
AN2213/D
11/2001

Using Cosmic Software’s
M68HC12 Compiler for
MC9S12DP256 Software
Development

Application Note

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

n
c

..
.

By: Gordon Doughman
Freescale Field Applications Engineer

Introduction

Cosmic Software’s C compiler suite provides a competent set of tools and
utilities for MC9S12DP256 software development. Although Cosmic’s
documentation adequately covers the installation and general use of their tools,
it doesn’t cover the specifics of compilation and linking of code modules for
execution in the paged memory environment of the MC9S12DP256. While this
application note is not a substitute for the documentation provided with the
Cosmic tool set, it provides the additional details necessary to compile, link,
and generate an S-record object code file that can be executed on the
MC9S12DP256 using Cosmic’s compiler tools for the M68HC12 Family of
Motorola microcontrollers (MCU). Be sure to read the Cosmic documentation
to gain an understanding of the compiler, linker, and assembler features.

NOTE: M68HC12 Family is used in this document to represent both the M68HC12 and
HCS12 Families of products.

This document makes specific reference to the MC9S12DP256, but its
concepts on paging and compiler directives can be applied to all HCS12 Family
members with paged memory.

The MC9S12DP256 Memory Map

Because an M68HC12 Family device is a 16-bit microcontroller with a 16-bit
program counter, it cannot directly address a total of more than 64K bytes of
memory. To enable the M68HC12 Family to address more than 64K bytes of
program memory, a paging mechanism was designed into the architecture.
Access to program memory beyond the 64K limit is provided through a
16K byte window located from $8000 through $BFFF. An 8-bit paging register,
called the PPAGE register, provides access to a maximum of 256 16K byte
pages, or 4M bytes of program memory.
 2001

For More Information On This Product,

 Go to: www.freescale.com

rxzb30
ForwardLine

rxzb30
fslcopyrightline

rxzb30
freescalecolorjpeg

AN2213/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

In addition to the hardware paging mechanism, the instruction set has two
instructions that allow inter-page function (subroutine) calls:

• The CALL instruction is similar in function to the JSR instruction,
however, in addition to placing the PPAGE window return address on
the stack, it also places the value of the PPAGE register on the stack
before writing the 8-bit value supplied by the CALL instruction to the
PPAGE register.

• The RTC instruction is similar to the RTS instruction except that it is used
to terminate functions called by the CALL instruction.

Both the PPAGE register value and the PPAGE window address are restored
from the stack, continuing execution at the next instruction after the call.

The MC9S12DP256 implements 6 bits of the PPAGE register which gives it a
1 Mbyte program memory address space that is accessed through the PPAGE
window. The lower 768K portion of the address space, accessed with PPAGE
values $00 through $2F, is reserved for external memory when the part is
operated in expanded mode. The upper 256K of the address space, accessed
with PPAGE values $30 through $3F, is occupied by the on-chip FLASH
memory as shown in Figure 1.

Figure 1. MC9S12DP256 Memory Map

$0000

$4000

$8000

$C000

$FFFF

$3E

$3F

$30 $31 $32 $33 $34 $35 $36 $37 $38 $39 $3A $3B $3C $3D $3E $3F
16K PAGED
MEMORY

FLASH CONTROL REGISTERS
REGISTER BASE + $100

PROTECTED LOW AREA
0.5K, 1K, 2K, 4K

BLOCK 3 BLOCK 2 BLOCK 1 BLOCK 0

PROTECTED HIGH AREA
2K, 4K, 8K, 16K

$FF00–$FF0F, ACCESS KEY, PROTECTION, SECURITY
2 Using Cosmic Software’s M68HC12 Compiler for MC9S12DP256 Software Development

For More Information On This Product,
 Go to: www.freescale.com

AN2213/D
Declaring Functions For Paged Memory

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

While all 256K of FLASH memory can be accessed through the 16K PPAGE
window, two of the 16K byte pages can also be accessed at fixed address
locations as shown in Figure 1. The fixed page at $4000–$7FFF is the same
block of memory that can be accessed through the PPAGE window when the
PPAGE register contains $3E. The fixed page from $C000–$FFFF is the same
block of memory that can be accessed through the PPAGE window when the
PPAGE register contains $3F. These two fixed page areas are provided to
overcome some of the restrictions of the M68HC12 memory paging design.

Because of the manner in which the memory paging mechanism is
implemented, functions residing in paged memory mapped between $8000 and
$BFFF cannot access constant data residing in a different memory page. This
restriction is necessary because the PPAGE register would have to be written
with a different value in order to access the data. Clearly, writing the PPAGE
register with a new value would result in a CPU runaway situation because the
code it was executing would disappear as soon as the new value was written.
Any constant data such as lookup tables, string or numeric constants that are
shared by functions residing on different pages must be placed in one of the
two fixed FLASH memory pages. In addition, if a pointer to an entry in a table
of constant data is returned by a function, the data table must reside in one of
the fixed pages if the calling function could reside on a page other than the data
table. Also, Cosmic’s library routines (Libd.h12, Libf.h12, Libi.h12 and
Libm.h12) are written such that they cannot be executed from paged memory,
therefore, the library routines must be placed in one of the fixed pages.

Finally, because the reset and interrupt vectors are only 16-bits, all interrupt
service routines and the initial reset routine must begin in one of the fixed page
memory areas. This does not mean that the entire initialization or interrupt
service routines must reside in the fixed memory areas, however, they must
begin there. If it is desired to place the bulk of the interrupt service routine or
initialization code in paged memory, the portion of the interrupt service routine
in the fixed page area could consist of a CALL to the paged functions followed
by an RTI instruction.

