A .
. .2escale Semiconductor
Application Note

AN2110
Rev. 1, 11/2005

Implementing a 10-Band Stereo
Equalizer on the DSP56311 EVM

Board

By James M. Montgomery

This document describes the development and implementation
of a10-band stereo equalizer programming example on the
DSP56311 evauation module (EVM). It provides an example
of how to use readily available development tools to develop
complex code for the DSP56311EV M. It also discusses how to
program the enhanced filter coprocessor (EFCOP) in
Multichannel mode.

The DSP56311EVM is alow-cost hardware platform that
serves as a hardware reference design for system and board
designers using the DSP56311. It isalso avery flexible
platform for developing DSP56311 code. Software engineers
can download software to on-device or on-board RAM, then run
and debug it.

The DSP56311EV M features:
o DSP56311 24-bit digital signal processor

* FSRAM for expansion memory and flash memory
for stand-al one operation

e 16-bit CD-quality audio codec
e Command converter circuitry

For details on the DSP56311EV M, consult the DSP56311EVM
Product Preview (DSP56311EVMP) and the DSP56311EVM
User’'s Manual (DSP56311EVMUM). These documents are
available on the Freescal e web site listed on the back cover of
this document.

© Freescale Semiconductor, Inc., 2001, 2005. All rights reserved.

CONTENTS

1 Filter DESIQN ..eeoveeeeeeieeee et 2
2 Development Environment ...........cccooeeevicinnncne. 4
2.1 Persona Computer Running Windows NT® 40 ....5
2.2 Suite56 Parallel Command Converter ..........cc....... 5
2.3 Interfacing the PC to the DSP56311EVM .............. 6
2.4 Useful Debugging TeChniquUES ........ccccccuvvevevivreevnnes 6
3 Implementation of 10-Band Stereo Equdizer ......... 7
3.1  Program Flow and Functionality ...........ccccceevuevennnne. 7
4 Equalizer Graphical User Interface (GUI) ............ 22
4.1 GUI OpEration......cccceeeereeerererireeenieseneneseesesesseennas 22
4.2 GUI Development .........ccoceveeereeesrersssesessnnenans 23
5 Using the EFCOP in M ultichannel Mode ............. 24
5.1 EFCOPREJISES ..ocoeerereieeeireeere e e senereeens 25
5.2 EFCOP Programming for Multichannel Mode .....26
6 Cosfficientsand Gain Table Files .......ccccccoveneneee 28
7 REFEIENCES ...t 33

o4

Z “freescale

semiconductor



|
y

'
A

*Design

1 Filter Design

The 10-band stereo equalizer is constructed using 10 digital |IR bandpassfiltersin parallel for each stereo audio
channel. The on-board codec samples the incoming audio stream at 48,000 Hz. The center frequencies for these
filterslie between 0 Hz to f4/2 (wheref is the sample frequency of 48,000 Hz).

Figure 1 shows the passive RCL circuit forming a bandpass filter. The digital IR Filter discussed later in this
application note is based on this circuit. The ss-domain analysis of the second-order bandpass analog filter is also
shown.

V; Q_NY\__, Vo
L C R
Yo _ R
V. . 1
| R+J(2nf)L+J(ZT)C

Figure 1. Analog Bandpass Filter and Voltage Divider Analysis

Equation 1 showsthe s-domain transfer function of the circuit. H(s) is derived from the voltage divider analysis of
the RCL network to be:

V
Rs Equation 1
1

i Rs+Ls?+=
C

o

H(s) =

where s = j(2nf).

Equation 2 shows the bilinear transformation between the s-plane and the z-plane:

2(1—2‘1) Equation 2

S:'T':L+z—l

where z = €9, 6 = oT = (2rf)(1/fy), and T isthe sample period (1/f) .
Using Equation 2, the z-plane transfer function is found from Equation 1:

H(z) = al-7? Equation 3

%—yz—l +Bz2

Implementing a 10-Band Stereo Equalizer on the DSP56311 EVM Board, Rev. 1

2 Freescale Semiconductor



A : :
Filter Design
With Equation 3, the coefficients for each filter are calculated using the following three equations:
0
1—tan —O)
_1 (ZQ :
B = E—G Equation 4
1+ tan| ==
an(ZQ)
= 1+ 0 Equation 5
v=13 B |cos6, q
o = (1'—[3)/2 Equation 6
2

where Q = f /(f,—f;) and 6, = 2n(f,/fy) . The value f, is the center frequency of the bandpassfilter, f, and f, are
the half-power points (wherethe gain isequal to 1/(4/2)), and f, isthe sample frequency. These equations are
approximations for center frequencies less than f,/8 (or 6000 Hz). To implement the transfer function from
Equation 3asadigital IR Filter, it must be transformed to a difference equation in the discrete time domain.
Equation 7 shows this difference equation, and Figure 2 shows its representation as a hetwork diagram.

y(n) = 2{a[x(n)—=x(n—=2)] +yy(n—1)—By(n-2)} Equation 7

x(n) y(n)

y(n-1)

x(n—2) y(n-2)

Figure 2. Bandpass IIR Filter Network Diagram

At each sample period, aleft and right sound byte isfed to the 10 filtersin parallel (see Figure 3). After each
respective bandpass filter eliminates the frequencies not in its range, each output (y,(n) — y,4(n) ) isscaled by an
output gain. This gain value ranges from 0 to 1. The results of the ten filters are then summed together and

outputted. This process allows oneto selectively remove, or limit, the gain of a particular frequency range from the
sound source.

