
AN2086/D
Rev. 0, 06/2001

Simple Real-time Sonar
with the DSP56824

Application Note

 by

 Mihai V. Micea, Lucian Muntean, and Daniel Brosteanu

rxzb30
Rectangle

rxzb30
ForwardLine

rxzb30
freescalecolorjpeg

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty,
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can
and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must
be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent
rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support life, or for any other application in which the
failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers,
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Motorola and the Stylized Logo are registered trademarks of Motorola, Inc. Reg. U.S. Pat. & Tm. Off.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado, 80217.
1–303–675–2140 or 1–800–441–2447

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3–20–1, Minami–Azabu, Minato–ku,
Tokyo 106–8573 Japan. 81–3–3440–3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd., Silicon Harbour Centre, 2 Dai King Street,
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852–26668334

Technical Information Center: 1–800–521–6274

HOME PAGE: http://www.motorola.com/semiconductors/ © Copyright Motorola, Inc., 2001

rxzb30
Rectangle

rxzb30
disclaimer

rxzb30
hibbertleft

� Abstract and Contents iii

The focus of this paper is on the techniques of analysis and implementation of a simple real-time SONAR
system with a DSP56824-based board connected to a host computer.

SONAR system’s general architecture and its principles of functioning are further presented. Specific
digital signal processing algorithms developed for the ultrasound frequencies are described in detail, along
with their implementation using the DSP56824 processor.

Finally, a particular application developed with the proposed SONAR system is presented as a case study.
Some prospects and future work related to this subject are also mentioned as conclusion.

1 Introduction . 1

1.1 General Description of a Sonar System . 1

2 Proposed Sonar System Description . 3

2.1 General System Architecture . 3
2.2 Transducer Interface Circuits . 5
2.3 Stepper Motor Control . 6

3 Sonar Implementation on the DSP56824 . 7

3.1 Definition and Initialization Phase . 7
3.2 Emitted Wave Generation. 11
3.3 Echo Signal Sampling and Storing . 11
3.4 Target Polar Coordinates Calculation. 12
3.5 Transmission of Results to the Host . 15
3.6 Transducer Platform Rotation. 17

4 Sonar Implementation on the Host . 19

4.1 Serial Data Link Implementation . 19
4.2 Graphical User Interface Implementation. 21

5 Conclusions . 22

6 References . 24

Abstract and Contents

iv Simple Real-Time Sonar with the DSP56824 �

� Introduction 1

1 Introduction
SONAR (SOund NAvigation and Ranging) systems, like RADAR and electro-optical systems, have a
large field of applications in robotics, navigation, and target detection. The common principle of
functioning is based on the propagation of waves between a target and the detector. Sonar, however, differs
fundamentally from radar and electro-optics because the energy is transferred by acoustic waves.

Digital signal processing techniques increase the versatility of modern sonar systems, resulting in a wider
range of detection, better precision, data storage and post-processing capabilities, as compared to previous,
analog sonar systems. Digital filtering algorithms can be applied to the received data, thus improving the
target detection capabilities in noisy environments. Therefore, using digital signal processors (DSPs) to
enhance sonar performance is advantageous.

This application note presents a simple real-time sonar implementation using the DSP65824.

Section 1.1, “General Description of a Sonar System,” explains a typic sonar system, along with its
principles of operation.

Section 2, “Proposed Sonar System Description,” introduces the suggested sonar implementation using
the DSP56824. Also presented is a general block diagram of the system, the hardware and functional
description of its components, and the specialized DSP algorithms.

The focus of Section 3, “Sonar Implementation on the DSP56824,” provides details of the sonar-specific
algorithms on the DSP56824 processor. This section also discusses the routines developed for generating
the emitted wave samples, echo signal reception and pre-processing, noise filtering, emitted pattern
recognition and target distance calculation. The implementation of data communication routines between
DSP and the host computer are also presented.

Section 4, “Sonar Implementation on the Host,” describes the sonar implementation on the host side: the
data link routines with the DSP and the graphical user interface developed under the Windows platform.

Finally, Section 5, “Conclusions,” presents a synthesis of the work along with practical results,
performance estimations of the sonar system, and investigates additional applications for simple sonar
systems.

1.1 General Description of a Sonar System
The basic sonar system estimates the distance to a target by calculating the overall propagation time of a
specially selected audio or ultrasound wave between the sonar and target. In an active sonar system the
wave propagates from the transmitter to the target and back to the receiver analogous to pulse-echo radar
and passive sonar systems in which the target is the source of the energy that propagates to the receiver.

In an active sonar system, the source of the acoustic wave is part of the sonar system. The electrical energy
from the transmitter must be converted into acoustic energy, by a transducer. In a passive sonar system, the
source is the target itself.

Knowing the propagation speed of the acoustic waves in the particular environment where the sonar
operates—say, in air—the estimated target distance from the sonar is determined using Equation 1.

2 Simple Real-Time Sonar with the DSP56824 �

 Eqn. 1

where: - is the propagation speed of acoustic waves in air, and;

- is the total propagation delay of acoustic waves.

Transducers are used to receive acoustic energy. When they are designed to receive equally in all
directions, they are called omni-directional. Transducers can be constructed with minimal directionality in
which case they have a range of angles, known as beamwidth, from which to receive energy.

While receiving, the narrow beamwidth allows the transducer to reject interfering noise because the
ambient noise comes from all directions. This is represented mathematically by a logarithmic term called
the directivity index, DI.

The criterion for detection requires that the amount of power collected by the receiver to exceed the noise
level by a certain threshold. The ratio of signal-to-noise in logarithmic form is the SNR. The minimum
SNR for detection is called the detection threshold, DT. Therefore detection generally occurs, meaning
more than 50% of the time, whenever SNR > DT.

The transmission loss (noted here as TL) represents the signal loss from source to receiver. The
transmission loss term includes all the effects of the energy spreading out, attenuation, and other various
effects.