Declaring Functions For Paged Memory

As mentioned previously, compiled functions are normally called with a JSR or
BSR instruction and are terminated with an RTS instruction; however, inter-
page functions must be invoked using the CALL instruction and must end with
the RTC instruction. To support the inter-page function calling mechanism of
the M68HC12 family, Cosmic has provided an extension to the ANSI
C standard for function declarations. This extension is used to inform the
compiler that a function located in paged memory can be called from a page
other than the page in which the function resides. The @far type qualifier must
Using Cosmic Software’s M68HC12 Compiler for MC9S12DP256 Software Developm

For More Information On This Product,
 Go to: www.freescale.com

AN2213/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

be used in both the declaration (prototype) and definition of any functions
residing in paged memory and called from a different page. Figure 2 shows
both the declaration and definition of a function using the @far type qualifier.
Notice that instead of using the @far qualifier directly in the declaration and
definition of the function, the word far is used instead. With the preprocessor
definitions included in the figure, it allows the source code to easily be used in
either a paged or non-paged environment.

NOTE: Intra-page function calls (those functions that are only called within the page in
which they reside) do not require the type qualifier. As such, those functions will
be called with a JSR or BSR instruction and will end with and RTS making the
code smaller and faster.

Placement of Constant Data During Compilation

As mentioned previously, functions residing in paged memory cannot access
constant data residing in a different memory page. Any constant data such as
lookup tables, string or numeric constants that are shared by functions residing
on different pages must be placed in one of the two fixed FLASH memory
pages. During the compilation process, by default, the Cosmic compiler places
all constant data and strings in a section named .const. At link time all the
constant data can be placed in one of the two fixed pages. For large programs,
it is conceivable that constant data will exceed the space provided by the two
fixed memory pages. In this case, it is recommended that any constant data
within a compile module not referenced from another page be placed in the
.text section of a compile module. This can be accomplished by using the
+nocst compiler command line option as shown in Figure 3.

#ifdef PagedMem
#define far @far
#else
#define far
#endif

ErrorNum far TargetInit (void); /* This is a prototype */

ErrorNum far TargetInit (void) /* This is a definition /*

{
/* Code goes here */
} /* end TargetInit */

Figure 2. Using the @far Type Qualifier

cx6812 -1 -e +nocst +debug MonErrors.c

Figure 3. Use of the +nocst Compiler Directive
4 Using Cosmic Software’s M68HC12 Compiler for MC9S12DP256 Software Development

For More Information On This Product,
 Go to: www.freescale.com

AN2213/D
Linking Compiled Code Modules

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Linking Compiled Code Modules

Before presenting an example linker command file for the MC9S12DP256, a
short discussion on memory addresses used by the linker is necessary. Many
development tools view the MC9S12DP256’s program memory expansion
space as a single linear address space. As mentioned previously, of this
1M byte memory space, the lower 768K is reserved for external memory when
the part is operated in expanded mode. The upper 256K of the address space
is occupied by the on-chip FLASH memory. Linear addresses corresponding to
PPAGE window address ranges and various PPAGE values are shown in
Table 1.

NOTE: The last two entries in the table do not associate linear address ranges with
PPAGE window addresses, instead, these entries correspond to the two fixed
page memory address ranges. Observe that while the addresses in the window

Table 1. Linear Address to PPAGE/Window Address Correspondence

Linear Address
Range PPAGE Value Window Address

Range Memory Type

$00000–$BFFFF $00–$2F $8000–$BFFF Off-chip memory

$C0000–$C3FFF $30 $8000–$BFFF On-chip FLASH

$C4000–$C7FFF $31 $8000–$BFFF On-chip FLASH

$C8000–$CBFFF $32 $8000–$BFFF On-chip FLASH

$CC000–$CFFFF $33 $8000–$BFFF On-chip FLASH

$D0000–$D3FFF $34 $8000–$BFFF On-chip FLASH

$D4000–$D7FFF $35 $8000–$BFFF On-chip FLASH

$D8000–$DBFFF $36 $8000–$BFFF On-chip FLASH

$DC000–$DFFFF $37 $8000–$BFFF On-chip FLASH

$E0000–$E3FFF $38 $8000–$BFFF On-chip FLASH

$E4000–$E7FFF $39 $8000–$BFFF On-chip FLASH

$E8000–$EBFFF $3A $8000–$BFFF On-chip FLASH

$EC000–$EFFFF $3B $8000–$BFFF On-chip FLASH

$F0000–$F3FFF $3C $8000–$BFFF On-chip FLASH

$F4000–$F7FFF $3D $8000–$BFFF On-chip FLASH

$F8000–$FBFFF $3E $8000–$BFFF On-chip FLASH

$FC000–$FFFFF $3F $8000–$BFFF On-chip FLASH

$F8000–$FBFFF N/A $4000–$7FFF On-chip FLASH

$FC000–$FFFFF N/A $C000–$FFFF On-chip FLASH
Using Cosmic Software’s M68HC12 Compiler for MC9S12DP256 Software Developm

For More Information On This Product,
 Go to: www.freescale.com

AN2213/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

address range correspond to the fixed page memory addresses, the addresses
in the linear address range column correspond to the same addresses as those
for PPAGE $3E and $3F.

The segment definitions used in a linker command file to control the placement
of code and data must use both a linear address and a PPAGE window address
to properly locate object code and resolve address references for the paged
memory scheme. As shown in the example segment definition in Figure 4, the
linear or physical address for a segment is specified using the -b segment
option while the PPAGE window or logical address is specified using the -o
segment option. The linker uses these addresses to resolve inter-page and
intra-page function call and data references.