Implementing a 10-Band Stereo Equalizer on the DSP56311 EVM Board, Rev. 1

Freescale Semiconductor



lopment Environment

PR
—»{62Fz >
{15 >
L
[ F0rg—{>5" %
x(n) =l /,@—» y(n)
oz | —7
—s{am >
BRI >
R ELLGA

Figure 3. IR Equalizer Data-Flow Diagram

Table 1 shows the 10 center frequencies chosen for this programming example. The coefficients for the center
frequencies less than /8 (or 6000 Hz) were found using equations 4-6 in Section 1. The coefficients for the center
frequencies above 6000 Hz were found using more exact equations. Q is chosen to be 1.4.

Table 1. Digital IR Bandpass Coefficients

Center Frequency o B Y
31 Hz 0.000723575 0.49855285 0.998544628
62 Hz 0.001445062 0.497109876 0.997077038
125 Hz 0.002904926 0.494190149 0.994057064
250 Hz 0.005776487 0.488447026 0.987917799
500 Hz 0.011422552 0.477154897 0.975062733
1000 Hz 0.02234653 0.455306941 0.947134157
2000 Hz 0.04286684 0.414266319 0.88311345
4000 Hz 0.079552886 0.340894228 0.728235763
8000 Hz 0.1199464 0.2601072 0.3176087
16000 Hz 0.159603 0.1800994 -0.4435172

2 Development Environment

This section describes the devel opment environment for the 10-band stereo equalizer (see Figure 4). It outlinesthe
hardware and software requirements; describes how to establish the physical connection between the PC and the
DSP56311 EVM board; and lists the steps for compiling, downloading, and running code on the DSP56311 EVM
board. Once you complete these steps, you are ready to implement the 10-band stereo equalizer.

Implementing a 10-Band Stereo Equalizer on the DSP56311 EVM Board, Rev. 1

4 Freescale Semiconductor



Development Environment

Serial Port Cable

Suite56
parallel
command
converter

PC
DSP56311EVM

Stereo Stereo
Input Output

Figure 4. Development Setup

2.1 Personal Computer Running Windows NT® 4.0

The following programs should be running on your personal computer:

Codewright for Windows. Programmer’ s text editor used to create and modify files. Note that other
text editors can also be used.

Command Prompt. DOS-style terminal used to run the asm56300 compiler.

ite56 DSP56300 Software Devel opment Tools. Free Freescale DSP tools to compile and link DSP
assembly code. The hardware debugger, ads56300, has a GUI interface that communicates with the
EVM Board through the parallel port command converter. It also downloads and executes code on the
DSP56311EVM.

Visual Basic® 4.0. Programming language for creating the equalizer GUI that allows you to change
the gain values for the various equalizer bands.

2.2 Suite56 Parallel Command Converter

The parallel command converter provides the physical connection between the PC and the DSP56311EV M. Its
parallel port interface connects to the PC. In addition, its female 14-pin header connects the device to the
JTAG/ONCE Port (J2) on the DSP56311EV M. For details on this device, consult the Suite56 Parallel Port
Command Converter User’'s Manual (DSPCOMMPARALLELUM).

The jumper settings on the DSP56311EVM are listed in Table 2. For details on how to set up the jumpers for the
desired functionality, see the DSP56311EVM User’s Manual (DSP56311EVMUM).

Table 2. Jumper Setting on the DSP56311 EVM Board

Number Function Description
J1 Boot Mode Select HI08 bootstrap in MC68302 bus mode
J3 FSRAM Memory Configuration Option Unified memory map
J4 SCI Header Pinout Connects serial port connector signals RxD and TxD to the DSP
SCI port

Implementing a 10-Band Stereo Equalizer on the DSP56311 EVM Board, Rev. 1

Freescale Semiconductor




lopment Environment

Table 2. Jumper Setting on the DSP56311 EVM Board (Continued)

Number Function Description

J5 SCI Port Clock Connects on-board 156.3 kHz oscillator to the SCI port SCLK
input (used for baud rate generation)

J6 On-board JTAG Enable/Disable Option On-board command converter disabled

J7 ESSIO Header Pinout Selects the DSP ESSIO port interface for use with an on-board
codec

J8 CS4218 Sampling Frequency Selection Selects 48 kHz sample rate for the codec

J9 ESSI1 Header Pinout Selects DSP ESSI1 port interface for use with an on-board codec

J10 Core Current Measurement Jumper Connected jumper that applies power to the DSP core

The Line IN jack on the DSP56311EV M connects to the headphone jack of the PC. The PC provides the sound
source for the DSP56311EVM. A pair of headphones or stereo speakers can connect to the Headphone OUT/Line
OUT jack to listen to the filtered sound source.

2.3 Interfacing the PC to the DSP56311EVM

Following are the steps to compile, download and run the code on the DSP56311EV M. It is assumed that you are
using the GUI version of ADS56300 (part of the Suite56 DSP software development tools):

1.