As a result, the SNR at the sonar receiver can be written explicitly for a passive system (which has a
one-way transmission) as shown in Equation 2.

SNRpassive = SL + DI - TL - NL Eqn. 2

where: SL- is the source level of emitted acoustic energy;

DI- directivity index of the receiver;

TL- transmission loss;

NL- noise level.

For an active system, there is an additional term, called target strength (TS), which describes the reflection
of energy from the target. The target strength acts as a source level after reflection, and therefore includes
any directional effects of reflection. The target strength is a function of the target size, surface material,
shape, and orientation in the same way that radar cross-section varies. Equation 3 also shows that there is a
two-way transmission loss for the active system.

SNRactive = SL - 2TL + TS - NL + DI Eqn. 3

Although these terms look similar in active and passive systems the values for each term will generally be
quite different.

D vs

tpropagation

2
--------------------------⋅=

vs 340
m
s
----=

tpropagation s[]

General System Architecture

� Proposed Sonar System Description 3

2 Proposed Sonar System Description
This section introduces the proposed sonar implementation using the DSP56824 processor. Also presented
is a general block diagram of the system, the hardware and functional description of its components, and
the specialized DSP algorithms.

2.1 General System Architecture
The application presented uses the DSP65824 to implementation an active sonar system. Figure 1 illus-
trates the general system architecture of our example.

Figure 1. Sonar System Architecture

The primary feature of this active sonar system is that both the acoustic wave source and the receptor are
assembled together on a rotating platform. The two transducers were selected as a pair of ultrasonic emitter
and receiver with similar electro-acoustic properties. They define the sonar working frequency for the
acoustic signals as: fSonar = 40 kHz. The emitter/receiver platform is driven by a stepper motor,
controlled from the DSP board.

The electronic amplifier and driver circuits for the ultrasound transducers, as well as the analog-to-digital
conversion logic for properly receiving of the incoming echo signal are additional features of this system.
They can be assembled on a separate circuit board, or on the rotating platform, in close proximity to the
transducers. The first option is preferred because it reduces the total weight of the platform, thus requiring
a stepper motor with relatively low parameters (for example, size, power consumption, and weight).

We used the DSP56824-based Evaluation Module (EVM) as the core unit of the sonar system. It is directly
connected to the transducer interface logic through Port B, configured as the General Purpose I/O port
(GPIO). It is also connected to the host computer using the standard PC serial interface.

The DSP performs all the sonar-specific data processing operations (for example, emitted-wave samples
generation, received signal filtering, detection of the emitted pattern in the received data buffer, and target
distance calculation), as well as the data communication routines for both the host side and the transducer
interface, the analog-to-digital converter, and the stepper motor control routines.

The host computer provides the graphical user interface of the sonar. The user starts and stops the sonar
operation and the GUI displays the detected targets in a graphical, intuitive manner, simulating the real-life
radar and sonar scopes.

4 Simple Real-Time Sonar with the DSP56824 �

When activated, the proposed sonar system performs the steps illustrated in the general data flow shown in
Figure 2.

Figure 2. General Sonar Operations Flow

Figure 2 emphasizes the most important routines developed for the sonar system, as well as their relative
position in time during the operation of the sonar. One of the most important characteristics of the sonar
general data flow, evident in the illustration, is the parallelism of routine execution between the host side
and the DSP side.

Items denoted in Figure 2 as ‘α’ and ‘β’ are stable states of the data flow. When the execution on the DSP
reaches the ‘α’ state, it waits asynchronously for an external event in order to go further—that is, the host
computer signal is ready to receive results from the DSP. After receiving the signal, the DSP executes a
series of routines ultimately reaching the distance calculation loop which corresponds to a 1.8 degree
horizontal scan (two 0.9 degree step rotations of the stepper motor) from a total of 180 degrees—the sonar
angular detection range.

In the same manner, when the execution on the host side reaches the ‘β’ state, the computer sends a ‘wait
for data’ command to the DSP and loops indefinitely until one of the following conditions occur: the DSP
sends results through the serial link, or the user stops the sonar operation from the graphical user interface.
Detailed descriptions of the routines depicted in Figure 2 are provided in Section 3 and in Section 4 of this
application note.

Transducer Interface Circuits

� Proposed Sonar System Description 5

2.2 Transducer Interface Circuits
Two ultrasound transducers, one for acoustic emission and the other for echo reception, and the
corresponding signal conditioning circuits represent the analogue component of the sonar.

We used a 400SR-400ST pair of capacitive transducers because of their good acoustic characteristics:
40 kHz ultrasound transducers, frequency tolerance of , good directivity, and small size.

To accommodate the small emitting transducer impedance and to increase the signal gain, an operational
amplifier-based interface logic was implemented, as presented in Figure 3.

Figure 3. Emitter and Receiver Transducer Circuits

This scheme obtains a theoretical voltage gain of +20, for the emitted signal. Filtering capacitors were
provided to eliminate the noise on the circuit power lines.

From the DSP Evaluation Module’s GPIO Port, the 40 kHz generated rectangular signal is amplified and
filtered through the emitting transducer interface circuits, resulting in a sine wave of the same frequency as
the input of the transducer.

For the echo signal reception and conditioning we implemented a similar signal amplification (this time
with a theoretical voltage gain of +40) and impedance regulation circuit. Consecutively, the resulted output
signal needs to be converted from analog to digital in order to be sent to the DSP for further processing.

Because of the relatively high frequency of the ultrasound signal (40 kHz), the DSP56824EVM on-board
audio codec (MC145483 13-bit linear single-channel) is not appropriate for our sonar application. Instead,
we developed a Burr-Brown sampling ADS774-based analog-to-digital scheme, able to work at 108 kSps
(kilo-Samples per second).