Placement of Variable Data

The segment directive used in the linker command file provides the basic
mechanism for the placement of code and constant data in FLASH memory.
The numerous options supported by the segment directive supports a wide
range of possibilities relating to memory map code and data assignments.
However, this section will only explore the basic set of linker directives
necessary for the MC9S12DP256. Figure 5 shows the segment definitions
necessary for the placement of initialized global data, uninitialized global data
and EEPROM data. The .data segment is used to contain initialized global
data and begins at the default start address of the MC9S12DP256’s on-chip
RAM. The -n option is used to assign the output name, iRAM, to this segment.
Assigning an output name to the segment allows other linker control directives
to reference this particular segment definition. If an application does not contain
initialized global data, this segment directive may be omitted from the linker
command file.

+seg .text -b 0xf8000 -0 0x4000 -n FixPage3e

Figure 4. Segment Definition Example

data segment for initialized data
+seg .data -b 0x1000 -n iRAM -m 0x3000

data segment for uninitialized data
+seg .bss -a iRAM
+def __sbss=@.bss

data segment for eeprom data
+seg .eeprom -b 0x0400 -m 0x0c00

Figure 5. .data, .bss, and .eeprom Segment Definitions
6 Using Cosmic Software’s M68HC12 Compiler for MC9S12DP256 Software Development

For More Information On This Product,
 Go to: www.freescale.com

AN2213/D
Placement of Code and/or Constant Data in the Lower Fixed Page

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The .bss segment is used to contain uninitialized global data. Rather than
assign an absolute start address to the .bss segment using the -b option, the
-a option instructs the linker to place all uninitialized global data immediately
after the output segment named iRAM, which contains the initialized global
data. The directive immediately following the .bss segment definition is used to
define a symbol and assign a value to it. In this case the symbol __sbss is
assigned a value equal to the address of the next byte to be placed in the .bss
segment. In this case because it appears in the linker command file before any
object file names, __bss will be assigned the beginning address of the .bss
section. This symbol is used by the crts.s and crtsi.s startup routines to initialize
all locations in the .bss section to zero.

The third segment definition is only required if global variables have been
declared using the @eeprom type qualifier. The -b option is used to assign an
address of $0400 to this segment. Because the I/O register block overlaps the
lower 1024 bytes of the EEPROM, this address is the first accessible location.
If the application moves the EEPROM block to a different base address,
making the entire 4096 bytes available, the segment start address and its size
(-m option) would need to be changed. If none of the variables in an application
declared with the @eeprom type qualifier were initialized when defined
(i.e., int @eeprom Velocity = 500;) the -c option should be used to suppress
the output of data from this section. This will prevent superfluous data from
appearing in S-record files that are created from the resulting linked object file.

Placement of Code and/or Constant Data in the Lower Fixed Page

Segment directives following those for the variable and EEPROM data
generally consist of segment directives for various areas of the FLASH
memory. The number and type of segment directives and object file name
placement will depend on the organization of the firmware and the options used
when various files are compiled. If the lower fixed page is used by the
application, a segment directive must be used to locate code and/or constant
data in that memory area.

Figure 6 shows three different examples of segment directives that can be
used to place code and constant data in the lower fixed page.
Using Cosmic Software’s M68HC12 Compiler for MC9S12DP256 Software Developm

For More Information On This Product,
 Go to: www.freescale.com

AN2213/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The first example in Figure 6 defines a single segment that will contain any
code and data residing in the .text section of object files following the
segment definition. This particular segment definition is useful when files have
been compiled with the +nocst option which places constant data in the text
section with code. Figure 7(a) shows a graphical layout of how text and
constant data would be placed in memory. This segment definition may also be
useful for files compiled without the +nocst option if constant data for the files
is placed in a .const section located in the upper fixed page. As Figure 7(b)
shows, only .text section code is placed in the lower fixed page segment.

The second example in Figure 6 uses two segment directives for the
placement of code and constant data. The .text segment directive is similar
to the first example except that it uses the -n option to associate a name with
the output of the segment. The .const segment directive defines a segment for
all constant data appearing in the three files following the directive. The -a
option used in this directive causes the .const sections to start at the end of the
named output segment. In this case, as shown in Figure 7(c), the constant data
immediately follows the text section code.

The last example in Figure 6 defines only a constant segment for the lower
fixed page. This definition is useful if the lower fixed page is being used
exclusively for constant data such as lookup tables, string or numeric constants
shared by functions residing on different pages within the PPAGE window.
Notice that no file names immediately follow the segment directive. Instead,
constant data contained in the .const section of files appearing later in the link
command file will be placed in the lower fixed page. The example in Figure 7(d)
shows the situation where the constant data for File1.o and File2.o is placed in
the lower fixed page, but the code in the text section is placed elsewhere.

+seg .text -b 0xf8000 -o 0x4000 -m 0x4000
File1.o
File2.o
File3.o

+seg .text -b 0xf8000 -o 0x4000 -m 0x4000 -n FixPage3e
+seg .const -a FixPage3e
File1.o
File2.o
File3.o

+seg .const -b 0xf8000 -o 0x4000 -m 0x4000

Figure 6. Segment Definition Examples for the Lower Fixed Page
8 Using Cosmic Software’s M68HC12 Compiler for MC9S12DP256 Software Development

For More Information On This Product,
 Go to: www.freescale.com

AN2213/D
Placement of Code and/or Constant Data Within the PPAGE Window

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 7. Load Maps for Segment Definition Examples for the Lower Fixed Page

Placement of Code and/or Constant Data Within the PPAGE Window

There are several different methods that can be used for the placement of code
and constant data in the FLASH memory visible within the PPAGE window
address range. The most straight forward method is to simply use separate
segment definitions for each 16K page. Assuming that page $3E is used as the
lower fixed page, this method will require 14 separate segment definitions if all
of the remaining FLASH pages are utilized. Figure 8 shows an example of
.text segment definitions for the first and last two PPAGE memory blocks.