5.

The stereo.asm fileisthe main assembly file of the project. Using the command prompt, change to
the directory where the project files are stored.

At the prompt, type: asm56300 -a -b -1 stereo.asm.

Two output files are created. stereo. 1st containsalisting of the code, and stereo.cld isthe
executable to be downloaded to the DSP56311EV M. There may be afew warning when you compile
the code. These warningstell you of pipeline stalls located in the code. They have no effect on the
operation of the code.

Using the ADS56300 GUI, reset the 56311EVM.

Under File —» Load — Memory COFF, select the desired file (stereo. c1d). Press Apply to load the
fileinto memory.

Select GO (or type go into the Command window).

You should know about the following ADS56300 GUI windows:

Command. Allows the user to type line commands.

Core Registers. Displays the state of the core registers. The values can also be modified.
EFCOP Registers. Displays the state of the EFCOP registers. The values can also be modified.
Assembly. Displays the assembly code loaded in the DSP56311 program memory.

X Memory. Displays the X-data Memory in the DSP56311.

Y Memory. Displays the Y -data Memory in the DSP56311.

2.4 Useful Debugging Techniques

The breakpoint feature can be very useful. Software breakpoints stop at a particular instruction in program
memory. Hardware breakpoints allow you to examine the effects of the DSP56311. For example, a breakpoint can
be set up when aDMA channel writes datato one of the EFCOP registersin Y memory. This allows you to view

Implementing a 10-Band Stereo Equalizer on the DSP56311 EVM Board, Rev. 1

Freescale Semiconductor




Implementation of 10-Band Stereo Equalizer

the state of the EFCOP after each sample iswritten to it. Hardware breakpoints are particularly helpful when
EFCOP operation needs to be verified.

3 Implementation of 10-Band Stereo Equalizer

There are numerous ways to implement the 10-band stereo equalizer using the DSP56311EV M. The examplesin
this section show how to implement two versions of the equalizer. The overall functionality of both versionsis
identical. The main differences between the versionsliein how the DSP56311 resources are used. The two versions
of the equalizer are compared in terms of

e Program Flow and Functionality. The general flow serves as atemplate for designing each specific
implementation. Pertinent information includes how the DSP isinitialized, what the main interrupt
sources are, how they are configured, and how they are handled. After examining these features, you
should have a good idea at how the overall program is structured.

e DSP56311 Core Implementation. How to process the 10 bandpass filters using the DSP56300 core.
The memory map and register usage must also be considered.

e EFCOP and DMA Implementation. How to process the 10 bandpass filters using the EFCOP in
Multichannel mode and the DMA controller. The DSP56300 core is minimally used to set up the
peripherals. The memory map, register usage, and peripheral setup must also be considered.

3.1 Program Flow and Functionality

The general program flow of the 10-band stereo equalizer occursin 14 stages (see Figure 5). All but four of these
stages (4, 6, 9, and 11) generally apply to any implementation. The first six stagesinitialize the DSP56311EVM
hardware and software buffersin memory:

e Stage 1: Initialize the DSP56311. Set the clock frequency and businterface.
e Stage 2: Initialize ESSIO and ESSI 1 to interface with the codec.

e Stage 3: Initidize the SCI to interface with an RS-232 port.

* Stage4:

a. (DSP56311 coreimplementation): Set up the Data Sample and Filter Coefficient memory buffers.
These data buffersreside in X and Y memory, respectively

b. (EFCOPand DMA Implementation): Set up EFCOP memory and initialize the DMA controllers.
e Stage5: Set the equalizer knob values to a preset level.
e Stage 6: Set up the valuesin registers RO to R7.
The last eight stages are part of an infinite loop to process the datareceived and transmitted through the codec:
e Stage 7: Frame sync for the codec.
» Stage 8: Get voice datafrom the receive buffer.
e Stage 9: Processthe LEFT voice data using the 10 Bandpass filters.
e Stage 10: Store the LEFT voice data to transmit buffer.
e Stage 11: Process the RIGHT voice data using the 10 Bandpass filters.
e Stage 12: Storethe RIGHT voice data to transmit buffer.

Implementing a 10-Band Stereo Equalizer on the DSP56311 EVM Board, Rev. 1

Freescale Semiconductor 7



>mentation of 10-Band Stereo Equalizer

e Stage 13: Using the equalizer knob values, adjust the gain values for each of the 10 bandpass filters.

» Stage 14: Using the equalizer knob val ue that sets the main volume, adjust the main volume settings of
the codec.

3.1.1 Equalizer Filter and Volume Gain

After each of the 10 digita IR bandpassfiltersin the 10-band stereo equalizer eliminates the frequencies not in its
range, the output is scaled by its respective output gain. The 10 gain values (and main volume) are determined by
user-settable values called equalizer knob values.® The equalizer knob values consist of eleven 8-bit values
received through the Serial Communication Interface (SCI) and placed into a predetermined spacein Y memory
(see Figure 6). The least significant five bits of the first ten knob values are used to select one out of 32 valuesin
the filter gain table, ranging from —0.2 to 0.999 (see Example 16 on page -31). The least significant five bits of the
last knob value are used to select 1 out of 32 valuesin the volume gain table, which are used to configure the
volume setting in the codec (see Example 17 on page -32). Using interrupts, the SCI constantly updates the
equalizer knob valuesin Y memory. In Stage 13, the knob values are used to update the runtime gain values. The 5-
bit knob values function as indexesinto thefilter and volume Gain tables. Therun-time gain valuesare then usedin
Stages 9 and 11 when the voice data is filtered. This process continually repeats.