The ADS774 is controlled by the DSP through two dedicated GPIO lines: one for starting the conversion
cycles on the ADS and the other for pooling the conversion status to detect an ‘end of conversion’ that
acknowledges available data from ADS shown in Figure 4.

From the total of 12 bits output of the converter, the DSP uses the 9 most significant bits as a
supplementary noise-reduction measure.

1 kHz±

6 Simple Real-Time Sonar with the DSP56824 �

Figure 4. Analog-Digital Converter Circuit

2.3 Stepper Motor Control
Both transducers, assembled on a small platform are driven by the stepper motor (see Figure 1 on page 3).
The motor is controlled by the DSP through 2 dedicated GPIO lines interfaced by the control circuit
illustrated in Figure 5.

Figure 5. Stepper Motor Control Circuit

The stepper motor rotates the transducers platform with a total angle of 180 degrees. left and right, with a
two-step resolution; one step corresponds to 0.9 degrees. More details on commanding the stepper are
provided in Section 3.

Program Definition and Initialization Phase

� Sonar Implementation on the DSP56824 7

3 Sonar Implementation on the DSP56824
As shown in previous sections, all the sonar-specific algorithms are implemented on the DSP56824. The
main program on the DSP follows the general steps presented in Figure 2 on page 4.

Code Listing 1 presents the main program sequence of sonar implementation. First, the general data
structures used by the main program and the subsequent routines are defined, and the DSP initialization is
made. In the Section 3.1 we describe this initial phase of the program.

The main program incorporates into an infinite loop all the routines developed for the target detection,
distance calculation and communicates the results to the host.

Code Listing 1. Sonar main program on DSP

Defines_and_Init ; here are the general data structures defines
; and the Sonar initialization

main
 jsr Gen_Signal
 jsr Read_ADC
 jsr Moving_Average
 jsr Seek_MAX
 jsr Calc_Position
 jsr Gen_Sincro
 move angle,y1
 jsr Out_y1
 move distance,y1
 jsr Out_y1
 jsr rotate_motor
 jmp main

Generation of the emitted signal is the first step performed by the sonar program - the ‘Gen_Signal’
routine. Next, the DSP commands the analog-to-digital converter to fill a 2048-word buffer with samples
from the received echo signal. This is accomplished by the ‘Read_ADC’ procedure.

Actual calculation of the distance to a target is performed on the data buffer written during the
‘Read_ADC’ step. First, the received signal is filtered using a Moving Average type of low-pass digital
filter. Next, we look for the maximum value on the buffer. Its relative position will then be represented in
millimeters and stored into the ‘distance’ variable. The ‘Calc_Position’ results in the angular coordinate of
the target—the ‘angle’ parameter.

At this point, the DSP has a complete set of results to be sent to the host computer through the serial data
link. It starts the synchronization procedure, ‘Gen_Sincro’, which waits for the host to acknowledge it is
ready to receive the results and at the same time ensures a correct data transaction on the serial interface.

After the correct synchronization step the two target coordinates (‘distance’ and ‘angle’) are sent to the
host computer for display.

Finally, the stepper motor is commanded for a 1.8 degree rotation of the transducer platform, and the main
sonar program loops back to the next target detection iteration.

Extensive implementation details of all the above routines will be given in the following sub-sections.

3.1 Program Definition and Initialization Phase
All the general program parameters and variables are defined in this section: peripheral and core DSP
registers used by the sonar program, temporary values, sonar functional parameters, constants, and so on.

8 Simple Real-Time Sonar with the DSP56824 �

Code Listing 2. General Program Defines

; Program defines
define ipr ’x:$fffb’ ; Interrupt priority register
define bcr ’x:$fff9’ ; Bus control register
define pcr1 ’x:$fff3’ ; PLL control register 1

 define pcr0 ’x:$fff2’ ; PLL control register 0
define pbd ’x:$ffec’ ; Port B data register
define pbddr ’x:$ffeb’ ; Port B data direction register
define pbint ’x:$ffea’ ; Port B Interrupt register
define pcd ’x:$ffef’ ; Port C data register
define pcddr ’x:$ffee’ ; Port C data direction register
define pcc ’x:$ffed’ ; Port C control register
define spcr1 ’x:$ffe6’ ; spi 1 control register
define spsr1 ’x:$ffe5’ ; spi 1 status register
define spdr1 ’x:$ffe4’ ; spi 1 data register

; Variables used in program to retain temporary values,
;; results and to perform software loops.

define go ’x:$0’
define loopc1 ’x:$1’
define loopc2 ’x:$2’
define save_r0 ’x:$3’
define save_m ’x:$4’
define leftcount ’x:$5’
define rightcount ’x:$6’
define angle ’x:$7’
define distance ’x:$8’

; Program equates
SPIF equ $0080 ; SPIO Interrupt complete flag
dummy equ $0000 ; dummy value to write
pc7 equ $0080 ; port C bit 7
WRITEUP equ $0080 ; write upper instruction byte
READ equ $0000 ; read command
PLL_DIV equ 19 ; PLL Feedback Multiplier
dim equ 2048 ; receive buffer dimension
dim_mot_buf equ 4 ; the dimension of command motor
 ;; buffer words
no_detection equ 0 ; constant used to indicate that

;; no object is detected
noise_level equ 6 ; maximum noise level
av_points equ 20 ; the number of coefficients for

;; moving average filter

no_wave equ 40 ; the number of periods for the
;; emitted signal

In the next sequence of code, we define a circular buffer for the stepper motor command. In order to
perform a 0.9 degrees one-step rotation, the stepper we used needs a two-bit input code explained in
Table 1.

