
c., 2002

AN1828/D
Rev. 1, 2/2002

Flash Programming via CAN

Application Note

by Ross McLuckie
East Kilbride, Scotland.

1 Introduction

With the introduction, and growing use of Flash based microcontrollers (MCU),
new opportunities exist to extend the capabilities of the Controller Area
Network (CAN). One such opportunity would be to use the CAN to examine,
modify or reprogram the memory contents of any MCU connected to the
network from a single, easily accessible point within the system.

The more traditional methods of providing in-circuit programming of an
Electronic Control Module (ECM) are based upon either the Universal
Asynchronous Receiver / Transmitter (UART) or an MCU specific interface,
such as the single wire interfaces found on Motorola’s HC08 (Monitor mode)
and HC12 (BDM) products. Using this approach requires dedicated hardware
on each ECM and assumes that accessibility to each module is readily
available.

From a design point of view, the added cost of dedicated hardware for a
diagnostic / development feature and the restrictions placed upon the ECM to
meet the accessibility requirements are undesirable to say the least. At this
point it easy to understand the benefits of utilizing CAN to provide the desired
functionality, each ECM has a CAN connection as part of the standard system,
therefore no additional hardware is required, and connection to any node
allows communication to all other nodes via CAN.

This concept offers benefits throughout the products’ life span, from the
development phase through to in-field upgrades, servicing and diagnostic
capabilities. During development and testing any module connected to the
network could be reprogrammed in-circuit, saving time and effort as well as
minimizing the dependencies between product assembly and software
development. In-field system upgrades, servicing and diagnostic reports could
all be easily achieved, and potential high cost product recalls could be handled
much quicker and cheaper with field maintenance.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

rxzb30
ForwardLine

rxzb30
freescalecolorjpeg

rxzb30
fslcopyrightline

AN1828/D

2 Flash Programming via CAN

A considerable amount of additional functionality can be added by
implementing some or all of these features, whilst requiring limited effort during
the software development cycle.

2 Scope

The purpose of this paper is to focus on the specific features necessary to
enable the reader to include the desired functionality into their system. It is
assumed the reader is familiar with the use of CAN and Flash memory
technology, therefore the discussion will not enter into any great detail on either
the CAN specification or device specific Flash programming algorithms. There
are numerous other publications which describe in detail the CAN specification,
whilst Flash programming algorithms are technology / device specific and
although a working example is shown for Motorola’s HC12 Flash memory, the
principles discussed could be easily extended to any other Flash technology.

3 Objective

It is the intention of this application note to identify and illustrate the key
features required, allowing the reader to incorporate the additional functionality,
discussed in the introductory section, into their system. In addition to outlining
the requirements of the basic ‘skeleton’ system, some topics will also discuss
potential extensions and enhancements that the reader may wish to consider
when customizing and tailoring the system to their individual needs.

Although the principles discussed could be applied to any CAN based system
incorporating MCUs with either embedded or external Flash memory, for the
purpose of illustration, the remainder of this document will describe how to build
a demonstration system based on Motorola’s M68EVB912BC32.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1828/D

Flash Programming via CAN 3

Figure 1. MC68HC912BC32 block diagram

IOC0
IOC1
IOC2
IOC3
IOC4
IOC5
IOC6

PAI

OC7

D
D

R
T

PO
R

T
T

PERIODIC INTERRUPT

COP WATCHDOG

32-KBYTE FLASH EEPROM

1-KBYTE RAM
PO

R
T

E

TIMER AND

PT0
PT1
PT2
PT3
PT4
PT5
PT6
PT7

SPI

D
D

R
S

PO
R

T
S

ATD

PO
R

T
AD

PE1
PE2

PE4
PE5
PE6

PE3

PAD3
PAD4
PAD5
PAD6
PAD7

VDDA
VSSA

VRH
VRL

PAD0
PAD1
PAD2

DDRA

PORT A

DDRB

PORT B

PA
4

PA
3

PA
2

PA
1

PA
0

PA
7

PA
6

PA
5

PB
4

PB
3

PB
2

PB
1

PB
0

PB
7

PB
6

PB
5

D
AT

A1
5

MULTIPLEXED ADDRESS/DATA BUS

RESET

EXTAL
XTAL

PW0
PW1
PW2
PW3

PWM
D

D
R

P

PO
R

T
P

PP0
PP1
PP2
PP3

VDD × 2
VSS × 2

SCI RxD
TxD

I/O
I/O

SDI/MISO
SDO/MOSI

SCK
CS/SS

PS0
PS1
PS2
PS3

PS4
PS5
PS6
PS7

768-BYTE EEPROM

CLOCK MONITOR

PE0

PE7

AN3
AN4
AN5
AN6
AN7

VDDA
VSSA

VRH
VRL

AN0
AN1
AN2

SINGLE-WIRE
BACKGROUND

DEBUG MODULE

SMODN / TAGHI

ECLK

R/W
LSTRB / TAGLO

IPIPE0 / MODA
IPIPE1 / MODB

XIRQ

DBE

PULSE
ACCUMULATOR

LITE

IRQ/VPP

PP4
PP5
PP6
PP7

I/O
I/O
I/O
I/O

I/O

I/O

DLCTx
DLCRx

I/O

BDLC

D
D

R
D

LC

PO
R

T
D

LC

PDLC4
PDLC5
PDLC6

I/O
I/O
I/O

I/O

PDLC0
PDLC1

PDLC2
PDLC3

INTEGRATION
MODULE

(LIM)