$4000

File1 .text/.const

File2 .text/.const

File3 .text

File1 .text

File2 .text

File3 .text

File1 .text

File2 .text

File3 .text

File1 .const

File2 .const

File1 .const

File2 .const

(a) (b) (c) (d)

+seg .text -b 0xc0000 -o 0x8000 -m 0x4000
#
put files for PPAGE 0x30 here
#

+seg .text -b 0xc4000 -o 0x8000 -m 0x4000
#
put files for PPAGE 0x31 here
#

+seg .text -b 0xf0000 -o 0x8000 -m 0x4000
#
put files for PPAGE 0x3c here
#

+seg .text -b 0xf4000 -o 0x8000 -m 0x4000
#
put files for PPAGE 0x3d here
#

Figure 8. PPAGE Memory Window Segment Definitions
Using Cosmic Software’s M68HC12 Compiler for MC9S12DP256 Software Developm

For More Information On This Product,
 Go to: www.freescale.com

AN2213/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Notice that the example does not include any constant segment definitions. As
recommended earlier, all compile modules containing constant data not shared
by functions on other pages should be contained in the .text section by using
the +nocst command line option when a file is compiled. Any file containing
constant data that must be shared by functions on other pages should be
compiled without the +nocst option, creating a .const section in the resulting
object file. Using a .const section definition such as the last example in
Figure 6 would cause all shared constant data to be placed in the lower fixed
page.

Using separate segment definitions for each 16K page, object file names are
listed after each segment definition until a particular segment becomes full.
When a segment becomes full, object file names are listed under the next
segment definition until it becomes full. While this method does provide precise
control over the placement of code modules in the available memory pages, it
forces the developer to manage the arrangement of the code modules to best
utilize the space available on each 16K page.

To relieve the developer of the difficulty involved in manually managing the
arrangement of the code modules, the linker provides a segment control option
that automatically creates a new segment when one becomes full. Figure 9
shows a segment definition used for automatic bank creation. The -w segment
control option is used to set the PPAGE window size and to activate the
automatic bank creation mechanism. As shown, the -m option can be used to
set the maximum segment size; however, when the automatic bank creation
mechanism is activated, it is used to specify the maximum amount of space
available for all consecutive banks. In this example, the value following the -m
option is obtained by multiplying the PPAGE window size ($4000) by the
number of available PPAGE window banks (14).

As new segments are created, the new segment’s physical address (-b option)
is obtained by adding the PPAGE window size to the prior bank’s physical
starting address. In this case, when the bank for PPAGE $30 is filled, the
segment physical starting address for PPAGE $31 would be $C4000. The
logical starting address for new segments (-o option) is always equal to the
address specified in the original segment definition. If the -m option is used as
shown in the example, the maximum segment size for newly created segments
is obtained by subtracting the PPAGE window size from the prior segments
maximum segment size.

+seg .text -b 0xc0000 -o 0x8000 -w 0x4000 -m 0x38000
#
put files for PPAGE 0x30–0x3d here
#

Figure 9. Automatic PPAGE Segment Creation
10 Using Cosmic Software’s M68HC12 Compiler for MC9S12DP256 Software Development

For More Information On This Product,
 Go to: www.freescale.com

AN2213/D
Placement of Code and/or Constant Data Within the PPAGE Window

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

While the automatic segment creation feature of the linker relieves the
developer from the task of arranging object file names after separate segment
definitions, it will not make the most efficient use of the segments it creates
without careful ordering of the object file names by the developer. For example,
suppose that four object files, File1.o, File2.o, File3.o, and File4.o, contained
text sections of approximately 8K, 4k, 7k, and 10k respectively were placed, in
order, after the segment definition in Figure 9. As the linker reads and
processes the listed object files, it simply attempts to combine the text sections
of the files in the order in which they appear. Because the combined size of
File1.o, File2.o, and File3.o exceeds the PPAGE window size, only File1.o and
File2.o are placed in the first segment. Because the combined size of these two
files is only 12k, 4k of the FLASH memory at the end of PPAGE $30 would be
unused. As the linker continued processing the listed files, it would attempt to
combine File3.o and File4.o into a single segment. Because the combined size
of these two files exceeds the PPAGE window size, two segments would be
created, one for File3.o and one for File4.o. With File3.o placed in PPAGE $31,
9k of the FLASH memory at the end of PPAGE $31 would remain unused. This
situation is graphically illustrated in Figure 10(a). If the file names were
rearranged, File1.o and File3.o could be combined and placed in the first
segment and File4.o and File2.o could be combined and placed in the second
segment. This arrangement, illustrated in Figure 10(b), provides for much
better utilization of the paged FLASH memory. While the file name
rearrangement in this example is rather obvious, ordered file name
management of projects containing hundreds of files would become extremely
difficult.