Table 1. Stepper Motor Command Sequence

GPIO Pin Numbers: 14,15 One Step Left Rotation One Step Right Rotation

1 1
0 1
0 0
1 0

Program Definition and Initialization Phase

� Sonar Implementation on the DSP56824 9

Depending on the current configuration of the two command lines (GPIO Pin 14 and 15), the next step
rotation will be commanded by following the corresponding direction shown in Table 1 (see also Figure 5
on page 6). For example, if the current command lines configuration is ‘01’ and we need to perform a one
step right rotation of the stepper motor, the next sequence on the GPIO lines 14, 15 needs to be: ‘00’.

The motor command data structure implements a circular buffer, which will be scanned upwards or
downwards, depending on the rotation type needed. The command is shown in the Code Listing 3.

Code Listing 3. Stepper Motor Command Data Structure

org x:$1000
; this circular buffer retains the command words for the motor

buffer m,dim_mot_buf
pas

dc $0000
dc $8000
dc $c000
dc $4000
endbuf

Further on, the DSP stack initialization, along with the PLL, GPIO, and interrupts setup is made:

10 Simple Real-Time Sonar with the DSP56824 �

Code Listing 4. Main Program Initialization Sequence

org x:$2000
; receive buffer

buffer m,dim
m_buf ds dim

endbuf

org p:$0000
jmp Start ; start of program
org p:$0014
jsr Irqa_ISR ; Port B GPIO Interrupt
org p:$0100 ; Starting location of this

;; program
Start

move #$40,sp ; Set stack pointer to first
;; location
;; after page 0

move #$0000,bcr ; Initialize BCR for zero wait
;; states

move #(PLL_DIV-1)<<5,pcr0 ; Configure PLL feedback divider
; 3.6864 MHz * 19 = 70.0416 MHz

bfset #$4208,pcr1 ; Enable PLL using oscillator
;; clock— PLLE=1, PS1=1, VCS0=1

; Delay to meet the pll lock setup time
move #$1fff,lc
do lc,delay1
nop
nop

delay1
move #$1fff,lc
do lc,delay2
nop
nop

delay2
move #$F000,pbddr ; Configure GPIO pins
move #$8000,ipr ; Enable GPIO interrupts
bfset #$0100,sr ; Enable all level of interrupts
bfclr #$0200,sr
move #dim,m01
move #1,n
move #pas,save_r0
move #100,x0
move x0,leftcount
move #0,x0
move x0,rightcount

The routine which programs SPI on port C to communicate with host computer is given below. When the
SPI is configured as a master, the software selects one of the eight different bit rates for the clock. The
routine also configures the MAX3100 UART (universal asynchronous receiver transmitter) used as
RS-232 interface.

Emitted Wave Generation

� Sonar Implementation on the DSP56824 11

Code Listing 5. Serial Interface Configuration Routine

Serial_Program
bfset #pc7,pcd ; max3100 CS high
bfset #pc7,pcddr ; make pc7 output
bfset #$0070,pcc ; enable spi-1 on port c 4-6
move #$0111,spcr1 ; configure spi1 control register

; divide by 32 70MHZ % 32 = 2.1875MHZ
; idles 0
; push-pull drivers
; interrupts disables
; master mode
; cpl = 0 and cph = 0
; spi disable

bfset #$0040,spcr1 ; enable SPI1
; configure max3100

move #$00e4,y0 ; fifo off, rm = 1
move #$0001,y1 ; 115.2k, length = 8, no parity, 1 stop bit

; disable ir mode
bfclr #pc7,pcd ; cs low
move y0,a1 ; get data
jsr Write ; transfer data to max3100
move y1,a1 ; get data
jsr Write ; transfer data to max3100
bfset #pc7,pcd ; cs high

; configuration max3100 done
rts

3.2 Emitted Wave Generation
Sonar uses a rectangular signal as source wave. The required signal parameters are: 40 kHz frequency—to
be compatible with the emitting transducer, and 40 periods—to ensure enough signal energy for range
maximization.

Routine ‘Gen_Signal’ uses GPIO pin 13 for transmitting the source signal to the transducer interface
circuits. The variable ‘no_wave’ stores the total number of signal periods—that is, 40 periods.

Code Listing 6. Source Signal Generation Routine

Gen_Signal
do #no_wave,semnal
bfclr #$2000,pbd ; reset the bit 13 (pin 13 - low)
move #430,a0 ; delay to obtain the 40kHz wave
rep a0
nop
bfset #$2000,pbd ; set the bit 13 (pin 13 - high)
move #430,a0
rep a0
nop
nop

semnal
nop
rts

3.3 Echo Signal Sampling and Storing
After the emitted wave is generated and sent to the corresponding transducer, the sonar enters the echo
signal reception and sampling procedure. Here, the ADS is commanded for 2048 consecutive conversion
cycles, by asserting the GPIO pin 12—the ‘Start Conversion’ line, within the ‘reads’ routine as shown in
Code Listing 7.

12 Simple Real-Time Sonar with the DSP56824 �

A valid conversion result is acknowledged by the ADS through its ‘Status’ line, connected to the DSP’s
GPIO pin 0. When it is activated, an interrupt occurs and a 9-bit data is read from the converter and stored
into the buffer. A new ‘Start Conversion’ command will be issued after the read-store operation completed
successfully onto the interrupt handler subroutine.

Although the converter is capable of 12 bits resolution, the data-read routines use only the 9 most
significant bits of the conversion result to perform an initial noise filtering of the received signal.

Code Listing 7. Read 2048 Echo Signal Samples

Read_ADC
move #$0101,pbint ; Configure GPIO pin 0 to generate

;; interrupt on falling edge detection
move #m_buf,R0
move #dim,lc
do lc,read_sample
jsr reads
nop
nop

read_sample
nop
move #$0000,pbint ; GPIO pins masked to prevent other

;; interrupts
rts

reads
bfclr #$1000,pbd ; Reset GPIO pin 12
nop ; Use two NOPs to obtain
nop ;; the required shape.
bfset #$1000,pbd
move #0,go

read1 ; Test the ‘go’ variable to be altered
;; by the interrupt handler.

bftsth #1,go
jcc read1
rts

Irqa_ISR ; Interrupt handler routine: read a

;; conversion result from ADS and
movep pbd,x0 ;; store the 9 MSB into the buffer
ror x0
ror x0
ror x0
bfclr #$FE00,x0
move x0,x:(R0)+
move #255,go
rti

3.4 Target Polar Coordinates Calculation
At this point, the sonar program on the DSP has a received data buffer ready for the specialized algorithms
of extracting the target’s polar coordinates.

