1)
476 KB (L2)

MSC8102

Cycles:
1.2 G Instructions
Per Second
@ 300 MHz

I/O:
280 MByps System Bus
560 MByps DSI Bus
(assuming 70 MHz)

Memory:
224 × 4 KB (L1)
476 KB (L2)

Mcps Requirements

Chip rate+AA(1):2135 Mcps

Symbol rate: 611 Mcps

Total: 2746 Mcps

DPDCH
Symbol Rate

Buffer
(307 KB)

Antenna
Buffer

(2304 KB)

Correlator

Beam Former
DPDCH and
DPCCH (E/L)

Buffer
(1.5 MB)

Beam Combine

Feedback Buffer
(10 KB)

21
MByps

92
MByps

(DPDCH)

8
MByps

(DPDCH)

184
MByps

(DPCCH)

128 Voice Users at SF 128,
6 Beams/User
6 Antenna Elements/Beam

For More Information On This Product,

 Go to: www.freescale.com

MSC8102 Implementation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The smart antenna system processing load of 2718 Mcps is well within the processing capabilities of the
three MSC8102 devices. The system data flow is described in Figure 10. The total system bus usage (221
Mbyps) includes all data transfers between the MSC8102 devices and the ASIC. The ASIC performs the
correlations, beam forming, and beam combining functions. The total DSI bus usage of 50 Mbyps
includes all data transfers between the three MSC8102 devices and the external memory (also referred to
as the symbol rate buffer in Figure 9). If the spread factor for certain users decreases to accommodate
higher data rates, the system resource requirements increases. The bottleneck in how many high data rate
users this system can handle is the symbol rate MCPS requirement. A reasonable trade-off between high
data rate users and voice users is that one data user at 384 Kbps (spread factor 4) consumes the same
amount of symbol rate processing as 32 voice users. Four data users at 64 Kbps (spread factor 16) require
the same amount of symbol rate processing as 32 voice users.

6.1 CRRS Software
The current CRRS is designed on an FPGA, along with an MSC8101 device. The transition from a single
core to a multi-core device necessitates some changes to the software. Otherwise, the hardware to DSP
interface is designed so that the core software can be reused even if the hardware design changes. The
only software module that must be rewritten is the buffer input manager interface module that orders the
partial symbols from the hardware. The interface for each stream of data generated by the multiple
antenna elements can be managed by replicating the same interface currently in use in CRRS. For a
system with beam combining in hardware, there is little impact on the current CRRS software structure
since path combining is the first module the DPDCH data stream encounters. The relocation of beam
combining to hardware requires a change only in the interface routines; the interface must be changed so
that the beam former coefficients generated by the AA algorithms are provided to the hardware.

Figure 10. Connectivity Diagram For the Complete Smart Antenna System

MSC8102

60x-Compatible

Mcps Requirements

Chip rate+AA(1): 2135 Mcps

Symbol rate: 611 Mcps

Total: 2746 Mcps

Memory
ASIC

Correlator
Beam Former

128 Voice Users at SF 128,
6 Beams/User
6 Antenna Elements/Beam

System Bus
Master

MSC8102

60x-Compatible
System Bus

Master

MSC8102

DSI Bus
Master

Beam Combiner

60x-Compatible
System Bus (64 Bits)

60x-Compatible
System Bus (64 Bits)

111 MByps

DSI
32 Bits, 50 MByps

DSI
32 Bits, 50 MByps
14
For More Information On This Product,

 Go to: www.freescale.com

References

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

15

6.2 CRRS Hardware
The hardware must be scaled up from the current CRRS structure for an AA system. The current system
is for single-element antennas, but the AA system employs multiple-element antennas. Therefore, the AA
system requires up to N-fold duplication of the CRRS system (where N is the number of elements per
antenna) and related changes in control. More correlators are required to accommodate data from
multiple antenna elements, but each correlator is identical to those in the current structure. The only
added feature in the system is the beam former, which is a complex MAC unit. If the DPDCH beam
combiner is added to the hardware, an additional complex MAC unit must be added to the hardware.The
channel estimates must also be sent back from software to hardware. In summary, migration from the
current CRRS system to an AA system requires some enlargements and additions to the hardware, with
attendant changes to the control software.

7 References
[1] Simon Haykin, Adaptive Filter Theory, 3rd Edition, Chapter 13, Prentice-Hall, NJ, 1996.

[2] Koga, Hisao and Taromaru, Makoto, “A Simple and Fast Converging Algorithm for MMSE
Adaptive Array Antenna”, IEICE Transactions Commun., Vol. E83-B, No. 8, August 2000, pp.
1671–1677.

[3] S. Tanaka, M. Sawahashi, F. Adachi, “Pilot Symbol-Assisted Decision-Directed Coherent Adaptive
Array Diversity for DS-CDMA Mobile Radio Reverse Link Source,” IECE Transactions Fund., Vol
E80-A, No. 12, December 1997, pp. 2445–2454.

[4] J. C. Liberti and T. S. Rappaport, Smart Antennas for Wireless Communications: IS-95 and Third
Generation CDMA Applications. (Prentice-Hall, NJ, 1999.

[5] Resource Requirements and Partitioning for MMSE-based Adaptive Antenna Uplink WCDMA
System Using the Motorola MSC8102 Processor, Motorola application note release is pending.

[6] MSC8102 and MSC8102-Based 3G Channel Card, Motorola application note release is pending.

For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AN2383/D
For More Information On This Product,

 Go to: www.freescale.com

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	1 Adaptive Antenna Basics
	1.1 Least Mean Squares (LMS)
	1.2 Recursive Least Squares (RLS)

	2 AA System
	3 System Throughput Estimates
	4 DSP Memory
	5 MCPS Estimates for Software Blocks
	6 MSC8102 Implementation
	6.1 CRRS Software
	6.2 CRRS Hardware

	7 References