Program Start
DSP Init. COdeC/ESSI SCI Init EFCOP/Data Knob Va'ue > Set Up
Init Buffer Init Init Registers

Loop Start < J
Codec
Frame Sync

et data from
RX Buffers
Process LEFT
Input
Send LEFT
Input

Set Main
Volume
Set Band
Gain Values
Send RIGHT
Input

NOTE: The stages

depicted in the boxes with
thick borders generally
apply to any implementation
of the 10-band stereo equalizer.

Process Right
Input

Figure 5. General Program Flow

1. The equalizer GUI isused to set the equalizer knob values.

Implementing a 10-Band Stereo Equalizer on the DSP56311 EVM Board, Rev. 1

8 Freescale Semiconductor



Implementation of 10-Band Stereo Equalizer

(Y-MEM)
KNOB_BASE: $0100 Equalizer 62 Hz Knob Val (X-MEM)
125 Hz Knob Val III
$010A Knob Values 250 Hz Knob Val |
.  ___ __ | 500 Hz Knob Val KNOB_VAL
FILTER_GAIN_TBL: $0200 Filter Gain Table \ 1000 Hz Knob Val -
$021F % \ 2000 Hz Knob Val
VOLUME_GAIN_TBL: $0300 Volume Gain Table \ 4000 Hz Knob Val
$031F ‘volume_gain’ \ 8000 Hz Knob Val
\ 16000 Hz Knob Val
Main VOL Knob Val

GAIN_BASE: $2A00

$2A0A

Runtime
Gain Values

Figure 6. Knob and Gain Memory Areas

3.1.2 Stage 1: DSP Initial

ization

Thefirst stage of the code, shown in Example 1, initializes the following DSP memory address locations:

operating frequency.

INIT_BCR. Written to the
interface unit operation.

START. Marks the start of

INIT_PCTL. Written to the Phase Lock Loop Control Register (PCTL) to set up the DSP56300 core

Bus Control Register (BCR) to control the external bus activity and bus

the program in program memory.

Example 1. DSP Initialization

’.******************************************************************************

nolist

include 'ioequ.asm’

include 'intequ.asm’

include ’‘ada_equ.asm’

include ’vectors.asm’

list
INIT PCTL EQU $040006 ; Fcore=fcrystal*MF=12.288MHz*7=86 MHz
INIT BCR EQU $012421

org p:$400

; DSP Initialization

movep #INIT PCTL,x:M PCTL ; PLL 7 X 12.288 = 86.016MHz
movep #INIT BCR,x:M BCR ; AARx - 1 wait state

ori #3, mr ; mask interrupts

movec #0, sp ; clear hardware stack pointer
move #0, omr ; operating mode 0

Implementing a 10-Band Stereo Equalizer on the DSP56311 EVM Board, Rev. 1

Freescale Semiconductor



>mentation of 10-Band Stereo Equalizer

3.1.3 Stage 2: Codec/ESSI Initialization and Operation

The second stage of the code, shown in Example 2, sets up the codec on the DSP56311 EVM Board. The receive
and transmit buffer pointersare set up first. Then the ada_init procedure sets up the codec by initiaizing the ESSIO
and ESSI1 registers. For details, refer to Programming the C$4218 CODEC for Use With DSP56300 Devices
(AN1790/D).

Example 2. Codec/ESSI Initialization

move #RX BUFF BASE,x0

move x0,x:RX PTR ; Initialize the rx pointer
move #TX BUFF BASE, x0

move x0,x:TX PTR ; Initialize the tx pointer
jsr ada_init ; Initialize codec

The codec is configured to sample incoming data at a rate of 48,000 Hz. Figure 7 shows the data format between
the ESSI interface and the codec. ESSIO is configured for Network mode with two time slots. Slot 0 of the 32-bit
frame always contains the Left Channel Word, while Slot 1 always contains the Right Channel Word.

Six ESSIO interrupt service routines (ISRs) handle the ESSIO receive and transmit interrupts. These ISRs are
located inthe ada_init.asmfile. A receiveinterrupt occurs at the end of each time slot, after each channel is
serialy shifted into the ESSIO Receive Shift Register and then transferred to the Receive Data Register. The
receive interrupt service routines place each word in the receive buffersinto X memory (see Figure 7). The 16-bit
channel words are placed into the 16 most significant bits of the 24-bit memory word. The lower 8 bits are cleared.
A transmit interrupt occurs at the beginning of each time slot. The transmit interrupt service routines place each
word into the ESSIO Transmit Data Register, where it is then transferred to the Transmit Shift Register and then
serially shifted out of the DSP.

