
F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

n
c

..
.

Order this document
by AN1742/D

AN1742

Programming the 68HC705J1A In-Circuit
By Chris Falk

CSG Product Engineering
Austin, Texas

Introduction

This application note describes how a user can program the
68HC705J1A in-circuit. Programming in this way may be necessary
when sections of code, such as lookup tables or calibration values, need
to be programmed after the device is in-circuit.

Overview

The low-cost 68HC705J1A microcontroller unit (MCU) does not have a
built-in function that allows in-circuit programming. The code included in
Appendix C is similar to the bootloader code that is implemented on
many MCUs. This bootloader code allows the MCU to receive data from
a host computer and store this data in the EPROM. It must be pointed
out that this is not a true in-circuit programming solution, because this
solution requires that the code in Appendix C be programmed into the
EPROM using an MCU programmer before the device is placed in the
circuit.

Current production versions of the 68HC705J1A do not support
programming the mask option register (MOR) in-circuit. It is not
© Motorola, Inc., 1998 AN1742

For More Information On This Product,
 Go to: www.freescale.com

rxzb30
ForwardLine

rxzb30
fslcopyrightline

rxzb30
freescalecolorjpeg

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

advisable to program the MOR in-circuit because the contents of the
MOR cannot be verified correctly until after the device has been RESET.
Therefore, any desired mask options, excluding the security option,
need to be programmed into the device before it is placed in-circuit.

The circuit shown in Appendix B must be added to the users end circuit
also. The bootloader code uses this circuit to apply programming voltage
to the MCU, convert the transmitted data from RS-232 levels to useful
logic levels, and flash an LED (light-emitting diode) to alert the user to
the programming status.

Preparing
for Download

Once the bootloader code has been programmed into the device, the
MCU is ready to begin downloading user code. Because the device is
expecting data transmitted in Freescale S-record format, the user must
compile the desired code in this format before transmission. An example
S-record is shown in Figure 1 .

S1130400A6FFB705A608B701CD0311A80CB70120B5

S1130410F73FC0AE323CC026FC5A27043FC020F54C

S9040000FC

Figure 1. S-Record Example

The S1 indicates that this line has valid information, the 13 indicates the
number of bytes in this line, and the 0400 is the address of the first byte
in this record. The remaining information, up to the B5, is the opcodes
and operands to be programmed. B5 is the checksum of the line, which
is calculated by summing all of the opcodes and operands in that line
and taking the complement. Each line of the S-record has the same
format except the last line.The S9 on the last line terminates the S-
record. The remaining information on the last line depends on compilers.
In this case, this information indicates the starting address of the code.

Software
Description

Execution begins by checking the status of location $03E9. If this byte is
programmed, the program counter jumps to the value of the variable
USRCD. The user must enter the desired starting address in the variable
USRCD. If location $03E9 is blank, then the device will begin execution
of the bootloader code. The device goes through an initializing sequence
AN1742

2
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Overview

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

in which it turns off the LED and applies programming voltage to the IRQ
pin. It is necessary to apply programming voltage after the device is out
of RESET. If programming voltage is applied before the RESET line is
brought high, the part may come up in an unpredictable state.

Creating an SCI The 68HC705J1A does not have a dedicated serial communications
interface (SCI), so one must be created through software. This SCI is
designed to work with an 8-bit data transmission with a start and stop bit.
The code is timed to sample data being transmitted at a rate of 1200 bps.
A diagram representing the incoming data stream is shown in Figure 2 .

Figure 2. Transmitted Data

At a baud rate of 1200 bps, each bit takes 1/1200 second or 833.3 µs to
transmit. The software's timing is set up for a 4-Mhz external frequency,
which gives an internal cycle time of 0.5 µs. Each bit takes 1666.6 cycles
to transmit based on this cycle time. PA0 is polled until the falling edge
of the start bit is detected. The software then waits 2500 cycles before
sampling the first bit. That number of cycles is approximately one and
one half bit lengths, so the sample is taken midway through the
transmission of the first bit. The remaining bits are sampled every 1666
cycles. The accumulator register acts as the receive register. Each
received bit is shifted into the accumulator until the stop bit is detected.