First, the digital signal stored in the buffer is low-pass filtered to eliminate the noise, as much as possible.
The ‘Moving_Average’ routine described in the Code Listing 8 implements a Moving Average—type of
low-pass digital filter, with 20 coefficients.

Target Polar Coordinates Calculation

� Sonar Implementation on the DSP56824 13

Code Listing 8. Moving Average Digital Filter Implementation

Moving_Average
move #m_buf,R0
move #255,y0
move #dim,lc
do lc,m1 ; Scan entire buffer
move R0,R1
move #0,a ; Store the sum of ’av_points’ number

;; of samples into A
move #av_points,x0 ;;

m2
move x:(R1)+,b
sub y0,b ; Values in the buffer, read from the

;; ADS converter are Bipolar Offset
;; Binary coded with 9 bits.
;; As result we need to subtract
;; the 255 value to comply the
;; internal integer coding scheme

abs b
move b1,b0
move #0,b1
add b,a
dec x0
jne m2
move #av_points,x0 ; Divide the sum with the number of

;; points to obtain the average.
jsr divide ;; This value is stored back in the
move y1,x:(R0)+ ;; current position.
nop
nop

m1
rts

divide ; Divide A with X0 and return the
;; quotient in Y1 and the remainder
;; in A using a repetitive
;; division method.

asl a
bfclr #$0001,sr
rep #16
div x0,a
move a0,y1
add x0,a
asr a
rts

The filtered data buffered is then processed to find the maximum value and its index in the buffer. The
sonar program will interpret this information to extract the target distance in millimeters and to store it into
the ‘distance’ variable.

Furthermore, to avoid considering fake targets when the sonar receives only noise, the resulted maximum
value is compared to a predefined threshold (the ‘noise_level’ variable). If it is below the threshold, the
result is considered noise and ignored (variable ‘distance’ is written with the ‘no_detection’ predefined
value).

14 Simple Real-Time Sonar with the DSP56824 �

Code Listing 9. Maximum Value and Its Buffer Index Calculation

Seek_MAX
move #0,y0
move #m_buf,R0
move #2020,lc
do lc,_search ; Search entire buffer for the maximum
move x:(R0)+,x0 ;; value of a sample and store
cmp x0,y0 ;; it along with its index position.
jge _is_ge
move x0,y0
move #m_buf,x0
move R0,y1
sub x0,y1

_is_ge
nop
nop
nop

_search
nop
move #noise_level,x0 ; Compare the obtained value with
cmp x0,y0 ;; the ’noise_level’
jgt _is_greater ; If the maximum level found is lower,

;; then we consider no object detected
move #no_detection,distance
rts

_is_greater
move #170,x0 ; Calculate the distance in
mpy x0,y1,a ;; millimeters, by multiplying with
asr a ;; 170 (sound speed / 2) and dividing

;; with 108 (codec samplingrate)
move #108,x0
jsr divide
move y1,distance ; Store the result in ’distance’
rts

The second target polar coordinates parameter to be calculated is the angle. The ‘Calc_Position’ routine
described in Code Listing 10, uses two general program parameters, ‘rightcount’ and ‘leftcount’ to
calculate - in degrees - the actual angular position of the transducer platform.

The two rotation parameters (‘rightcount’ and ‘leftcount’) are altered by the stepper motor control routine.
For example, if the transducer platform is currently turning leftward, ‘leftcount’ contains the number of
rotation steps to be done until the complete rotation to the left will be performed (totalling 180 degrees),
while ‘rightcount’ variable is forced to ‘0’ value. This stepper motor routine will be described Section 3.6.

The ‘Calc_Position’ routine returns the calculated angle, in degrees, to the Y1 register.

Code Listing 10. Angle Coordinate Calculation Procedure

Calc_Position
move leftcount,x0
cmp #0,x0
jgt _multiply
move #100,x0
sub rightcount,x0

_multiply
move #9,y0 ; Calculate the angle in degrees,
mpy x0,y0,a ;; multiplying with 9 and dividing with 5
asr a ;; (9/5=1.8).1.8 degrees represent the angle
move #5,x0 ;; of 2 motor steps
jsr divide
move y1,angle ; Store the result into ’angle’
rts

Transmission of Results to the Host

� Sonar Implementation on the DSP56824 15

3.5 Transmission of Results to the Host
A complete set of target coordinates is now available and stored into the ‘distance’ and ‘angle’ variables on
the DSP. The next step is to transmit these results to the host computer to be used for the real-time sonar
display procedures.

The DSP initiates the synchronization procedure which waits for the host to acknowledge that it is ready to
receive the results and at the same time ensures a correct data transaction on the serial interface.

The synchronization routine has twin roles: to ensure that the correct data transfers on the serial link, and,
more importantly, to synchronize the data flow between the host and the DSP (‘α’ and ‘β’ execution states
depicted in Figure 2 on page 4).

Code Listing 11 presents the synchronization routine ‘Gen_Sincro’. Basically, it waits for the host
computer to reach its own synchronization phase, doing a blocking read on the serial port (SPI) until the
host sends a data byte. The routine acknowledges with a ‘0×55’ response byte and waits for the next host
serial write. This time the DSP responds with a different value: ‘0×AA’. Both steps are repeated five
times.

The host computer performs serial communication error checking using the two values sent during the
synchronization procedure.