Stages 7 through 12 (Figure 5) take the left and right channel words from the Receive Data Buffer
(RX_BUFF_BASE), process them, and place the result into the Transmit Data Buffer (TX_BUFF_BASE) to be
transmitted during the next codec dataframe. T1 and T2 in Figure 7 represents the maximum time allowed to
process each channel in order to be transmitted correctly during the following time frame. The Left Channel (T1)
must be processed from the rising edge of the frame sync to the falling edge of the frame sync and placed into the
Transmit Data Buffer in order to be transmitted on time. The Right Channel (T 2) must be processed from therising
edge of the frame sync to the end of slot 0 of the next time frame and placed into the Receive Data Buffer. The
restriction of the processing time for each channdl is due to the design. With a core frequency of 86.016 MHz and a
sampling rate of 48 kHz, T1 = 1794 DSP clocks and T2 = 59,198 DSP clocks.

Implementing a 10-Band Stereo Equalizer on the DSP56311 EVM Board, Rev. 1

10 Freescale Semiconductor



Implementation of 10-Band Stereo Equalizer

l¢ Frame 32-bits

|
SSYNC H ! H | ’7
| ' L |
ILeft Channel Word 0 IRight Channel Wordl @ Left Channel Word | Right Channel Word

v

SDIN .
T~ | T~ |
| T~ T~
~ | ~
STOUT Left Channel Word Right Channel Wor|d Left Channel Word (i Right Channel Wordl)
| | || | |
| Slot 0 | Slot 1 R | |
| L] L |
' 16-bits ' 16-bits H '
_______________ —_—{
(X-MEM)
RX_BUFF_BASE: Left Channel Word 00000000
Right Channel Word 00000000
TX_BUFF_BASE: Left Channel Word 00000000
Right Channel Word 00000000
| | |
| |
23 7 0

Figure 7. Codec Data Format and Layout in Memory

3.1.4 Stage 3: SCl Initialization and Operation

Stage 3 of the code, shown in Example 3, initializes the following memory address |ocations:
e INIT_SCCR. Written to the SCI Clock Control Register (SCCR) to set up the baud rate.
* INIT_SCR. Written to the SCI Control Register (SCR) to control the seria interface operation.

The Port E register (PCRE) is aso configured to enable the SCI lines. Finally the pointer (KNOB_VAL) to the
equalizer knob valuesin'Y memory isinitiaized.

Example 3. SCI Initialization

INIT SCCR EQU $002010 ; baud = Fcore/ [64% (7 (SCP)+1)* (CD+1) ]
INTT SCR EQU $000002

movep #INIT SCCR,x:M SCCR ; Initialize SCI

movep #INIT SCR,x:M SCR

movep #$7,%x:M_PCRE

move #KNOB BASE, r0 ; Initialize the SCI pointer.
move r0,x:KNOB VAL ;

The SCI is configured to receive the equalizer knob values from the external PC (or other source). One ISR handles
the SCI receive interrupt. A receive interrupt occurs when a byteis shifted into the SCI Receive Shift Register and
then transferred to the Receive Data Register. The ISR places this byte in one of the equalizer knob value memory

Implementing a 10-Band Stereo Equalizer on the DSP56311 EVM Board, Rev. 1

Freescale Semiconductor 11



>mentation of 10-Band Stereo Equalizer

locations to which KNOB_VAL points (see Figure 6). The operation of the SCI ISR isvery simple (as shownin
the top half of Figure 8).

1. Itsavesafew coreregistersto the system stack.

2. It readsthe data byte from the SCI Receive Data Register.

3. The character “Enter” (hex value Oxd) is used to reset the table pointer (KNOB_VAL) to the equalizer
knob value base (KNOB_BASE).

4. |f the character “Enter” isread, KNOB_VAL isset to equal KNOB_BASE. Elseif another character is
read, then that character is put at the Y-Memory location pointed to by KNOB_VAL.

5. The core registers are then restored, and the interrupt exits.

In this programming example, the equalizer knob va ues come from the COM1 or COM?2 port of aPC. The
Equalizer GUI that allowsthe user to set the knob values sends the data pattern shown in the bottom half of Figure
8.

D
‘ SCIRX IRQ ‘ YES Reset PTR
KNOB_VAL=KNOB_BASE

A h 4 B D E
Save REGs Read from Put Char into Restore REGs
to Stack SCI| RX Buff Knob Table from Stack

Char = 0x0d

ENTER [ 31 Hz Knol 62 Hz Knolf125 Hz Kno[ 250 Hz Kno[500 Hz Kno[ 1 kHz KnoH 2 kHz Knolf 4 kHz Knol] 8 kHz Knol{ 16 kHz Kno[V olume Knok
0x0D Charl Char2 Char3 Char4 Charb Char6 Char7 | Char8 Char9 Char10 Charll

>

Figure 8. SCI Interrupt Service Routine and Incoming Data Pattern

3.1.5 Stage 4: EFCOP Memory Initialization and DMA Setup

Stage 4 of the code, shown in Example 4, sets up the X and Y memories for this version of the implementation.
The code in program memory does two things.

e Clearsthex(n) and y(n) data buffersat DATA_BASE L and DATA_BASE R.
e Setsup the data buffer pointersin memory usng DATA_PTR.

Figure 9 shows the memory map for thisimplementation. The following areas of memory are specific to this
implementation and have not been discussed in previous sections.