NOTE: No error detection techniques are built into this SCI. The user may add
such features if memory space permits.

START BIT STOP

2500
CYCLES

1666
CYCLES
AN1742

3
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Converting
ASCII Data
to Hexadecimal
Data

The information contained in the accumulator is an ASCII character that
must be converted to hexadecimal format to be programmed. Two ASCII
characters are used to form one hex byte. The ASCII-to-hex conversion
table is shown in Table 1 .

Here is an example to illustrate how ASCII data is converted to hex.

The byte to be programmed is $A6. The host computer transmits the
data for the ASCII character "A" ($41 from the table). First, determine
whether this is greater than or equal to $41. If the character is greater

Table 1. ASCII to Hex Conversion Table

First Hex Digit (MSB)

0 1 2 3 4 5 6 7

S
ec

on
d

H
ex

 D
ig

it
(L

S
B

)

0 NUL DLE SP 0 @ P p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 " 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 BEL ETB ‘ 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS ’ < L / | /

D CR GS - = M] m }

E SO RS . > N ^ n

F SI US / ? O _ o DEL
AN1742

4
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Overview

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

than or equal to $41, subtract $07 from it then AND the remainder with
$0F. If the character is less than $41, simply AND the data with $0F.

$41 – $07 = $3A

$3A • $0F = $0A

The host computer then transmits the data for the ASCII character "6"
($36 from the table). This is converted to hex using the second step from
the above algorithm, since this data is less than $41.

$36 • $0F = $06

Now that each character is converted to hex, they must be combined to
form the original hex byte by multiplying the first character by $10 and
adding this value to the second character.

$0A x $10 = $A0

$A0 + $06 = $A6

The data is now in a form that can be interpreted by the MCU.

Programming
the EPROM

The data can be programmed to the EPROM using these steps:

1. Set the ELAT bit in the EPROG register.

2. Write desired value to desired location.

3. Set EPGM bit in EPROG register.

4. Wait time, tepgm.

5. Clear EPGM and ELAT bits in EPROG register.

Setting the ELAT bit in the EPROG register causes the data and the
address to be latched for programming, so it is not possible to execute
code out of the EPROM while trying to program the EPROM. Therefore,
the above routine must be moved into RAM and then executed.

After programming a byte, a verification step is performed to ensure that
the byte was programmed properly. If for some reason the byte fails to
verify, the programming voltage is removed from IRQ and the LED is
turned off. It may be necessary to reprogram the device if this condition
AN1742

5
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

occurs. If the byte does verify, the LED is toggled to indicate that the
device is still operating properly.

This program and verify sequence continues until the "S9" is
encountered in the S-record.

Location $03E9 is then programmed to cause the MCU to execute user
code upon the next reset.

NOTE: Location $03E9 is extremely important to bootloader execution. The
bootloader code will be executed only if this location is blank. If this
location is not blank, execution will begin at the location specified by the
variable USRCD.

 Conclusion

This pseudo bootloader code offers the user a means to receive
information serially and to program the MCU after it has been placed in-
circuit. These concepts of software SCI and EPROM programming can
be applied to other 68HC05 devices not offering such features in
firmware.
AN1742

6
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Appendix A

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Appendix A

Figure 3. Pseudo Bootloader Code Flow

START

DEVICE
PROGRAMMED

?

EXECUTE
USER CODE

Y

APPLY VPP
TURN OFF LED

N

GET ASCII CHARACTER

Y

GET NEXT ASCII
CHARACTER

SET PROGRAMMED BYTE
TURN OFF VPP

N

TURN ON LED

STOPGET LENGTH OF RECORD

GET BYTE TO BE
PROGRAMMED

CONVERT ASCII
BYTE TO HEX

DECREMENT
LENGTH

LENGTH = 0?

PROGRAM BYTE

BYTE VERIFY?

N

GET STARTING ADDRESS

TURN OF VPP
TURN OF LED

STOP

S?