Code Listing 11. Synchronization Procedure on the DSP

Gen_Sincro
do #5,sincro ; Define the five-times iteration
jsr Read_Char ; Read a byte from host computer
move #$55,x0
jsr SendChar_x0 ; Write $55 to host
jsr Read_Char ; Read a byte from host
move #$AA,x0
jsr SendChar_x0 ; Write $AA to host
nop
nop

sincro
nop
rts

After the synchronization phase is completed successfully, the transmission of the actual sonar detection
results follows. Code Listing 12 describes the basic serial data communication routines used by the DSP.

16 Simple Real-Time Sonar with the DSP56824 �

Code Listing 12. Serial Data Communication Routines

Out_y1 ; Send a word (2 bytes) from DSP to host
;; computer using the ’SendChar_x0’
;; routine to send a byte.

jsr Read_Char ; Wait a byte from host
move y1,x0
jsr SendChar_x0 ; Send the least significant byte
jsr Read_Char ; Wait a byte from host
move #8,x0
lsrr y1,x0,x0 ; Right shift the word with 8 bits
jsr SendChar_x0 ; Send the most significant byte
rts

SendChar_x0 ; A routine used to send the LSB of X0
;; to host computer.
; First check to see if MAX3100 will
;; accept a new byte and, if yes, send 2
;; bytes (command + data byte).

 jsr Check_Write ; Check to see if a new character can be
;; sent

 bfclr #pc7,pcd ; cs low
 move #WRITEUP,a1 ; Upper byte of write sequence
 jsr Write ; Write to max3100
 move x0,a1 ; Data
 jsr Write ; Write to max3100

bfset #pc7,pcd ; cs high
rts

Write
move spsr1,a0 ; Dummy read (read SPSR1 to clear SPIF

;; so SPI can write).
move a1,spdr1 ; Output data is in a1

Txbyte
bftsth #SPIF,spsr1 ; If SPIF = 1 then data is transferred.
bcc Txbyte ; If SPIF = 0 then rx is not finished.
rts

Check_Write
Again1

bfclr #pc7,pcd ; cs low
move #READ,a1 ; Command to Read from max3100.
jsr Read ; Send command to SPI1.
move a1,b1 ; Save upper byte of status in b1.
move #READ,a1 ; Command to Read from max3100.
jsr Read ; Send command to SPI1.
bfset #pc7,pcd ; cs high
move a1,b0 ; Save lower byte of status in b0.
bftsth #$0040,b1 ; Check Transmit empty bit.
bcc Again1 ; If T = 0 then tx is not finished.
rts

Read
move spsr1,a0 ; Dummy read.
move a1,spdr1 ; Output data to spi1.

Rxbyte
bftsth #SPIF,spsr1 ; If SPIF = 1 then data is transferred.
bcc Rxbyte ; If SPIF = 0 then rx is not finished.
move spdr1,a1 ; Input data is in a1.
rts

Read_Char ; Read a byte from host computer.
;; Before this, it is necessary to
;; check if a byte is available and then
;; to send a command to max3100.

jsr Check_Read ; Check to see if there is a new
;; character to read.

clr a

Transducer Platform Rotation

� Sonar Implementation on the DSP56824 17

bfclr #pc7,pcd ; cs low.
move #READ,a1 ; Command to Read from max3100.
jsr Read ; Send command to SPI1.
move #READ,a1 ; Command to Read from max3100.
jsr Read ; Send command to SPI1.
bfset #pc7,pcd ; cs high.
rts

Check_Read
Again2

bfclr #pc7,pcd ; cs low.
move #READ,a1 ; Command to Read from max3100.
jsr Read ; Send command to SPI1.
move a1,b1 ; Save upper byte of status in b1.
move #READ,a1 ; Command to Read from max3100.
jsr Read ; Send command to SPI1.
bfset #pc7,pcd ; cs high.
move a1,b0 ; Save lower byte of status in b0.
bftsth #$0080,b1 ; Check Transmit empty bit R.
bcc Again2 ; If R = 0 then rx have not a new

;; character.
rts

3.6 Transducer Platform Rotation
The final procedure of the sonar main program specifies the rotation of the transducer platform with a
1.8 degree step to the left or to the right.

In general, the sonar sensors platform is designed to perform consecutive 180 degrees rotations to the left
and to the right. This is implemented with software by using two general parameters ‘rightcount’ and
‘leftcount’.

At startup, ‘leftcount’ is set to ‘100’ while in ‘rightcount’ we have ‘0’. As a result, the transducer platform
will begin rotating toward the left, with a 1.8 degree step. For each step performed, the corresponding
variable (in our case, ‘leftcount’) is decremented. When ‘leftcount’ reaches the ‘0’ value, the sonar rotating
platform finished its complete 180 degrees left turn and ‘rightcount’ is set to ‘100’. A consecutive 180
degrees right turn is then initiated.

18 Simple Real-Time Sonar with the DSP56824 �

Code Listing 13. Transducer Platform Rotation Command Routines

rotate_motor ; Command the motor to rotate two steps
;; to the left until ’leftcount’
;; reaches to zero, then to the right in
;; the same manner.

tstw leftcount ; Test if leftcount is zero.
jgt go_left
move #2,x0 ; If ’rightcount’ is zero,
jsr rotate_right_x0 ;; rotate 2 steps to the right
decw rightcount ;; and decrement ’rightcount’.
jgt over ;; If ’rightcount’ reaches zero
move #100,leftcount ;; initialize ’leftcount’ to 100.
jmp over

go_left
move #2,x0 ; If ’leftcount’ isn’t zero,
jsr rotate_left_x0 ;; rotate 2 steps to the left
decw leftcount ;; and decrement ’leftcount’.
jgt over ;; If ’leftcount’ reaches zero
move #100,rightcount ;; initialize ’rightcount’ to 100.