VFP

BREAK POINTS

CPU12

AD
D

R
1 5

AD
D

R
14

A D
D

R
1 3

AD
D

R
12

A D
D

R
1 1

AD
D

R
10

A D
D

R
9

AD
D

R
8

D
AT

A1
4

D
AT

A1
3

D
AT

A1
2

D
AT

A1
1

D
AT

A1
0

D
AT

A9
D

AT
A8

A D
D

R
7

AD
D

R
6

A D
D

R
5

AD
D

R
4

A D
D

R
3

AD
D

R
2

A D
D

R
1

AD
D

R
0

D
AT

A7
D

AT
A6

D
AT

A5
D

AT
A4

D
AT

A3
D

AT
A2

D
AT

A1
D

AT
A0

I/O

CONVERTER

VSSX × 2
VDDX × 2

POWER FORPOWER FOR
I/O DRIVERSINTERNAL

CIRCUITRY

DA
TA

7
DA

TA
6

DA
TA

5
DA

TA
4

DA
TA

3
DA

TA
2

DA
TA

1
DA

TA
0

NARROW BUS

WIDE
BUS

BKGD

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1828/D

4 Flash Programming via CAN

In order to provide this additional functionality, the following key features must
be taken into consideration when planning and designing the overall system.

• Provide ‘maintenance’ access to the MCU via the CAN interface.

• Device specific Flash modifying routines.

• A ‘smart cable’ to interface between a PC and the target ECM.

• An API capable of transferring data to the ‘smart cable’.

The following sections will take a closer look at each of these topics and
illustrate, through example, the minimum requirements needed to accomplish
each task. In addition, each section will discuss ways to enhance and extend
the overall performance of the system, allowing the designer to meet their
system’s unique requirements.

4 MCU maintenance access via CAN

There is very seldom a single solution to any given design requirement and it
is important to determine an appropriate strategy from the offset. For this
particular application it would be just as easy to embed the Flash modifying
algorithms into the user software and activate them via a CAN message, but
this approach comes with many limiting factors. Having Flash algorithms in
MCU memory at all times could result in permanent damage if at any time code
runaway occurred, less memory would be available for application code and
additional functionality would be limited to what was coded in the original
application.

A more flexible approach would be to utilize a CAN Load Ram And Execute
(LRAE) routine. Flash algorithms would only be loaded into the MCU at the
appropriate time, it would be possible to write a very small routine (under 100
bytes) to accomplish the task and only MCU ram size restricts additional
functionality.

The basic requirement for the LRAE routine is to implement a CAN protocol
which allows data transfer into ram and program execution from ram. Although
several CAN protocol definitions already exist, such as CCP (CAN Calibration
Protocol), CANopen and SDS™ (Smart Distributed System)1, for the purpose
of demonstration, a simplified custom protocol was adopted.

The flowchart in Figure 2 explains the operation of the LRAE routine, while
Table 1 explains how the CAN protocol functions.

1. SDS™ is a trademark of Honeywell Inc.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1828/D

Flash Programming via CAN 5

Figure 2. CAN load ram and execute process flow

The address instruction initializes a pointer to RAM, where subsequent data
bytes are incrementally stored until a new address or execute instruction is
received. The data instruction may contain up to seven bytes of data. On
receiving the execute instruction, program execution jumps to the address
location contained in the execute command.

Listing 1 provides a coded example of how to implement the CAN LRAE
protocol shown in Figure 2 and Table 1.

Table 1. CAN message Rx buffer contents

CAN Rx
Buffer

Address
Instruction

Data
Instruction

Execute
Instruction

DSR0 0 2 4

DSR1 Address MSB Data Byte 1 Address MSB

DSR2 Address LSB (Data Byte 2) Address LSB

DSR3 — (Data Byte 3) —

DSR4 — (Data Byte 4) —

DSR5 — (Data Byte 5) —

DSR6 — (Data Byte 6) —

DSR7 — (Data Byte 7) —

Start

Wait for

Execute
instruction

Address
instruction

Data
instruction

Set address
pointer

CAN message

Transfer data to
RAM and

increment pointer

Begin Execution
from RAM

Yes

Yes

Yes

No

No

No

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1828/D

6 Flash Programming via CAN

Listing 1 CAN LRAE routine
;***
; A load RAM and execute routine via the CAN network
; Written to run on an MC68HC912BC32
;***

;***
; Register definitions
;***

COPCTL: EQU $16
CMCR0: EQU $0100

;***
; Bit definitions for the CMCR0 register
;***
CSWAI: EQU $20
SYNCH: EQU $10
TLNKEN: EQU $08
SLPAK: EQU $04
SLPRQ: EQU $02
SFTRES: EQU $01
;***