1? N

Y

INCREMENT
ADDRESS

Y

N

Y

AN1742

7
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Appendix B

Figure 4. Circuitry Required for In-Circuit Programming

27 pF 27 pF

0.1 µF

10 Ω

4 MHz

OSC1

OSC2

PB5

PB4

PB3

PB2

PB1

PB0

VDD

VSS

RST

IRQ

PA0

PA1

PA2

PA3

PA4

PA5

PA6

PA7

PIN 1

10 K

SWITCH

RED LED

390

VPP

VDD

1N914B

2N4403

10 K
1 K

2N4401 100 K

3.3 K
2N4401

1N914B
9-PIN CONNECTOR

0.1 µF

3.3 K
AN1742

8
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Appendix C

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Appendix C

PORTA EQU $00
DDRA EQU $04
EPROG EQU $18
PRGSUB EQU $C0
VRFSUB EQU $D3
PRBYTE EQU $C3
IADDH EQU $C5
IADDL EQU $C6
LENGTH EQU $EA
USRCD EQU $0400
PRGFLG EQU $03E9
 ORG $300
MAIN

 LDA PRGFLG ;IF LAST BYTE OF PRG CODE IS BLANK, PART
 ; HAS NOT BEEN PROGRAMMED.

 BEQ ICP ;START DOWNLOADING.
 JMP USRCD ;IF NOT, EXECUTE CODE

ICP
 LDA #$06 ;APPLY VPP AND TURN OFF
 STA DDRA ;"FINISHED" LED
 STA PORTA
 LDX #$2A ;CONTAINS # OF BYTES TO MOVE TO RAM

MV2RAM
 LDA PRGRT-1,X ;MOVE PROGRAM AND VERIFY
 STA PRGSUB-1,X ;ROUTINES TO RAM
 DECX
 BNE MV2RAM ;ALL MOVED?

SLOAD
 BSR SCIRX ;GET FIRST CHARACTER
 CMP #'S' ;IS IT S?
 BNE SLOAD ;NO, WAIT FOR S
 BSR SCIRX ;YES, GET NEXT CHARACTER
 CMP #'1' ;IS IT 1?
 BNE DONE ;NO, S RECORD IS FINISHED
 BSR RCVASC ;YES, GET LENGTH OF RECORD
 SUB #$02 ;SUBTRACT ADDRESS BYTES
 STA LENGTH ;STORE IT FOR LATER USE
 BSR RCVASC ;GET UPPER ADDRESS
 STA IADDH ;OF RECORD START
 BSR RCVASC ;GET LOWER ADDRESS
 STA IADDL ;OF RECORD START
 BRA LPSTRT ;GO!

SLOOP
 LDA #$02 ;TOGGLE LED
 EOR PORTA
 STA PORTA
 LDA IADDL ;IS ADDRESS TO BE
 CMP #$F1 ;PROGRAMMED $7F1(MOR)?
 BNE NOTMOR ;YES, SET MPGM INSTEAD OF
 LDA IADDH ;EPGM IN PRGSUB
 CMP #$07 ;NO, CONTINUE AS NORMAL
 BNE NOTMOR
 JMP SKIPMOR

NOTMOR
AN1742

9
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 JSR PRGSUB ;GOTO PROGRAMMING SUBROUTINE IN RAM
 BCLR 1,$C7
 LDA IADDH ;MOVE ADDRESS TO VERIFY
 STA $D6 ;SUBROUTINE IN RAM
 LDA IADDL
 STA $D7
 JSR VRFSUB ;VERIFY THAT BYTE PROGRAMMED CORRECTLY

SKIPMOR
 ;SKIP, WE DONT WANT TO PROGRAM THE MOR

 JSR INCADDR ;MOVE TO NEXT ADDRESS
LPSTRT

 JSR RCVASC ;GET NEXT BYTE
 ;(TAKES INTO ACCOUNT CHKSM |)

 DEC LENGTH ;S-RECORD FINISHED?
 BNE SLOOP ;NO, PROGRAM BYTE
 BRA SLOAD ;YES, GET NEXT S-RECORD

DONE
 LDA #$03
 STA PRBYTE
 STA IADDH
 LDA #$E9
 STA IADDL
 JSR PRGSUB
 CLR PORTA ;TURN OFF VPP, TURN ON FINISHED LED
 BRA *