Figure 10. File Order Effect of Automatic PPAGE Segment Filling

$8000

(a) (b)

File1 .text/.const

File2 .text/.const

8K

4K

$bfff

File3 .text/.const

7K

File4 .text/.const

10K

File1 .text/.const

8K

File3 .text/.const

7K

File4 .text/.const

10K

File2 .text/.const

4K

PPAGE 0x30 PPAGE 0x31 PPAGE 0x32 PPAGE 0x30 PPAGE 0x31
Using Cosmic Software’s M68HC12 Compiler for MC9S12DP256 Software Developm

For More Information On This Product,
 Go to: www.freescale.com

AN2213/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Looking at the potential for underutilization of the paged FLASH memory using
the automatic segment creation capability of the linker, it does not appear that
this feature presents any great advantage over manual segment creation.
Fortunately, Cosmic includes a utility, cbank, as part of their compiler package
that will order a list of object file names so as to fill each segment as efficiently
as possible. Using the cbank utility in conjunction with the automatic segment
creation capability of the linker provides a mechanism to efficiently utilize the
paged FLASH memory with very little effort on the part of the developer.

When using the cbank utility, the names of the object files to be positioned in
paged memory are placed in a separate text file rather than in the linker
command file. As shown in the command line example in Figure 11, cbank will
read the object file names in the input file, ObjList.txt, reorder the list of names
and write the result to an output file named BankList.txt. The -w command line
option sets the page size and the -m option sets the maximum number of pages
or banks. Once cbank has created its output file, the resulting list of filenames
can be included in the link file using the +inc linker directive. Figure 12 shows
an example of automatic segment creation using the +inc directive to include
the file name list created by the cbank utility.

Even with the automatic bank packing capabilities of the cbank utility, efficient
utilization of paged memory space requires that compile modules be kept as
small as possible. Architecting a firmware design to utilize a large number of
small compile modules rather than a small number of large compile modules
will help the cbank utility to arrange object files to most efficiently utilize the
paged memory space.

The combination of automatic PPAGE segment creation, the cbank utility and
the linker’s +inc directive will solve the problem of efficiently utilizing paged
FLASH memory in most cases. Yet, there may be occasions where a
combination of manual segment creation and automatic segment creation can
be used to efficiently group files in paged memory. As an example, consider the
situation where a number of compile modules share tables of constant data.

cbank -m 14 -w 0x4000 -o BankList.txt ObjList.txt

Figure 11. cbank Command Line

+seg .text -b 0xc0000 -o 0x8000 -w 0x4000 -m 0x38000
#
+inc BankList.txt
#

Figure 12. Using Automatic PPAGE Segment Creation
with the +inc Directive
12 Using Cosmic Software’s M68HC12 Compiler for MC9S12DP256 Software Development

For More Information On This Product,
 Go to: www.freescale.com

AN2213/D
Placement of Code and/or Constant Data in the Upper Fixed Page

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

One solution, as previously explained, would be to place the constant data on
one of the two fixed pages where it could be accessed by all functions no matter
where in the paged memory the functions resided. However, because of the
limited amount of fixed page memory, it could easily become filled with constant
data. As an alternative to placing the constant data used by a group of functions
in one of the fixed pages, the functions and the constant data could be placed
in one of the paged memory banks using an explicit segment definition. An
example is shown in Figure 13.

NOTE: The linear or physical address (-b) definition for the automatic PPAGE segment
creation and the total paged memory size (-m) were changed to compensate
for the explicitly declared segment definition for PPAGE $30.

Placement of Code and/or Constant Data in the Upper Fixed Page

Like the lower fixed page of FLASH memory, the upper fixed page of FLASH
can be used to contain code, constant data, Cosmic’s library routines, or
interrupt service routines. In addition to these elements, the upper fixed page
of FLASH contains two areas that must have data placed at specific addresses.
The first piece of data, beginning at $FF00, is a 16 byte memory area related
to the microcontroller’s memory security and protection mechanism. The
second area is the interrupt and reset vector table. Before discussing the
placement of these two pieces of data, it is important to understand the function
of the memory security and protection features.

+seg .text -b 0xc0000 -o 0x8000 -m 0x4000 -n PPAGE0x30
+seg .const -a PPAGE0x30
File1.o
File2.0
File3.o
+seg .text -b 0xc4000 -o 0x8000 -w 0x4000 -m 0x34000
#
+inc BankList.txt
#

Figure 13. Using Manual and Automatic PPAGE Segment Creation
Using Cosmic Software’s M68HC12 Compiler for MC9S12DP256 Software Developm

For More Information On This Product,
 Go to: www.freescale.com

AN2213/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

FLASH Memory Protection

The protected areas of each FLASH block are controlled by four bytes of
FLASH memory residing in the fixed page memory area from $FF0A–$FF0D
During the microcontroller reset sequence, each of the four banked FLASH
protection registers (FPROT) is loaded from values programmed into these
memory locations. As shown in Table 2, location $FF0A controls protection for
block three, $FF0B controls protection for block two, $FF0C controls protection
for block one and $FF0D controls protection for block zero. The values loaded
into each FPROT register determine whether the entire block or just
subsections are protected from being accidentally erased or programmed.

As mentioned previously, each 64K block can have two protected areas. One
of these areas, known as the lower protected block, grows from the middle of
the 64K block upward. The other, known as the upper protected block, grows
from the top of the 64K block downward. In general, the upper protected area
of FLASH block zero is used to hold bootloader code since it contains the reset
and interrupt vectors. The lower protected area of block zero and the protected
areas of the other FLASH blocks can be used for critical parameters that would
not change when program firmware was updated.

The FPOPEN bit in each FPROT register determines whether the the entire
FLASH block or subsections of it can be programmed or erased. When the
FPOPEN bit is erased (1) the remainder of the bits in the register determine the
state of protection and the size of each protected block. In its programmed
state (0) the entire FLASH block is protected and the state of the remaining bits
within the FPROT register is irrelevant.