CBTR0: EQU $0102
CRFLG: EQU $0104

;***
; Bit definitions for the CRFLG register
;***
WUPIF: EQU $80
RWRNIF: EQU $40
TWRNIF: EQU $20
RERRIF: EQU $10
TERRIF: EQU $08
BOFFIF: EQU $04
OVRIF: EQU $02
RXF: EQU $01
;***

CTCR: EQU $0107
CIDMR0: EQU $0114
CIDMR2: EQU $0116
RXDSR0: EQU $0144
RXDSR1: EQU $0145
RXDLR: EQU $014C

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1828/D

Flash Programming via CAN 7

;***
; Standard equates
;***

StackTop: EQU $0BFF
ProtectedBlock: EQU $FC00
ResetVector: EQU $FFFE
CBT: EQU $C749
LastInstr: EQU $04

ORG ProtectedBlock

;***
; Initialization routine
;***

lrae:
LDS #StackTop ;initialize stack pointer
CLR COPCTL ;switch off COP watchdog

;***
; Setup the CAN module
;***

BSET CMCR0,#SFTRES ;place CAN module in reset
MOVW #CBT,CBTR0 ;set up CAN bit timing

CLR CTCR
MOVW #$FFFF,CIDMR0
MOVW #$FFFF,CIDMR2 ;set up module to receive all messages

BCLR CMCR0,#SFTRES ;take CAN module out of reset
canSynch:

BRCLR CMCR0,#SYNCH,* ;synchronize module with CAN bus

;***
; Wait for CAN message
;***

waitForMsg:
BRCLR CRFLG,#RXF,* ;wait for CAN message

BRSET RXDSR0,#$01 ,waitForNextMsg
LDAB RXDSR0
CMPB #LastInstr
BHI waitForNextMsg ;ignore invalid instructions

CLRA ;jump to appropriate routine, depending
JMP [D,PC] ;on instruction value
DC.W addressInstr ;(0) initialize RAM pointer
DC.W dataInstr ;(2) load data into RAM

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1828/D

8 Flash Programming via CAN

DC.W executeInstr ;(4) begin execution at given address

;***
; Setup RAM pointer
;***

addressInstr:
LDX RXDSR1 ;point to RAM address in RXDSR1:2
BRA waitForNextMsg

;***
; Transfer data into RAM
;***

dataInstr:
LDAB RXDLR ;number of bytes transmitted
LDY #RXDSR1 ;start of transmitted data

nextDataByte:
DECB ;ignore command byte
BEQ endOfData ;stop at end of data
MOVB 1,Y+,1,X+ ;load data into RAM
BRA nextDataByte

endOfData:
BRA waitForNextMsg

;***
; Clear CAN Rx flag and begin program execution from new location
;***

executeInstr:
MOVB #RXF,CRFLG ;clear Rx flag
LDX RXDSR1
JMP X ;begin program execution from RXDSR1:2

;***
; Clear CAN Rx flag and wait for next message
;***

waitForNextMsg:
MOVB #RXF,CRFLG ;clear Rx flag
BRA waitForMsg

;***
; Define reset vector
;***

ORG ResetVector
DCW lrae

;***

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1828/D

Flash Programming via CAN 9

Since the LRAE function provides the platform from which the complete system
is built upon, then it is also the area where most of the system enhancements
and extensions should be added.

Implementing a specific CAN protocol could provide additional functionality,
whilst adding a level of security, through message handshaking when
establishing a connection to the target MCU. If required, a more complex,
custom handshaking protocol could be added, in an attempt to prevent any
unauthorized access to the MCU.

The coded example, shown in Listing 1, accepts all CAN messages and is
intended for use in a point to point (2-node network) application only. By either
adopting a more complex protocol, or utilizing a dedicated CAN filter / identifier
for each node on the network, a multiple node network could be easily
supported.

From Table 1, it can be seen that the LRAE example sends both the instruction
ID and its associated data in the CAN data segment registers (DSR0-7). If it
was required to optimize the bandwidth of the CAN bus, the instruction ID could
be embedded into the CAN identifier, allowing transmission of up to eight data
bytes at a time. The potential improvement on system performance depends
upon the number of possible instruction ID’s and the overall size of the data
transfer.

It is important to consider the effect of a system failure whilst attempting to
modify Flash memory, if for example, a power failure occurred after erasing, but
before programming was complete, then the end result would be an erased or
partially programmed target MCU. The resultant ‘dead’ node would most likely
have to be replaced, which may require significant cost and effort. There are
several approaches that could be undertaken to prevent, or at least minimize
the risk from this kind of failure. An auxiliary power supply could be
incorporated into the maintenance equipment, utilizing the protected memory
area of the MCU in order to guarantee a minimal functionality, such as the CAN
LRAE routines or in the case of the HC12, provide an appropriate BDM
interface. Although it is not possible to eliminate the risk of this type failure
entirely, the amount of preventative action taken should depend upon the
potential consequences arising from a failure of this nature.

