
 
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
n

c
..

.

Order this document
by AN1716/D

Rev. 1.0

AN1716
   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  
Using M68HC12 Indexed Indirect Addressing
By Marlan Winter

Introduction

Indexed indirect addressing (IIA) is an addressing mode infrequently
found in CPU instruction sets. The IIA mode adds an additional level of
indirection beyond standard indexed addressing modes. This
application note presents some techniques for making the IIA mode
more useful. The efficient instruction set and the addressing mode
features of the M68HC12 allow it to compete effectively with RISC
(reduced instruction set computer) processors with faster cycle times.

While microelectronic-controlled systems are usually thought of as large
and complex, many new systems are small and have high production
volumes. Applications engineers are, therefore, becoming more
sensitive to system cost. As long as cost is an important consideration in
a microelectronic-controlled system, then assembly language and code
size will continue to be important. Memory management and usage are
prime factors in determining the cost of a microelectronic-controlled
system.

Since the IIA mode allows a programmer to compress more function in
a single instruction, the assembly code is quite efficient. Fewer
instructions mean smaller programs and fewer memory accesses for the
system. The result is faster execution times and decreased size of the
programs in memory. The IIA mode can also shrink code size because
it permits more efficient algorithms.
  
For More Information On This Product,

  Go to: www.freescale.com

rxzb30
ForwardLine

rxzb30
fslcopyrightline

rxzb30
freescalecolorjpeg



Application Note

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

How IIA Works

Typical IIA mode assembly source code syntax appears very much like
standard M68HC11 indexed addressing with the addition of brackets
around the operands. Converting assembly code to use brackets
instead of parentheses is a trivial exercise.

The valid source forms are:
inst [16 bit offset data, index register or pc]
inst [D, index register, or pc]

Examples:
staa [D,x]
staa [D,pc]
addd [$103f,y]
ldd [_TEMPVAR,sp]

Invalid Forms:
ldaa [NUM,x+] ;post and preincrement are not allowed

inside the brackets
ldaa [NUM,x]+ ;post and preincrement are not allowed

outside the brackets either
ldaa (NUM,pc) ;we use the brackets, not the

paranthesis

Valid index registers that can be used are the X, Y, or the stack pointer.
The PC register can also be used when referencing table data that is
embedded in the same memory used by the executing program.
AN1716

2   
For More Information On This Product,

  Go to: www.freescale.com



Application Note
16-Bit Offset IIA Mode

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

16-Bit Offset IIA Mode

The 16-bit offset indexed indirect addressing mode adds a 16-bit
constant to the content of the index register, then uses the result as an
intermediate address to the operand data. The 16-bit offset is provided
to the CPU in the program. This means that the 16-bit offset mode takes
more bytes to implement than the D accumulator mode.

Examples:

Given: Address 10 contains 20, Address 20 contains 40,
index register X contains 5

inc 5,x ;Address 10 will contain 21

Given: Address 10 contains 20, Address 20 contains 40,
index register X contains 5

inc [5,x] ;Address 20 will contain 41

In the above example, the following steps took place in the increment
instruction which used the IIA mode:

1. The content of the index register X is added to the 16-bit constant.
In this case, X contains a 5, and the 16-bit constant is 5. These are
added together to provide a result of 10.

2. The result of 10 is used as an address. The content of address 10
is 20.

3. The content of address 10 is then loaded into a temporary internal
register. In this case, the internal register now will contain 20 (the
content of address 10).

4. The content of the internal register (which is 20) is used as an
address. This address is 20 and that is the address in which the
inc[rement] function will be performed.

5. The content of address 20 is operated on according to the
indicated instruction. In this example, the instruction is an
increment instruction so the content of address 20 is incremented.
The end result is that the 40 is changed to 41 in memory location
20.
AN1716

3  
For More Information On This Product,

  Go to: www.freescale.com



Application Note

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

D Accumulator Offset IIA Mode

The D accumulator offset indexed indirect addressing mode adds a 16-
bit value stored in the D accumulator to the content of the index register,
then uses the result as an intermediate address to the operand data.

Examples:

Given: Address 10 contains 20, Address 20 contains 40,
index register X contains 5, d accumulator contains 5

inc [d,x] ;Address 20 will contain 41

In the above example the following steps took place in the increment
instruction which used the indexed indirect addressing mode.

1. The content of the index register X is added to the D accumulator.
In this case, the content of X is 5, and the content of the D
accumulator is 5. These are added together to provide a result of
10.

2. The result of 10 is used as an address. The content of address 10
is 20.

3. The content of address 10 is then loaded into a temporary internal
register. In this case the internal register now will contain 20 (the
content of address 10).

4. The content of the internal register (which is 20) is used as an
address. This address is 20 and that is the address in which the
inc[rement] function will be performed.

5. The content of address 20 is operated on according to the
indicated instruction. In this example, the instruction is an
increment instruction so the content of address 20 is incremented.
In this example, the end result is that 40 is changed to 41 in
memory location 20.
AN1716

4   
For More Information On This Product,

  Go to: www.freescale.com



Application Note
Techniques

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Techniques

Jump Tables
and Data Tables

Jump tables are blocks of data that cannot be executed, but instead
represent a list of addresses that point to executable segments of code.
Data tables are also blocks of addresses that point to segments of data
such as data types that are created by the C language “struct” operator.