 DATA BASE_L and DATA BASE_R. These two areasin X memory hold the current data values for
x(n) to x(n-2) and y(n) to y(n-2) for all 10 bandpassfilters.

 DATA PTR Itisnecessary to store the pointers to the memory areas. Storing these valuesin X
memory meansthat oneregister can be assigned to save and restore the four data pointerswhen they’re
needed.

« COEF_BASE. Thisareaof Y memory containsthe o., B, and y coefficients for each of the 10
bandpass filters.

Implementing a 10-Band Stereo Equalizer on the DSP56311 EVM Board, Rev. 1

12 Freescale Semiconductor



L |

Implementation of 10-Band Stereo Equalizer
(X-MEM) (Y-MEM)
STACK_PTR: $0000 SYSTEM STACK PONTER
KNOB_BASE: $0100 31 Hz Knob Value
DATA_BASE_L: $1000
— — x(n) Values for LEFT Channel ;
$1002 $010A Main VOL Knob Value
$1040 y(n) Values for LEFT Channel FILTER_GAIN_TBL: $0200 Filter Gain Table
S0 —— $021F ‘filter_gain’
DATA_BASE_R: $11001 1) values for RIGHT Channe| VOLUME_GAIN_TBL: $0300 Volume Gain Table
$1102 $031F ‘volume_gain’

$l%.‘.‘0 y(n) Values for RIGHT Channe

$1167
RX_BUFF_BASE: $2800 LEFT CHANNEL WORD COEF_BASE: $1000
$2801 RIGHT CHANNEL WORD $101D —
TX_BUFF_BASE: $2802 LEFT CHANNEL WORD
$2803 RIGHT CHANNEL WORD
RX_PTR: $2804 Pointer to RX Buffer
TX_PTR: $2805 Pointer to TX Buffer
KNOB_VAL: $2806 Pointer to KNOB TABLE

GAIN_BASE: $2A00

31 Hz Channel Gain
$2A0A Main VOL Setting

DATA_PTR: $2B00 Pointer to Yi(n): Left-channel
$2B01 Pointer to X(n): Left-channel
$2B02 Pointer to Yi(n): Right-channe
$2B03 Pointer to X(n): Right-channel

Figure 9. Memory Map for DSP56300 Core Implementation

Example 4. Filter Parameter Setup

org y:FILTER GAIN TBL
include 'filter gain’

org y:VOLUME_GAIN TBL
include 'volume gain’

org y:COEF_BASE
include "coeff’

;1IN PROGRAM MEMORY; ; ;

;Clear the x(n) and y(n) Data Buffers

move #DATA BASE L, 13
rep #3S68
move r0,x: (r3)+

; X:DATA BASE L+($00..502) - x(n) left chan.
; X:DATA BASE L+($40..%42) - y(n) left chan. 31 Hz
; X:DATA BASE L+($44..%46) - y(n) left chan. 62 Hz

; X:DATA BASE L+($64..366) - y(n) left chan. 16 kHz

move #DATA BASE R, 13
rep #3S68
move r0,x: (r3)+

Implementing a 10-Band Stereo Equalizer on the DSP56311 EVM Board, Rev. 1

Freescale Semiconductor 13



>mentation of 10-Band Stereo Equalizer

; X:DATA BASE R+($00..302) - x(n) right chan.
:DATA BASE R+($40..%42) - y(n) right chan. 31 Hz
:DATA BASE R+($44..5%46) - y(n) right chan. 62 Hz

»

»

; X:DATA BASE R+($64..3566) - y(n) right chan. 16 kHz

; Setup Filter Data Buffers (and Pointers)

move #DATA PTR, r3

nop

move #DATA BASE L1+540,r0 ; Yi(n):L-ch at x:DATA BASE L+$40
move r0,x: (r3)+

move #DATA BASE L, 10 ; X(n):L-ch at x:DATA BASE L
move r0,x: (r3)+

move #DATA BASE R+540,r0 ; Yi(n):R-ch at x:DATA BASE R+$40
move r0,x: (r3)+

move #DATA BASE R, 10 ; X(n):R-ch at x:DATA BASE R
move r0,x: (r3)

Next, we implement the 10-band stereo equalizer using the DSP56311 EFCOP to process the bandpass filters and
DMA to transfer the DATA to/from the EFCOPR. Stage 4 of the code, shown in Example5, setsupthe X and Y
memories for thisimplementation version. The code in program memory does the following:

«  Clearsthe four EFCOP databuffersat FIR_FDBA_L, FIR_FDBA_R, IIR_FDBA_L, and
IIR_FDBA_R.

»  Setsup the EFCOP data buffer pointersin memory using FDBA_PTR.

Figure 10 shows the memory map for thisimplementation.