There are many more topics that could be discussed here, and the required
functionality will vary from system to system, but it is important to realize when
defining the specification for the LRAE routine, the part it plays in limiting the
overall system.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1828/D

10 Flash Programming via CAN

5 Device specific Flash modifying, via CAN, routines

With the exception of a few minor differences, the basic requirement for the
Flash modifying routine is the same as the LRAE routine. A CAN protocol
capable of transferring data into a ram buffer and the ability to both erase and
program Flash. Despite the fact that there are numerous Flash technologies,
even Motorola’s HC08 and HC12 products have different Flash modules, the
same basic principles are applicable to them all. The coded example that
follows was written for use with the MC68HC912BC32 Flash module.

Figure 3. Motorola’s MC68HC912BC32 memory map

The biggest difference in functionality from the LRAE routine is the introduction
of CAN message handshaking, which gives the target MCU the ability to return
status messages after each command request. Although not an essential
requirement, the ability to return status information greatly increases the
capabilities of the overall system.

BDM
(IF ACTIVE)

$8000

$FFFF$FFFF

FLASH EEPROM

$0000

$0800

$0D00

$0FFF

$FF00

$0000

$01FF

$0800

SINGLE CHIP
SPECIAL

SINGLE CHIP
NORMAL

EXPANDED

$8000

VECTORS VECTORS VECTORS

$FF00
$F000

768 BYTES EEPROM
MAP TO ANY 4K SPACE

1-KBYTE RAM
MAP TO ANY 2K SPACE

REGISTERS

MAP TO ANY 2K SPACE

$FFFF
$FFC0

$0BFF

MAP WITH MAPROM BIT

$0D00

512 BYTES RAM
$0000

$7FFF

IN MISC REGISTER
TO $0000 – $7FFF
OR $8000 – $FFFF

$0200

$03FF

REGISTER FOLLOWING
SPACE
512 BYTES RAM

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1828/D

Flash Programming via CAN 11

An initial status message is sent to indicate that the Flash modifying routines
are now running and have control of the target MCU, subsequent status
messages are sent after each request to modify Flash memory is received. The
status returned is used to determine if the programming voltage was present,
or whether or not the attempted modification was successful.

The flowchart in Figure 4 explains the operation of the Flash modifying routine,
while Table 2 explains how the CAN protocol functions.

Figure 4. Flash modifying process flow

Start

Wait for

Reset
instruction

Program
instruction

Load data
instruction

Reset RAM
buffer pointer

CAN message

Transfer data to
RAM and

increment pointer

Yes

Yes

Yes

No

No

No

Erase
instruction

Start programming
sequence and
return status

message

Start erase
sequence and
return status

message

Yes

No

Transmit
connection
established
message

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1828/D

12 Flash Programming via CAN

The reset instruction initializes a pointer to the start of a RAM buffer, where
subsequent data bytes are incrementally stored until a new reset instruction is
received. The data instruction may contain up to seven bytes of data. On
receiving the program instruction, an attempt is made to program the specified
number of bytes from the start of the RAM buffer into Flash, starting at the
address sent in the instruction. The page number is optional and is included to
provide support for S2 Records (> 64K). The erase command contains the
starting address and word size of the flash block that has to be erased, this is
required in order to allow verification of the erase process. Both the program
and erase instructions return a status message, which provides information on
the outcome of any attempt to modify Flash memory, whilst also providing a
mechanism for data flow control to the target ECM.

Listing 2 provides a coded example of how to implement the Flash modifying
via CAN protocol shown in Figure 4 and Table 2.

Table 2. CAN message Rx buffer contents

CAN Rx
Buffer

Reset
Instruction

Load Data
Instruction

Program
Instruction

Erase
Instruction

DSR0 0 2 4 6

DSR1 — Data Byte 1 Address MSB Address MSB

DSR2 — (Data Byte 2) Address LSB Address LSB

DSR3 — (Data Byte 3) No of Bytes Word MSB

DSR4 — (Data Byte 4) (Page No) Word LSB

DSR5 — (Data Byte 5) — —

DSR6 — (Data Byte 6) — —

DSR7 — (Data Byte 7) — —

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1828/D

Flash Programming via CAN 13

Listing 2 Flash modifying via CAN routine
;***
; A bootloader routine to program 1.5T Flash via CAN
; Written to run on an MC68HC912BC32
;***

;***
; Register definitions
;***

COPCTL: EQU $16

TIOS: EQU $80

;***
; Bit definitions for the TIOS register
;***
IOS7: EQU $80

IOS6: EQU $40
IOS5: EQU $20
IOS4: EQU $10
IOS3: EQU $08
IOS2: EQU $04
IOS1: EQU $02

IOS0: EQU $01
;***
TCNTH: EQU $84
TSCR: EQU $86

;***

; Bit definitions for the TSCR register
;***
TEN: EQU $80
TSWAI: EQU $40
TSBCK: EQU $20
TFFCA: EQU $10