SCIRX
 BRSET 0,PORTA,* ;WAIT FOR START BIT
 BSR DLY378 ;DELAY 2500 CYCLES TO BE IN MIDDLE
 BSR DLY378 ;OF TRANSMITTED BIT (1200 BAUD)
 BSR DLY42
 CLRA ;OF TRANSMITTED BIT
 SEC ;CARRY IS USED AS STOP BIT

RX1
 BCS RX2 ;BURN A COUPLE CYCLES
 BRSET 0,PORTA,RX2 ;BRSET SETS/CLEARS CARRY

RX2
 ;DEPENDING ON EVALUATION

 LDX #$04
WAIT

 BSR DLY378 ;THIS LOOP BURNS 1560 CYLES
 DECX ;TOTAL CYCLES BETWEEN BITS
 BNE WAIT ;IS 1672
 BSR DLY90
 RORA ;MOVE CARRY BIT DOWN ACCUMULATOR
 BCC RX1 ;REPEAT UNTIL STOP BIT REACHES CARRY
 BRCLR 0,PORTA,FRMERR

FRMERR
 RTS ;DONE WITH THAT ASCII BYTE

RCVASC
 BSR GETASC ;GET NIBBLE OF BYTE
 BCS GOTCR ;SKIP IF CONTROL CHAR
 BSR SHIFT4 ;MOVE LOWER NIBBLE TO UPPER
 STA PRBYTE ;NIBBLE AND STORE FOR LATER USE
 BSR GETASC ;GET THE OTHER NIBBLE
 BCS GOTCR ;SKIP IF CONTROL CHAR
 ORA PRBYTE ;COMBINE LOWER NIBBLE WITH
 STA PRBYTE
 RTS ;UPPER NIBBLE TO MAKE A BYTE
AN1742

10
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Appendix C

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

GETASC
 BSR SCIRX ;GO GET A CHARACTER
 CMP #'0' ;LESS THAN 0?
 BLO GOTCR ;YES, ITS A CONTROL CHAR
 CMP #'A' ;NO, LESS THAN A?
 BLO ONENINE ;YES, CONTINUE AS NORMAL
 SUB #$07 ;NO, CONVERT TO HEX

ONENINE
 AND #$0F ;MASK OFF UPPER NIBBLE
 CLC

GOTCR
 RTS

SHIFT4
 LDX #$10 ;MOVE LOWER NIBBLE

 MUL ;TO UPPER NIBBLE
 RTS
INCADDR
 INC IADDL ;INCREMENT LOWER ADDRESS
 BNE RETURN ;EQUAL TO 00? NO, RETURN
 INC IADDH ;YES, BUMP HIGH ADDRESS
RETURN
 RTS
PRGRT
 BSET 2,EPROG ;SET ELAT

 LDA #PRBYTE ;STORE DESIRED BYTE
 STA $0400 ;TO DESIRED LOCATION
 BSET 0,EPROG ;SET EPGM
 LDX #$03 ;DELAY 3X378 CYCLES
DLYLP
 BSR DLY378
 DECX
 BNE DLYLP
 CLR EPROG ;CLEAR ELAT AND EPGM
 RTS ;DONE
VRFRT
 LDA PRBYTE ;COMPARE VALUE TO BE PROGRAMMED
 CMP $0400 ;WITH ACTUAL PROGRAMMED VALUE
 BEQ PASS ;ARE THEY =?
 BSET 1,PORTA ;NO TURN OFF LED
FAIL
 BRA * ;AND HANG
PASS
 RTS ;YES, GO ON

DLY378
 BSR DLY186

DLY186
 BSR DLY90

DLY90
 BSR DLY42

DLY42
 BSR DLY18

DLY18
 BSR DLY6

DLY6
 RTS

 ORG $7FE
RESET DW $0300 _
AN1742

11
For More Information On This Product,

 Go to: www.freescale.com

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

For More Information On This Product,
 Go to: www.freescale.com

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

rxzb30
freescalecolorjpeg

	Introduction
	Overview
	Preparing for Download
	Software Description
	Creating an SCI
	Converting ASCII Data to Hexadecimal Data
	Programming the EPROM

	Conclusion
	Appendix A
	Appendix B
	Appendix C