(X-MEM) (Y-MEM)

FIR_FDBA_L: $1000 EFCOP FIR Data Buffer

STACK_PTR: $0000 SYSTEM STACK PONTER
KNOB_BASE: $0100 31 Hz Knob Value
$1027 for Left Channel $010A Main VOL Knob Value

FIR_FDBA_R: $1100 EFCOP FIR Data Buffer FILTER_GAIN_TBL: $0200 Filter Gain Table
51157 s FSTCTITE womr ]
IIR_FDBA_L: $1200 EFCOP IIR Data Buffer VOLUME_GAIN_TBL: $0300 Volume Gain Table
sisiol o e Crame aoar| | voume g |
IR_FDBA_R: $1300 EFCOP IIR Data Buffer
$1313 for Right Channel
RX_BUFF_BASE: $2800 LEFT CHANNEL WORD FIR_COEF: $1000
$2801 RIGHT CHANNEL WORD $1027 =
TX_BUFF_BASE: $2802 LEFT CHANNEL WORD IR_COEF: $1200
$2803 RIGHT CHANNEL WORD $1213 iir_coeff
RX_PTR: $2804 Pointer to RX Buffer
TX_PTR: $2805 Pointer to TX Buffer
KNOB_VAL: $2806 Pointer to KNOB TABLE
FIR_TEMP: z;ggg FIR Filter Result GAIN_BASE: $2A00 31 Hz Channel Gain
$2A09
|

FDBA_PTR: $2B00| Current Pointer to FIR Data Buffer{ L-ch
$2B01| Current Pointer to IR Data Buffer:{L-ch
$2B02| Current Pointer to FIR Data Buffer] R-ch
$2B03| Current Pointer to IIR Data Buffer:[R-ch

Figure 10. Memory Map for EFCOP/DMA Implementation

Implementing a 10-Band Stereo Equalizer on the DSP56311 EVM Board, Rev. 1

14 Freescale Semiconductor



Implementation of 10-Band Stereo Equalizer

The following areas of memory are specific to this implementation and are not discussed in previous sections.

FIR_FDBA L, FIR_FDBA_R. Thesetwo areasin X memory hold the current left and right x(n) to x(n-
2) datavalues for each of the 10 EFCOP filter channels.

IIR_FDBA L, IIR_FDBA_R. Thesetwo areasin X memory hold the current left and right y(n) to y(n-
2) datavalues for each of the 10 EFCOP filter channels.

FIR_TEMP. Thisareain X memory holds the result from the EFCOP after it has processed the FIR
part of the lIR filter. Thisareais 10 words long (one word for each of the 10 channels).

IIR_TEMP. Thisareain X memory holdsthe result from the EFCOP after it has processed the | IR part
of the IR filter. This areais 10 words long (one word for each of the 10 channels).

FDBA_PTR. Dueto the nature of the program, it is necessary to store the FDBA register of the EFCOP
after each use. This pointer saves and restores the correct data pointer values to the EFCOP.

FIR_COEF. Thisareaof Y memory containsthe o coefficients for each of the 10 EFCOP channels.

IIR_COEF. Thisareaof Y memory containsthe p and y coefficients for each of the 10 EFCOP
channels.

Example 5. EFCOP Memory Initialization

; Clear the EFCOP Data Buffer

move #FIR FDBA L,r3 ; FIR Left Channel
rep #40

move r0,x: (r3)+

move #FIR FDBA R,r3 ; FIR Right Channel
rep #40

move r0,x: (r3)+

move #IIR FDBA L,r3 ; IIR Left Channel
rep #20

move r0,x: (r3)+

move #IIR FDBA R,r3 ; IIR Right Channel
rep #20

move r0,x: (r3)+

; Clear the Temporary Storage Areas

move #FIR TEMP, r3
rep #CHANNELS
move r0,x: (r3)+
move #IIR TEMP, r3
rep #CHANNELS
move r0,x: (r3)+

; Setup EFCOP Data Buffers (and Pointers)
move #FDBA PTR, r3 ; Base pointer for FDBA values (X mem)

Implementing a 10-Band Stereo Equalizer on the DSP56311 EVM Board, Rev. 1

Freescale Semiconductor 15



>mentation of 10-Band Stereo Equalizer

move #FIR FDBA L,r0
move r0,x: (r3)+
move #IIR FDBA L,x0
move r0,x: (r3)+
move #FIR FDBA R, r0
move r0,x: (r3)+
move #IIR FDBA R, r0
move r0,x: (r3)+

; Setup Channels in EFCOP
movep #CHANNELS-1,y:M FDCH ; # of EFCOP Channels

3.1.6 Stage 5: Equalizer Knob Value Initialization

Stage 5 of the code, shown in Example 6, clears the memory spaces corresponding to the ‘ Runtime’ gain Values by
writing a 0x0 to them. The equalizer knob valuesin memory are then set with the value Ox1F (for the filter gain

values) and 0x10 (for the volume gain value).

Example 6. Knob Value Initialization

; Knob Value Initialization

; Clear the ‘Runtime’ Gain Values in memory

move #0, 0

move #GAIN BASE,r3
rep #11

move r0,y: (r3)+

; Set equalizer knob values (for Filters)

move #S00001£,r0 ; Set index into Filter Gain Table
move x:KNOB_BASE, r3

rep #10

move r0,y: (r3)+

; Set equalizer knob values (for Volume)

move #$000010,r0 ; Set index into Volume Gain Table
nop
move r0,y: (r3)+

3.1.7 Stage 6: Set up Registers RO to R7

Thisimplementation of the 10-band stereo equalizer uses all of the available DSP56300 core registers, as shown in

Example 7.