;***

TMSK2: EQU $8D

;***
; Bit definitions for the TMSK2 register

;***
TOI: EQU $80
PUPT: EQU $20
RDPT: EQU $10
TCRE: EQU $08
PR2: EQU $04

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1828/D

14 Flash Programming via CAN

PR1: EQU $02
PR0: EQU $01
;***

TFLG1: EQU $8E

;***
; Bit definitions for the TFLG1 register
;***
C7F: EQU $80
C6F: EQU $40

C5F: EQU $20
C4F: EQU $10
C3F: EQU $08
C2F: EQU $04
C1F: EQU $02
C0F: EQU $01

;***

TC0H: EQU $90
FEEMCR: EQU $F5

;***

; Bit definitions for the FEEMCR register
;***
BOOTP: EQU $01
;***

FEECTL: EQU $F7

;***
; Bit definitions for the FEECTL register
;***
FEESWAI: EQU $10
SVFP: EQU $08

ERAS: EQU $04
LAT: EQU $02
ENPE: EQU $01
;***

CMCR0: EQU $0100

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1828/D

Flash Programming via CAN 15

;***
; Bit definitions for the CMCR0 register
;***
CSWAI: EQU $20
SYNCH: EQU $10

TLNKEN: EQU $08
SLPAK: EQU $04
SLPRQ: EQU $02
SFTRES: EQU $01
;***

CBTR0: EQU $0102
CRFLG: EQU $0104
;***
; Bit definitions for the CRFLG register
;***
WUPIF: EQU $80

RWRNIF: EQU $40
TWRNIF: EQU $20
RERRIF: EQU $10
TERRIF: EQU $08
BOFFIF: EQU $04
OVRIF: EQU $02

RXF: EQU $01
;***

CTFLG: EQU $0106

;***

; Bit definitions for the CTFLG register
;***
ABTAK2: EQU $40
ABTAK1: EQU $20
ABTAK0: EQU $10
TXE2: EQU $04

TXE1: EQU $02
TXE0: EQU $01
;***

CTCR: EQU $0107
CIDMR0: EQU $0114

CIDMR2: EQU $0116

RXDSR0: EQU $0144
RXDSR1: EQU $0145
RXDSR3: EQU $0147
RXDLR: EQU $014C

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1828/D

16 Flash Programming via CAN

TX0IDR0: EQU $0150
TX0DSR0: EQU $0154
TX0DLR: EQU $015C
TX0PRI: EQU $015D

;***
; Standard equates
;***

StackTop: EQU $0BFF

StartOfRAM: EQU $0800

CBT: EQU $C749
ConnectedMsg: EQU $55
LastInstr: EQU $06

EClock: EQU 8000000 ;E-clock frequency in Hz

PrescaleBy32: EQU 5 ;generate msec delays based on 8MHz bus
ms10: EQU EClock/3200
ms1: EQU EClock/32000

PrescaleBy1: EQU 0 ;generate usec delays based on 8MHz bus
us22: EQU ((EClock/10000)*22)/100
us11: EQU ((EClock/10000)*11)/100

MaxProgPulses: EQU 50
MaxErasePulses: EQU 5

ORG StartOfRAM

;***
; Declare variables
;***

pulseTotal: DS.B 1 ;tracks program/erase pulses applied
marginFlag: DS.B 1 ;indicates if prog or margin pulses
bytesTotal: DS.B 1 ;number of bytes to be programmed

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1828/D

Flash Programming via CAN 17

;***
; Initialization routine
;***

bootloader:

LDS #StackTop ;initialize stack pointer
CLR COPCTL ;switch off COP watchdog
BSET TSCR,#(TEN+TFFCA) ;enable timer, allow fast flag clears
BSET TIOS,#IOS0 ;set channel 0 to output compare
BCLR FEEMCR,#BOOTP ;enable erasure of protected block

;***
; Setup the CAN module
;***

BSET CMCR0,#SFTRES ;place CAN module in reset
MOVW #CBT,CBTR0 ;set up CAN bit timing

CLR CTCR
MOVW #$FFFF,CIDMR0
MOVW #$FFFF,CIDMR2 ;set up module to receive all messages

MOVW #$0000,TX0IDR0 ;stanard ID (0 value)

MOVB #$01,TX0DLR ;single byte status message
CLR TX0PRI ;set status message registers

BCLR CMCR0,#SFTRES ;take CAN module out of reset
canSynch:

BRCLR CMCR0,#SYNCH,* ;synchronize module with CAN bus

MOVB #ConnectedMsg,TX0DSR0
JSR canTx ;transmit connected status message

;***
; Wait for CAN message
;***

waitForMsg:
BRCLR CRFLG,#RXF,* ;wait for CAN message

BRSET RXDSR0,#$01,waitForNextMsg
LDAB RXDSR0

CMPB #LastInstr
BHI waitForNextMsg ;ignore invalid instructions

CLRA ;jump to appropriate routine, depending
JMP [D,PC] ;on instruction value
DC.W setupBuffer ;(0) reset RAM ptr

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1828/D

18 Flash Programming via CAN

DC.W loadBuffer ;(2) load buffer up to a max 256 bytes
DC.W programFlash ;(4) program flash with buffer contents
DC.W eraseFlash ;(6) erase flash array

;***

; Setup buffer pointer
;***

setupBuffer:
LDX #ramBuffer
BRA waitForNextMsg

;***
; Transfer data into buffer
;***

loadBuffer:

LDAB RXDLR ;number of bytes transmitted
LDY #RXDSR1 ;start of transmitted data

nextDataByte:
DECB ;ignore command byte
BEQ endOfData ;stop at end of data
MOVB 1,Y+,1,X+ ;store data in RAM buffer