Table 2. FLASH Protection and Security Memory Locations

Address Description

$FF00–$FF07 Security backdoor comparison key

$FF08–$FF09 Reserved

$FF0A Protection byte for FLASH block 3

$FF0B Protection byte for FLASH block 2

$FF0C Protection byte for FLASH block 1

$FF0D Protection byte for FLASH block 0

$FF0E Reserved

$FF0F Security byte
14 Using Cosmic Software’s M68HC12 Compiler for MC9S12DP256 Software Development

For More Information On This Product,
 Go to: www.freescale.com

AN2213/D
FLASH Security

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The FPHDIS and FPLDIS bits determine the protection state of the upper and
lower areas within each 64K block respectively. The erased state of these bits
allows erasure and programming of the two protected areas and renders the
state of the FPHS[1:0] and FPLS[1:0] bits immaterial. When either of these bits
is programmed, the FPHS[1:0] and FPLS[1:0] bits determine the size of the
upper and lower protected areas. Table 3 summarizes the combinations of the
FPHS[1:0] and FPLS[1:0] bits and the size of the protected area selected by
each.

The FLASH protection registers are loaded during the reset sequence from
address $FF0D for FLASH block 0, $FF0C for FLASH block 1, $FF0B for
FLASH block 2 and $FF0A for FLASH block 3. This is indicated by the “F” in
the reset row of the register diagram in the MC9S12DP256 data book. This
register determines whether a whole block or subsections of a block are
protected against accidental program or erase. Each FLASH block can have
two protected areas, one starting from relative address $8000 (called lower)
towards higher addresses and the other growing downwards from $FFFF
(called higher). While the later is mainly targeted to hold the boot loader code
since it covers the vector space (FLASH 0), the other area may be used to keep
critical parameters. Trying to alter any of the protected areas will result in a
protect violation error and bit PVIOL will be set in the FLASH status register
(FSTAT).

NOTE: A mass or bulk erase of the full 64K byte block is only possible when the
FPLDIS and FPHDIS bits are in the erased state (= ‘1’).

FLASH Security

The security of a microcontroller’s program and data memories has long been
a concern of companies for one main reason. Because of the considerable time
and money that is invested in the development of proprietary algorithms and
firmware, it is extremely desirable to keep the firmware and associated data
from prying eyes. This was an especially difficult problem for earlier M68HC12
Family members as the background debug module (BDM) interface provided
easy, uninhibited access to the FLASH and EEPROM contents using a two wire

Table 3. FLASH Protection Select Bits

FPHS[1:0] Protected Size FPLS[1:0] Protected Size

0:0 2K 0:0 512 bytes

0:1 4K 0:1 1K

1:0 8K 1:0 2K

1:1 16K 1:1 4K
Using Cosmic Software’s M68HC12 Compiler for MC9S12DP256 Software Developm

For More Information On This Product,
 Go to: www.freescale.com

AN2213/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

connection. Later revisions of the original ‘D’ Family parts provided a method
that allowed a customer’s firmware to disable the BDM interface (BDM lockout)
once the part had been placed in the circuit and programmed. While this
prevents the FLASH and EEPROM from being easily accessed in-circuit, it
does not prevent a ‘D’ Family part from being removed from the circuit and
placed in expanded mode so the FLASH and EEPROM can be read.

The security features of the MC9S12DP256 has been greatly enhanced. While
no security feature can be 100% guaranteed to prevent access to an MCU’s
internal resources, the MC9S12DP256’s security mechanism makes it
extremely difficult to access the FLASH or EEPROM contents. Once the
security mechanism has been enabled, access to the FLASH and EEPROM
either through the BDM or the expanded bus is inhibited. Gaining access to
either of these resources may only be accomplished by erasing the contents of
the FLASH and EEPROM or through a built in back door mechanism. While
having a back door mechanism may seem to be a weakness of the security
mechanism, the target application must specifically support this feature for it to
operate.

Erasing the FLASH or EEPROM can be accomplished using one of two
methods:

1. The first method requires resetting the target MCU in special single-chip
mode and using the BDM interface. When a secured device is reset in
special single-chip mode, a special BDM security ROM becomes active.
The program in this small ROM performs a blank check of the FLASH
and EEPROM memories. If both memory spaces are erased, the BDM
firmware temporarily disables device security, allowing full BDM
functionally. However, if the FLASH or EEPROM are not blank, security
remains active and only the BDM hardware commands remain
functional. In this mode the BDM commands are restricted to reading
and writing the I/O register space. Because all other BDM commands
and on-chip resources are disabled, the contents of the FLASH and
EEPROM remain protected. This functionality is adequate to manipulate
the FLASH and EEPROM control registers to erase their contents.

CAUTION: Use of the BDM interface to erase the FLASH and EEPROM memories is not
present in the initial mask set (0K36N) of the MC9S12DP256. Great care must
be exercised to ensure that the microcontroller is not programmed in a secure
state unless the back door mechanism is supported by the target firmware.

2. The second method requires the microcontroller to be connected to
external memory devices and reset in expanded mode where a program
can be executed from the external memory to erase the FLASH and
EEPROM. This method may be preferred before parts are placed in a
target system.
16 Using Cosmic Software’s M68HC12 Compiler for MC9S12DP256 Software Development

For More Information On This Product,
 Go to: www.freescale.com

AN2213/D
Placement of Memory Security and Protection Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

As shown in Table 4 the security mechanism is controlled by the two least
significant bits in the security byte. Because the only unsecured combination is
when SEC1 has a value of ‘1’ and SEC0 has a value of ‘0’, the microcontroller
will remain secured even after the FLASH and EEPROM are erased since the
erased state of the security byte is $FF. As previously explained, even though
the device is secured after being erased, the part may be reset in special
single-chip mode allowing manipulation of the microcontroller via the BDM
interface. However, after erasing the FLASH and EEPROM, the microcontroller
can be placed in the unsecured state by programming the security byte with a
value of $FE.