Example 7. Register Usage

; RO - IIR Coeff Pointer (30-word Buffer)

move #COEF_BASE, r0 ; IIR Coeff for Left/Right Chan.
move #29,m0

; R1 - Knob Value Pointer (1l-word Buffer)

move #KNOB_BASE, rl

Implementing a 10-Band Stereo Equalizer on the DSP56311 EVM Board, Rev. 1

16 Freescale Semiconductor



move

move
move
; R4
move
move
; R5
move
; R6
move
move
; R7
move
move

Implementation of 10-Band Stereo Equalizer

Points to the Filter and Volume Gain Tables
#FILTER GAIN TBL,r2

‘Runtime’ Filter Gain Pointer (11l-word Buffer)
#GAIN BASE,r3

#10,m3

Pointer to Yi(n) buffers (3-words * 10 Bands)
#2,md ; Set y(n) modulo for 3 words
#4 ,n4

Pointer to X(n) buffer (3-words)
#2,m5

User Stack Pointer
#STACK PTR,r6 ; initialize stack pointer.
#-1,m6 ; linear addressing

Holds Pointer Value for current Data Buffer (4-Words)
#DATA PTR, r7 ; Base pointer for Data values (X mem)
#3,m7 ; Set the buffer to 4

The coreregister usage is as follows:

» RO. Pointer to filter coefficientsin Y memory (30-word circular buffer)

e R1. Pointer to knob valuesin Y memory (11-word buffer)

* R2. Pointer to filter gain table and volume gain tablein Y memory.

* R3. Pointer to filter gain valuesin Y memory (11-word buffer).

* RA4. Pointer to Yi(n) data buffersin X memory. This register isused for both the left and right channels.

» R5. Pointer to X(n) data buffersin X memory. Thisregister is used for both the left and right channels.

» R6. System stack pointer, primarily used for interrupt service routines. The routines can use this
register to save and restore the state of regular code flow.

» R7.Pointer for the current data buffer pointers. This register helps store the runtime X (n) and Yi(n)
data buffer pointer valuesin X memory (4-word buffer).

3.1.8 Stage 7, 8, 10, and 12: Codec Operation

The code for Stages 7, 8, 10, and 12 is shown in Example 8. Stages 7 through 14 make up an infinite loop that
processes the |eft and right voice channels that are received. In Stage 7, the Receive Frame Sync bit (RFS) of the
ESSI Status Register (SSISR) is used to start each loop. In Stage 8, the left and right voice data, stored at
RX_BUFF_BASE, ismoved to registersin the DSP. After the voice data from the left and right channelsis
processed, it ismoved to TX_BUFF_BASE.

Example 8. Codec Code

; Get Left and Right Channel Data Bytes

; START LOOP
loop
Jjset
jclr

move
move

#3,x:M SSISRO,* ; wait for RX frame sync
#3,x:M SSISRO,* ; wait for RX frame sync
x:RX BUFF_BASE, x1 ; receive left
X:RX BUFF BASE+1,yl ; receive right

Implementing a 10-Band Stereo Equalizer on the DSP56311 EVM Board, Rev. 1

Freescale Semiconductor

17



>mentation of 10-Band Stereo Equalizer

;i; PROCESS LEFT INPUT code ;;;

move a,x:TX BUFF_BASE ; transmit left data byte
;;; PROCESS RIGHT INPUT code ;;;
move b,x:TX BUFF BASE+1 ; transmit left data byte

3.1.9 Stage 9 and 11: Process Left/Right Input

Processing of the |eft and right voice data bytesis practically identical. The only difference is the codec data bytes
that are filtered. For a complete | IR filter to be implemented, the voice data must be processed using the EFCOP
FIR and IR types of filters. These two filter types (shown in Figure 11) are used together to create two filtering
phases. During the first phase, the FIR results for each of the 10 channels are calculated using the EFCOP. DMA 0
transfers the codec voice data sample to the EFCOP, and DMA 1 transfers the results to the FIR_TEMP buffer.
During the second phase, the | IR results for each of the 10 Channels are calculated. DMA 2 transfers the FIR
results to the EFCOP, and DMA 3 transfers the final resultsto the IIR_TEMP buffer in X memory (see Example
9). Theresults are then multiplied by their respective gain values and added together.

FIR 1R

At time x(n): I
ax2 | G.
x.(n—1) | | > yin-1)
|
| =1
z | /4 z
yj(n-2)
7] 2 | 5 7]
- —B/4
|
x,(n—3) | @ J y;(n=3)

Figure 11. EFCOP IIR Block Diagram

The FIR coefficients (inthe fir coeff file) are multiplied by two. Similarly, the IR coefficients (in the
iir coeff file) are divided by four. These operations produce the correct multiplication factor while the EFCOP
is processing the datain the IR phase. The EFCOP IIR block diagram for a single channel (Figure 11) showsthe
how the two EFCOP phases are related. The EFCOP in [IR mode is configured so that it scales the feedback terms
by 8. The EFCOP also introduces atime delay when it isin FIR Multichannel mode. Thisiswhy at time x(n),
x(n-1) is processed instead. The channel gain, Gi, can be set to have a value between —0.2 and 0.999 (see Section
3.1.1, Equalizer Filter and Volume Gain, on page 8). A 3-tap FIR filter is used during the FIR filtering phase,