BRA nextDataByte
endOfData:

BRA waitForNextMsg

;***
; Program ram buffer contents into flash memory

;***

programFlash:
BSR beginProgramming
JSR canTx ;transmit status/flow control message
BRA waitForNextMsg

;***
; Erase flash memory block
;***

eraseFlash:

JSR beginErasing
JSR canTx ;transimit status/flow control message

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1828/D

Flash Programming via CAN 19

;***
; Clear CAN Rx flag and wait for next message
;***

waitForNextMsg:

MOVB #RXF,CRFLG ;clear Rx flag
BRA waitForMsg ;normal operation

;***
; Flash programming algorithm
;***

beginProgramming:
LDX #ramBuffer ;point to the start of the RAM buffer
LDY RXDSR1 ;point at location(s) to be programmed

CLR TX0DSR0 ;indicates result of program procedure

LDAB RXDSR3 ;number of bytes to be programmed
BEQ progStatus ;check for zero bytes to be programmed
STAB bytesTotal ;store number of bytes to program
BRCLR FEECTL,#SVFP,progStatus

;check Vfp level

INC TX0DSR0 ;(1) indicate that Vfp is present
MOVB #PrescaleBy1,TMSK2

;setup timer prescalar for usec delays
progNextLocation:

CLR pulseTotal
CLR marginFlag ;reset pulse total and margin flag

BCLR FEECTL,#ERAS ;configure flash array for programming
BSET FEECTL,#LAT ;enable addr/data latches
MOVB ,X,,Y ;write data to flash address

progPulseLoop:
BSET FEECTL,#ENPE ;switch on Vfp onto array

LDD #us22 ;generate 22 usec delay
ADDD TCNTH
STD TC0H
BRCLR TFLG1,#C0F,*

BCLR FEECTL,#ENPE ;switch off Vfp from array

LDD #us11 ;generate 11 usec delay
ADDD TCNTH
STD TC0H
BRCLR TFLG1,#C0F,*

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1828/D

20 Flash Programming via CAN

TST marginFlag ;are margin pulses being applied ?
BNE progMargin

INC pulseTotal ;update pulse count

BRA progCheck
progMargin:

DEC pulseTotal ;apply the same number of margin pulses
BNE progPulseLoop ;as there were programming pulses

progCheck:
LDAB ,Y ;read location being programmed

CMPB ,X ;compare against intended value
BNE progFail

TST pulseTotal ;if 0 then margin pulses have been done
BEQ progSuccess ;byte has been programmed

INC marginFlag ;set margin flag if byte programmed
BRA progPulseLoop ;and apply margin pulses

progFail:
LDAA pulseTotal ;if 0 then margin pulses have been done
BEQ progStatus ;and program has failed, TX0IDR = 1

CMPA #MaxProgPulses ;if max program pulses have been applied
BEQ progStatus ;no need to apply margin pulses

BRA progPulseLoop ;continue applying program pulses
progSuccess:

CLR FEECTL ;release LAT bit

INX ;point to next data byte
INY ;point to next flash location
DEC bytesTotal
BNE progNextLocation ;program all bytes

INC TX0DSR0 ;(2) program successful

progStatus:
CLR FEECTL ;release LAT bit
RTS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1828/D

Flash Programming via CAN 21

;***
; Flash erase algorithm
;***

beginErasing:

LDX RXDSR1 ;(DSR1:2) start address of array
;(DSR3:4) size of array (in words)

CLR TX0DSR0 ;indicates result of erase procedure
BRCLR FEECTL,#SVFP,eraseStatus

;check Vfp level
INC TX0DSR0 ;(1) indicate that Vfp is present

MOVB #PrescaleBy32,TMSK2
;setup timer prescalar for msec delays

CLR pulseTotal
CLR marginFlag ;reset pulse total and margin flag

BSET FEECTL,#(LAT+ERAS)

;enable addr/data latches and erase bit
STAA ,X ;write to valid location in array

erasePulseLoop:
BSET FEECTL,#ENPE ;switch on Vfp onto array

LDD #ms10 ;generate 10 msec delay

ADDD TCNTH
STD TC0H
BRCLR TFLG1,#C0F,*

BCLR FEECTL,#ENPE ;switch off Vfp from array

LDD #ms1 ;generate 1 msec delay
ADDD TCNTH
STD TC0H
BRCLR TFLG1,#C0F,*

TST marginFlag ;are margin pulses being applied

BNE eraseMargin

INC pulseTotal ;update pulse count
BRA eraseCheck

eraseMargin:
DEC pulseTotal ;apply the same number of margin pulses

BNE erasePulseLoop ;as there were programming pulses
eraseCheck:

LDX RXDSR1 ;start of array
LDY RXDSR3 ;word size of array
LDD #$FFFF ;erased state of word

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1828/D

22 Flash Programming via CAN

eraseCheckLoop:
CPD 2,X+ ;check all array entries are erased
BNE eraseFail
DBNE Y,eraseCheckLoop