NOTE: Because the FLASH must be programmed an aligned word at a time and
because the security byte resides at an odd address ($FF0F), the word at
$FF0E must be programmed with a value of $FFFE.

Placement of Memory Security and Protection Data

Even if the memory security and protection features are not being utilized
during development, a file containing data for this 16 byte area should be
created, compiled, and inserted into the linker file for compatibility with some
FLASH programming tools. Because of the inability to erase the FLASH and
EEPROM using the BDM interface in the first mask set (0K36N) of the
MC9S12DP256, many programming tools automatically program the security
byte with a value of $FE after successfully erasing the FLASH. This prevents
the device from accidentally being placed in a secure state if a programming
operation were to fail. Having this block of data included in the object file with
a value of $FE for the security byte will ensure that a verify operation will be
performed properly.

The contents for the 16 byte memory area is shown in the C source listing in
Figure 14. The values for each of the constants will vary depending on the
memory security and protection features used by an application. However,
especially during development, the security byte, Sec, should be $FE. This is
the only value of the lower two bits in the security byte in which the part remains

Table 4. Security Bits

SEC[1:0] Security State

0:0 Secured

0:1 Secured

1:0 Unsecured

1:1 Secured
Using Cosmic Software’s M68HC12 Compiler for MC9S12DP256 Software Developm

For More Information On This Product,
 Go to: www.freescale.com

AN2213/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

unsecured. Figure 15 shows an example segment definition for the placement
of the memory security and protection data.

NOTE: If the source file containing the security and protection data is compiled with the
+nocst option, the segment definition must be changed to a .text segment.

Placement of Reset and Interrupt Vector Data

The reset and interrupt vector table for all M68HC12 Family devices consists of
a 128 byte memory area that begins at $FF80. Because each vector occupies
two bytes, a total of 64 unique vectors are supported. The MC9S12DP256
implements 58 of the 64 vectors beginning at $FF8C. The address constants
for the reset and interrupt vectors may be generated using either a C or
assembly language source file as shown in Figure 16 and Figure 17. Both of
these examples show only the first and last two entries in the interrupt vector
table. The remaining 54 interrupt service routine and reset vectors names
would need to be added to these examples.

typedef uint unsigned int;
typedef uchar unsigned char;

const uint BDKey1 = 0xffff;
const uint BDKey2 = 0xffff;
const uint BDKey3 = 0xffff;
const uint BDKey4 = 0xffff;
const uchar Res08 = 0xff;
const uchar Res09 = 0xff;
const uchar BlkPrt3 = 0xff;
const uchar BlkPrt2 = 0xff;
const uchar BlkPrt1 = 0xff;
const uchar BlkPrt0 = 0xff;
const uchar Res0e = 0xff;
const uchar Sec = 0xfe;

/* Backdoor Key word 1 */
/* Backdoor Key word 2 */
/* Backdoor Key word 3 */
/* Backdoor Key word 4 */
/* reserved */
/* reserved */
/* Protection byte for Flash block 3 */
/* Protection byte for Flash block 2 */
/* Protection byte for Flash block 1 */
/* Protection byte for Flash block 0 */
*/ reserved */
/* Security byte */

Figure 14. Memory Security and Protection Constant Values

+seg .const -b 0xfff00 -o 0xff00 -m 0x10
#
Security.o
#

Figure 15. Segment Definition for Security and Protection Data
18 Using Cosmic Software’s M68HC12 Compiler for MC9S12DP256 Software Development

For More Information On This Product,
 Go to: www.freescale.com

AN2213/D
Placement of Reset and Interrupt Vector Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

In the assembly language example, Figure 17, notice that the interrupt service
routines and the clock monitor reset vector names are prefixed with an
underscore character. This is necessary when any C function is referenced in
an assembly language file. The reset vector name, __stext, is defined in
Cosmic’s supplied run time startup code files, crts.s and crtsi.s.

Figure 18 presents the linker segment definition necessary for proper
placement of the interrupt vector data. If the source file containing the interrupt
and reset vector data is compiled with the +nocst option, the segment definition
must be changed to a .text segment.

extern void PWMShutDnISR(void);
extern void PortPISR(void);
extern void ClkMonReset(void);
extern void _stext(void);

void (* const vector[])(void) =
 {
 PWMShutDnIsr, /* PWM Shutdown ISR Vector */
 PortPISR, /* Port P ISR Vector */
 .
 .
 .
 ClkMonReset, /* Clock Monitor Reset Vector */
 _stext /* beginning of startup code */
 };

Figure 16. C Interrupt Vector Example

 switch .const
;
 xref _PWMShutDnISR, _Port PISR, _ClkMonReset, __stext
;
 dc.w _PWMShutDnISR ; PWM Shutdown ISR Vector.
 dc.w _Port PISR ; Port P ISR Vector.
 .
 .
 .
 dc.w _ClkMonReset ; Clock Monitor Reset Vector.
 dc.w __stext ; beginning of startup code.
;

Figure 17. Assembly Language Interrupt Vector Example

+seg .const -b 0xfff8c -o 0xff8c -m 0x74
#
Vectors.o
#

Figure 18. Segment Definition for Interrupt Vectors
Using Cosmic Software’s M68HC12 Compiler for MC9S12DP256 Software Developm

For More Information On This Product,
 Go to: www.freescale.com

AN2213/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Alternate Fixed Page Code and/or Constant Data Placement

In addition to the code and constant data placement methods described for the
two fixed pages, the linker segment definition supports an option allowing two
or more discontinuous memory areas to be automatically filled from a list of
object file names. The -x option, shown in the first line of the example in
Figure 19, operates in a manner much like the automatic segment creation
method used for paged memory. When one of the listed segments becomes
full, the linker automatically begins to fill the next listed segment.