over
rts

rotate_left_x0 ; Rotate the motor to the left with a
;; number of steps specified in X0.
;; This routine calls ’rotate_left’ to
;; rotate the motor one step left.

move m01,save_m ; Save the M01 register into memory.
move save_r0,r0 ; Load R0 with a value stored into

memory.
move #3,m01 ; Initialize M01 with the length of
move x0,loopc2 ;; stepper command circular buffer.

loopa2
jsr rotate_left ; Rotate left with one step until
decw loopc2 ;; the value of ’loopc2’ reaches zero.
bgt loopa2
move save_m,m01 ; Restore M01 and save R0 into memory.
move r0,save_r0
rts

rotate_right_x0 ; Rotates the motor to the right.
move m01,save_m ;; The number of steps for rotating
move save_r0,r0 ;; are stored in X0.
move #3,m01
move x0,loopc2

loopa3
jsr rotate_right
decw loopc2
bgt loopa3
move save_m,m01
move r0,save_r0
rts

; The next two routines rotate the motor one step left/right using 2 GPIO pins.

rotate_left ; Read a command word from the circular
;; buffer and send it to GPIO.

movep pbd,y0
andc #$3fff,y0 ; Mask needed bits to preserve the

other ones.
move x:(r0)-,x0 ; Read a motor command word and

decrement R0.
or y0,x0 ; Set/reset bits 14 and 15.
movep x0,pbd ; Output the result to GPIO.

Serial Data Link Implementation

� Sonar Implementation on the Host 19

jsr delay ; Wait to ensure the correct motor
;; functioning.

rts

rotate_right
movep pbd,y0
andc #$3fff,y0
move x:(r0)+,x0 ; Read a motor command word and

decrement R0.
or y0,x0
movep x0,pbd
jsr delay
rts

delay ; This routine assures the proper motor
setup

;; time. It is used after sending the
command

;; (two bits) to the motor driver.
move #350,loopc1 ; Initialize a counter.

loopa1
move #250,x0
rep x0
nop
decw loopc1 ; Use a software counter.
bgt loopa1
rts

After executing the rotation procedures, the main sonar program loops back to generate another source
signal to the transducer—the beginning of another target detection sequence.

4 Sonar Implementation on the Host
As mentioned in the Section 2, the host computer performs two basic tasks:

• establishes a serial data link with the DSP for command and result transactions,

• provides an intuitive and interactive graphical user interface for the sonar.

In the following paragraphs we get into further implementation details for the two components mentioned
above.

4.1 Serial Data Link Implementation
Command and data communication with the DSP is implemented on the host side through the PC standard
serial interface (RS232), configured at its maximum bit rate: 115200 bps (bits per second), with 8 data bits,
one stop bit and no parity (‘8N1’).

The selected bit rate is high enough for the proper sonar functioning in real-time, because the necessary
data throughput between the host computer and DSP has medium values.

When the sonar program is started on the host computer, it preforms the serial port initialization. The
corresponding routine (‘initSerialInterface()’)is shown in Code Listing 14.

20 Simple Real-Time Sonar with the DSP56824 �

Code Listing 14. Host Serial Port Initialization Routine

void initSerialInterface(void){
outportb(0x3fb,0x80); //set the serial speed to 115200 bps
outportb(0x3f8,1);
outportb(0x3f9,0);

outportb(0x3fb,3); //set the serial mode to 8N1
}

Now, the host computer is ready to receive consecutive sets of detection results from the DSP for further
display. To get a single set of results—that is, consisting of a pair of two-byte words, one for the calculated
distance of a target (in millimeters) and one for the current orientation angle of the sonar transducer
platform (in degrees)— the main program activates the serial transaction synchronization routine,
‘sincro()’.

The synchronization routines, both on the host and on the DSP, have twin roles: to ensure correct data
transfers on the serial link, and, more important, to synchronize the data flow between the host and the
DSP (‘α’ and ‘β’ execution states depicted in Figure 2 on page 4).

Code Listing 15. Synchronization Routine on the Host Computer

int sincro(){
int k;
for(k=0;k<10;k++){

Application->ProcessMessages(); //prevent complete lock of
// other Windows
// applications

writeByte(0xff); //send a synchronization
// byte and check correct
// sequence when receiving
// from DSP

if (readByte()!=(0x55+(k % 2)*0x55)) return 0;}
return 1;

}

Code Listing 15 presents the synchronization routine ‘sincro()’ on the host. Basically, it sends ten
consecutive synchronization data bytes to the DSP and waits for a response byte from peer, after each one
sent. The routine also checks the received bytes to correspond to the predefined sequence of ‘0x55’,
‘0xAA’.

Serial communication is completed by the byte read and write pair of routines, called also from the
synchronization procedure. Code Listing 16 describes the two routines.

Code Listing 16. Byte Read and Write Pair of Routines

void writeByte(unsigned char b)
{

while(!(inportb(0x3fd)&0x20))
Application->ProcessMessages();

outportb(0x3f8,b);
}

unsigned char readByte()
{

while (!(inportb(0x3fd)&0x01))
Application->ProcessMessages();

return inportb(0x3f8);
}

Graphical User Interface Implementation

� Sonar Implementation on the Host 21

After the synchronization between host computer and DSP is established, a set of detection results is
automatically sent to PC. The results are then processed by the graphical user interface on the host for
display, and, at the same time, the DSP starts a new detection iteration for the next angular step
(1.8 degrees).

A new synchronization phase will begin after the host displays the current results and the DSP finishes its
detection iteration.

4.2 Graphical User Interface Implementation
The sonar GUI was designed to run under Windows 9x/NT platforms on a recommended graphical
resolution of 800 × 600 pixels.

Users control the general sonar behavior—’start’, ‘stop’, and ‘exit’—using the corresponding buttons
provided by the interface.

Sonar activity and detection results are displayed in real-time using three modes:

1. Graphical display window—depicts the detected targets at relative coordinates
corresponding to their real position to the sonar transducers. This is the most intuitive mode,
similar to classical radar and sonar scopes.