TST pulseTotal ;if 0 then margin pulses have been done
BEQ eraseSuccess ;array has been erased

INC marginFlag ;set margin flag if array erased
BRA erasePulseLoop ;and apply margin pulses

eraseFail:

LDAA pulseTotal ;if 0 then margin pulses have been done
BEQ eraseStatus ;and erase has failed, TX0IDR = 1

CMPA #MaxErasePulses
;if max erase pulses have been applied

BEQ eraseStatus ;no need to apply margin pulses

BRA erasePulseLoop ;continue applying erase pulses
eraseSuccess:

INC TX0DSR0 ;(2) array is erased
eraseStatus:

CLR FEECTL ;release LAT and ERAS bits

RTS

;***
; CAN status/flow control message transmit routine
;***

canTx:
BRCLR CTFLG,#TXE0,* ;wait until Tx buffer is available
MOVB #TXE0,CTFLG ;transimit status/flow control message
RTS

;***

; Label pointing to first available ram location after bootloader for buffer
;***

ramBuffer:

;***

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1828/D

Flash Programming via CAN 23

When considering potential improvements to this part of the system, it is worth
noting that most will be technology and / or device dependent, although by
extending the CAN protocol it should be possible to support most, if not all, of
the potential enhancements. For instance, the CAN protocol could be modified
to include support for paged memory devices, such as Motorola's
MC68HC912DG128, as shown in Table 2. The protocol could also be used to
provide access control to protected memory areas or extend the capabilities of
the status messaging, e.g. return failing address information.

However, there are some extensions that need more than just a modification of
the CAN protocol, for example, to include eeprom support would require the
inclusion of device specific program and erase routines. In the case of the
HC12 family, an external 12 volt programming voltage is required, but in order
to limit the programming interface to just the CAN wires, additional hardware
(i.e. 12 volt charge pump) must be included on the PCB. The charge pump itself
could be enabled by one of the MCU output pins, which in turn could be
controlled through the CAN protocol or directly from the Flash modifying
algorithms. The HC08 family includes an onboard charge pump and as such
does not require the inclusion of any additional hardware.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1828/D

24 Flash Programming via CAN

6 A ‘smart cable’ to interface between a PC and the target ECM

If you consider that the minimal requirement for this part of the system is to
provide the hardware to convert an S-Record into a stream of CAN messages,
suitable for use with the protocol described in Table 2, purchasing one of the
many commercially available CAN PC interface cards is all that is required.
However this approach requires much more effort during the software
development of a suitable API, it is also less portable, with each PC or Laptop
requiring the appropriate piece of hardware to be installed before it can be used
as part of the system.

An alternative approach is to develop an additional piece of hardware that
provides a CAN interface to the target ECM and either a serial or parallel
interface to the PC or Laptop. A prototype system was built using the
M68EVB912BC32, which has all the necessary hardware requirements, e.g.
RS232 and CAN physical interfaces.

Having an MCU based 'smart cable' provides the ability to add a lot of additional
functionality, meeting each system's individual requirements. The prototype
system included a lot of extra features, which although not necessary
enhanced the performance of the overall system.

Data flow control between the PC and the target ECM is essential and can be
handled by the smart cable. System parameters, including baud rate, smart
cable operating frequency, CAN bit timing, LRAE maintenance identifier and
target MCU details are all stored in the cables non-volatile memory. Each of
these parameters can be modified and, in case of error, restored to a set of
default values, some changes do not take effect until the smart cable itself is
reset.

Error handling can also be included, validating S-Records, verifying target
device memory mapping, reporting system errors and failures during Flash
modifying routines.

The flowchart in Figure 5 explains the operation of the prototype smart cable.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1828/D

Flash Programming via CAN 25

Figure 5. Smart cable process flow (Sheet 1 of 3)

Start

Wait for

Display
request

Download
bootloader

Modify
request

Display
requested details

command

Yes

Yes

No

No

No

Erase
Flash

No

Initialise
routine

and display
system details

Program
Flash

Modify system
parameter

A

B

C

D

IRQ entry

IRQ exit

Restore default
parameter settings

Yes

Yes

Yes No

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1828/D

26 Flash Programming via CAN

Figure 5. Smart cable process flow (Sheet 2 of 3)

Receive

Valid
S-record

Valid
addresses

S9
record

S-record

No

Yes

No

Yes

A

Transmit S-record
via CAN protocol

Initialise CAN
module

No
A

Transmit
execute command

Wait for connection
established message

Connection
established

B

A

C

A A

Yes

Transmit
erase command

Wait for status
message

Display
Status

Yes

No

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1828/D

Flash Programming via CAN 27

The smart cable receives either commands or S-Records from the PC, each
command is processed and the appropriate action taken. On receiving an S-
Record, the cable validates and performs a range check, based on the target
MCU specified, and if appropriate translates it into a suitable CAN format for
communication to the target ECU.

The actual features included on the smart cable can be modified to suit the
individual needs of each system. It could be used to supply the programming
voltage, when appropriate, it could be optimized for speed (e.g. parallel
communication), provide an additional level of security or include some
diagnostic capabilities.