NOTE: All listed segments must be of the same type (i.e. .text, .const, etc.) and
the segments must be declared before the occurrence of an object file that
would cause a segment overflow. Also note that the -m option must be used to
specify a size for each segment. If the -m option is not present, the -x option will
be ignored.

While the example in Figure 19 indicates manual placement of object files
following the segment definitions, the cbank utility could be used to order a list
of object file names so each segment is filled as efficiently as possible.
However, because these two segments are not of equal length and because
cbank assumes equal length segments, it is possible that cbank might over flow
the second segment. If this were to happen, the linker would issue an error
message if the combination of code and data became too large to fit in the
second segment.

In addition to the two .text segment definitions a .const segment definition
is included in the example to accommodate the placement of any constant
sections that may be contained in the fixed page object files.

NOTE: The .const segment definition includes a -it option. This option instructs the
linker to use this segment to contain the descriptor and image copies of
initialized data used for automatic data initialization.

+seg .text -b 0xF8000 -o 0x4000 -m 0x4000 -n Fixed1 -x
+seg .text -b 0xFC000 -o 0xC000 -m 0x3F00 -n Fixed2
+seg .const -a Fixed2 -it
#
put files for Fixed Page 0x3e & 0x3f here;
#

Figure 19. -x Option For Two Discontinuous Fixed Page Memory Areas
20 Using Cosmic Software’s M68HC12 Compiler for MC9S12DP256 Software Development

For More Information On This Product,
 Go to: www.freescale.com

AN2213/D
S-Record Generation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

S-Record Generation

While the Cosmic ZAP debugger can directly read linked absolute binary object
files for programming a target microcontroller’s FLASH memory, some
development and programming tools require object files in the Motorola
S-record format. S-record files can be directly generated from linked absolute
binary object files using Cosmic’s chex converter. The chex program has the
ability to produce S-records with either linear or banked (paged) load
addresses. By default, chex produces S-records with linear load addresses.

Summary

The compiler and linker tools provide a powerful, flexible code development
environment for the MC9S12DP256. The flexibility provided by the linker
command file does not allow a single example to be given that will
accommodate all application needs. The linker command file shown in
Figure 20 shows one example that may work for many applications. This
example simply combines many of the individual examples presented in this
application note.

NOTE: The example makes use of the +inc directive to include the list of file names in
BankList.txt into the linker file for automatic segment creation. This list of file
names in BankList.txt may be generated by the cbank utility.

Two items included in this example, not shown in examples elsewhere, are the
+def directive at the bottom of the example.

1. The first +def directive defines the symbol __memory and assigns the
current address of the .bss section to it. This symbol is used by Cosmic’s
supplied startup code in conjunction with the __sbss symbol to clear
(set to zero) all variable storage space in the .bss section.

2. The second +def directive defines the symbol __stack and assigns it a
value of $4000. This symbol is used by the startup code to load an initial
value into the CPU12’s stack pointer. Because the CPU12 stack
operates as a decrement then store stack, the value assigned to the
symbol is one more than the last on-chip RAM location rather than the
last RAM location.
Using Cosmic Software’s M68HC12 Compiler for MC9S12DP256 Software Developm

For More Information On This Product,
 Go to: www.freescale.com

AN2213/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

data segment for initialized data
+seg .data -b 0x1000 -n iRAM -m 0x3000

#data segment for uninitialized data
+seg .bss -a iRAM
+def __sbss=@.bss

data segment for eeprom data
+seg .eeprom -b 0x0400 -m 0x0c00

+seg .const -b 0xf8000 -o 0x4000 -m 0x4000
#
All data in .const sections will be placed in the lower fixed page
#

+seg .text -b 0xc0000 -o 0x8000 -w 0x4000 -m 0x38000
#
+inc BankList.txt
#

+seg .text -b 0xfc000 -o 0xc000 -m 0x3f00 -it
#
put files for Fixed Page 0x3f here; Cosmic Libraries, ISRs, etc.
#

+seg .const -b 0xfff00 -o 0xff00 -m 0x10
#
Security.o
#

+seg .const -b 0xfff8c -o 0xff8c -m 0x74
#
Vectors.0
#

+def __memory=@.bss
+def __stack=0x4000

Figure 20. Example Link Command File
22 Using Cosmic Software’s M68HC12 Compiler for MC9S12DP256 Software Development

For More Information On This Product,
 Go to: www.freescale.com

AN2213/D
Summary

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Using Cosmic Software’s M68HC12 Compiler for MC9S12DP256 Software Developm

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AN2213/D
For More Information On This Product,

 Go to: www.freescale.com

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	Introduction
	The MC9S12DP256 Memory Map
	Declaring Functions For Paged Memory
	Placement of Constant Data During Compilation
	Linking Compiled Code Modules
	Placement of Variable Data
	Placement of Code and/or Constant Data in the Lower Fixed Page
	Placement of Code and/or Constant Data Within the PPAGE Window
	Placement of Code and/or Constant Data in the Upper Fixed Page
	FLASH Memory Protection
	FLASH Security
	Placement of Memory Security and Protection Data
	Placement of Reset and Interrupt Vector Data
	Alternate Fixed Page Code and/or Constant Data Placement
	S-Record Generation
	Summary