2. Numerical mode—displays the exact polar coordinates of the currently displayed target in
two separate boxes: one for the target range (in millimeters) and one for the angular position
(in degrees).

3. Progress bar display—presents the distance to the currently displayed target in an intuitive
manner by showing a scale of the sonar minimum and maximum detection range.

Figure 6 presents a screen capture of the sonar graphical user interface during a real-time example.

22 Simple Real-Time Sonar with the DSP56824 �

Figure 6. Sonar Graphical User Interface

5 Conclusions
A simple real-time sonar implementation with the DSP56824 is presented in this paper. We described the
general characteristics of a sonar system, emphasizing the advantages of introducing a specialized DSP as
the core of the system.

Additionally, we provided details of the general architecture of the proposed sonar system and the
hardware components.

The implementation of the sonar-specific digital signal processing algorithms on the DSP56824 is
extensively explained in the Section 3, along with the serial communication routines developed for data
transactions with a host computer.

A classical sonar scope-like graphical user interface was also designed on the PC, for visualizing the
results as intuitively as possible.

The proposed sonar system was tested using targets of different sizes, shapes, and surfaces. Theoretical
performance characteristics are based on two main parameters.

Graphical User Interface Implementation

� Conclusions 23

First, the maximum sonar detection range is a parameter of sound velocity (application-independent
variable) and of the data buffer length and echo sampling rate, the two application-dependent variables:

 Eqn. 4

where: Lbuff = 2048 words- is the received data buffer length used;

Fsampling = 108 kHz- represents the sampling frequency used for echo receiving;

vsound = 340 m/sec- is the velocity of acoustic waves in air at normal temperature.

As a result, the theoretical maximum detection range of the implemented sonar is:

Dmax = 3223.7 mm Eqn. 5

The value in Equation 5, resulting from Equation 4, is a theoretical one, because we ignored the energy
loss of acoustic waves during their propagation in the air, from source to the target and backwards, and also
because of the reflection loss on the target. These parameters are dependent on local air pressure and
temperature, as well as the size, surface, and shape of a particular target (see discussion in Section 1.1).
The acoustic noise present in the environment as well as the inducted electrical noise at the reception side
were also ignored.

Our practical results demonstrate the importance of the parameters ignored in the equations above. At the
maximum theoretical limit of the distance (about 3.2 m) and using a large surface (1000 × 500 mm
rectangle) the system was able to detect the target, but the results were highly unstable (at the limit of error
threshold).

The second main sonar parameter is the so-called detection resolution—the uncertainty of distance
calculation. For the proposed sonar implementation, the detection resolution is given by:

 Eqn. 6

Again, practical evaluations of this parameter issued higher results, for the same reasons explained above.

Further improvements of the sonar system will start by reducing the noise in the system as much as
possible. Transducer interface circuits will be better designed, the amplification schemes optimized
(especially on the receiver side) with special care on maximizing the Signal-to-Noise Ratio (SNR).

Optimization of the sonar-specific algorithms implementation on the DSP is another potential performance
enhancement of the system. We intend to develop and test a sonar detection algorithm based on the
cross-correlation of digital signals.

For increasing sonar’s detection range, a more powerful ultrasound transducer pair can be used along with
higher gain amplifier circuits, as well as a CODEC with higher sampling rate and conversion resolution.

A straightforward application of the proposed sonar system is an autonomously, self-guided mini-robot,
able to move from a predefined start point towards a destination, avoiding possible obstacles encountered
on its route.

Other possible applications include intelligent devices like autonomous vacuum-cleaners, object searchers
operating in difficult environments (gas-poisoned or no-visibility areas), self-guided devices, car-parking
systems, etc.

A simple sonar system can also serve as a very versatile and intuitive support for teaching and
experimenting with digital signal processing algorithms and their implementation on DSPs.

Dmax

Lbuff

Fsampling

vsound

2
---------------⋅=

ε
vsound

Fsampling
--------------------- 3.148 mm= =

24 Simple Real-Time Sonar with the DSP56824 �

6 References
 [1] DSP56800 16-Bit DSP Family Manual (order number DSP56800FM/D).

 [2] DSP56824 16-Bit DSP User’s Manual (order number DSP56824UM/D).

 [3] DSP56824 Evaluation Module Hardware Reference Manual (order number
DSP56824EVMUM/D).

 [4] Motorola DSP Assembler Reference Manual, Motorola, Inc., 1996.

 [5] 3D Tracking Sonars with High Accuracy of Range Measurements for Autonomous Mobile Robot
Navigation, A. M. Sabatini, EUSIPCO’96, European Signal Processing Conference, Trieste, Italy,
1996.

 [6] Wideband Inverse Filtering to Improve Active Sonar Detection in Background Reverberation,
P. Delachartre et. al., EUSIPCO’96, European Signal Processing Conference, Trieste, Italy, 1996.

 [7] RADAR Signal Extraction Using Correlation, F. Lancon et. al., EUSIPCO’96, European Signal
Processing Conference, Trieste, Italy, 1996.

	Title Page
	Abstract and Contents
	1 Introduction
	1.1 General Description of a Sonar System

	2 Proposed Sonar System Description
	2.1 General System Architecture
	2.2 Transducer Interface Circuits
	2.3 Stepper Motor Control

	3 Sonar Implementation on the DSP56824
	3.1 Program Definition and Initialization Phase
	3.2 Emitted Wave Generation
	3.3 Echo Signal Sampling and Storing
	3.4 Target Polar Coordinates Calculation
	3.5 Transmission of Results to the Host
	3.6 Transducer Platform Rotation

	4 Sonar Implementation on the Host
	4.1 Serial Data Link Implementation
	4.2 Graphical User Interface Implementation

	5 Conclusions
	6 References