Figure 5. Smart cable process flow (Sheet 3 of 3)

Receive

Valid
S-record

Valid
addresses

S9
record

S-record

No

Yes

No

Yes

A

Transmit S-record
via CAN protocol

No
A

D

Transmit
program command

Wait for status
message

Connection
established

Yes
A

A
Valid
status

No Yes

Yes

A
No

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1828/D

28 Flash Programming via CAN

7 An API capable of transferring data to the ‘smart cable’

The actual requirements for this part of the system are dependent upon the
approach taken in the previous section, by developing the 'smart cable' concept
the minimal requirements for the API are greatly simplified.

The prototype smart cable was designed to accept either S-Records or ASCII
text strings via a serial interface. To successfully process a stream of S-
Records, the cable transmits a pace character to inform the API it is ready to
receive new data.

A terminal emulator, that supports the pace character flow control method,
provides all the necessary functionality required when using the prototype
system.

Developing a custom API could be used to provide additional features, simplify
the user interface or improve the overall look of the product.

8 Additional information

The Flash programming algorithm shown in section 5 utilizes a very simple data
transfer scheme, it receives and stores data from a single S-Record into a ram
buffer, the buffer data is then used to program the Flash array before a request
for new data is issued. Using this method results in an overall operating time
equal to total transmission time plus total programming time.

The following example provides a comparison of programming time versus
transmission time and makes the following assumptions:

• Assume the command byte is encoded into the CAN ID, allowing
transmission of up to 8 data bytes per CAN message

• CAN transmission at 125Kbits/s, using extended ID’s and ignoring bit
stuffing
– Buffer reset command (0 data bytes / 64 bits) takes 0.512

milliseconds
– Load buffer command (8 data bytes / 128 bits) takes 1.024

milliseconds
– Program buffer command (4 data bytes / 96 bits) takes 0.768

milliseconds

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1828/D

Flash Programming via CAN 29

• Each S-Record contains 32 bytes of data requiring
– One buffer reset command
– Four load buffer commands
– One program buffer command

• Require to program all 32,768 bytes of the MC68HC912BC32
– 1024 S-Records needed in total

Therefore,

Total transmission time = 1,024 x (0.512 + (4 x 1.024) + 0.768) msecs
= 5.505 seconds

By assuming the average number of programming and margin pulses to be 5
in total, a programming pulse of 25 microseconds and a time to verify of 15
microseconds,

Total programming time = 32,768 x (5 x (25 + 15)) usecs
= 6.554 seconds

At first glance, an overall operating time of approximately 12 seconds might be
considered acceptable, but if the target device is changed to an
MC68HC912DG128, the total time jumps to nearly 50 seconds. Another
consideration, although not part of the subject matter of this paper, is the
possibility that another, slower, serial protocol could be used to transfer data,
such as J1850 or a UART based system. With transmission rates dropping as
low as 10 Kbits/s, suddenly transmission time becomes the biggest influence
on the overall operating time.

The benefits to be gained by optimizing programming algorithms for speed vary
from convenience, during the development cycle, to cost savings in a
production environment. There are several techniques that can be used to
reduce operating time, with varying degrees of success, i.e. using the CAN
identifier to encode an additional three bytes of data reduces the number load
buffer commands from 4096 to 2979, saving over a second in the previous
example.

However the biggest return in time saving comes about through the adoption of
a parallel programming algorithm, i.e. data is continually received into a circular
buffer whilst programming is carried out simultaneously from the same buffer.

When employing this method care has to be taken to avoid an over run
condition between the load and program operations, but in return the overall
operating time should be limited to the larger of the two values, total
transmission time or total programming time.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1828/D

30 Flash Programming via CAN

9 Conclusion

By including the CAN LRAE feature to a system specification, the potential
benefits that can be gained outweighs the effort required in meeting that
specification.

However, care should be taken when identifying the exact system
requirements, as the LRAE function provides the backbone that defines each
system's limitations.

It is also apparent that a great deal of flexibility exists when defining the
additional tools required to support this application. By developing custom
hardware it is possible to significantly reduce the work involved in producing a
suitable API, whereas selecting a readily available piece of hardware increases
the work required on the API. This flexibility enables designers to develop a
system best suited to the available skill set at their disposal.

By designing the LRAE routine to be compatible with one of the existing CAN
standards, such as CCP, it may be possible to purchase a commercially
available product, capable of providing both the smart cable and API
functionality. Although this approach only requires the development of the
LRAE section, it restricts the amount of customization that could otherwise be
achieved.

A basic implementation of the complete system is possible with surprisingly
little effort, with the amount of additional work required dependent upon the
level of customization undertaken to meet the overall system specification.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1828/D

Flash Programming via CAN 31

This Page Has Been Intentionally Left Blank

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1828/D

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

rxzb30
freescalecolorjpeg

rxzb30
disclaimer

rxzb30
hibbertleft

	1 Introduction
	2 Scope
	3 Objective
	4 MCU maintenance access via CAN
	5 Device specific Flash modifying, via CAN, routines
	6 A ‘smart cable’ to interface between a PC and the target ECM
	7 An API capable of transferring data to the ‘smart cable’
	8 Additional information
	9 Conclusion