This is a valid use of JUMP tables appropriate for JSR and JMP
instructions:

my_table:
fdb add_element
fdb del_element
fdb mov_element
fdb rot_element

end_my_table:
add_element:

... ;code here
rts

del_element:
... ;code here
rts

etc.

This example is a valid use of a JUMP table appropriate for the CALL
instruction:

my_table:
fdb add_element
fcb mod_database_page
fdb search_for_element
fcb manipulate_db_page

end_my_table:
add_element:

... ;code here
rtc

search_for_element: ;this code is located on a different page
;from the add_element routine

... ;code here
rtc
AN1716

5  
For More Information On This Product,

  Go to: www.freescale.com



Application Note

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

This next example is a valid use of a DATA table. This data table should
be stored in RAM since updating its elements is a fundamental element
of a technique for managing databases without moving the data.

current_element ds 2 ; pointer to the data,
; not the data itself!

first_element ds 2
last_element ds 2
some_code:

stx current_element ;store a valid pointer in the
;current_element

... ;several lines of code in which X
;is used

clrx
ldd [current_element,x] ;loads the d register

;with first part of the data

Where Can I Use
Them?

Jump tables are useful anywhere in a user program where the routines
can be referred to numerically. This could be an index of a dipswitch, the
result of a calculation, a routine number such as is commonly used in
real-time operating systems, a system level priority, or the results of
case statements. Jump tables might also be implemented in software
which has the capability of being expanded in the field with system plug-
ins or the equivalent of dynamic link libraries (DLLs) used in windowing
programs. In these applications, the software has pointers to “do-
nothing” routines and when a new function is implemented, the “do-
nothing” address is overwritten with the address of the new function.

Jump tables are a fundamental part of computed GOTOs. An organized
design of the data structures in a program will make assembly much
easier and more efficient. Jump tables aid in organization and they also
make expansion of programs much easier.
AN1716

6   
For More Information On This Product,

  Go to: www.freescale.com



Application Note
Techniques

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Computed GOTOs The computed GOTO is a method of jumping to a series of subroutines
based on the result of a calculation. The calculation may be as simple as
telling the program to execute routine No. 4. Routine No. 4 might be the
routine number because of a bit pattern in a control byte or any other
construct that could generate the number 4.

Computed GOTOs can be used in any piece of code that needs to call a
subroutine and an index or numerical result exists that enables selection
of the routine.

An example is a routine based upon the setting of a 2-position dipswitch.
There are four possible combinations, each determining a different
course of action for the microcontroller. The following code is an
example of how a selection might be accomplished on the M68HC12
microcontroller.

# assume porta is defined and it has the 2 position dipswitch
table:

fdb all_switches_off
fdb option_1_on
fdb option_2_on
fdb all_switches_on

computed_GOTO:
ldab porta
aslb ;2 byte increments
exg b, x ;new to the hc12 (zero extend)
jsr [table,x] ;new to the hc12
... ;continue from here

all_switches_off:
... ;your code here
rts

option_1_on:
... ;your code here
rts

option_2_on:
... ;your code here
rts

all_switches_on:
... ;your code here
rts
AN1716

7  
For More Information On This Product,

  Go to: www.freescale.com



Application Note

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Step-by-Step
Example

Make Subroutines

First, it is important to make the subroutines without too much
concern about what they will be called later. In this example, the
assumption is that the routines will not pass any variables.

Put the subroutines anywhere it is convenient, since they will be
called from a computed GOTO. Make sure that every subroutine has
meaningful labels, using as many characters as needed, at every
possible point of entry. Another excellent practice is to have a single
exit point from every routine.

Put Data in a Table

After all the building blocks (subroutines) are present so that enough
code can be executed to provide a meaningful task, collect all entry
labels into a table. It is important to remember that the arrangement
of the labels in this table influences the GOTO calculations. In the
current example, if the labels in the table are arranged differently, it
will be difficult to perform an easy calculation to get the index into the
jump table.

On a microcontroller that does not have indexed indirect addressing,
the table would have to include instructions. This means that the
same construct would execute much slower because of the additional
program fetch. The table would also require an additional byte-per-
entry for the instruction.

Do Calculations

Frequently, it is possible to get the index to the subroutines in the form
0,1, 2, . . . x. In the current example, a dipswitch can be read directly
and actions can be directly branched to without needless compare
and branch operations. After the index is gathered, a calculation to
correct for the size of the address is needed. Since we have 16-bit
addresses, it takes two bytes to describe the location of the
subroutine relative to a starting point. The current example has
routines in these locations: table+0, table+2, table+4 and table+6. It is
necessary to multiply the dipswitch settings 0, 1, 2 and 3 by 2 to get
the 0, 2, 4, and 6 numbers that will be added to the label “table.” Of
course, a multiply by 2 can be accomplished simply by an ASLB
AN1716

8   
For More Information On This Product,

  Go to: www.freescale.com



Application Note
Techniques

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

instruction. If the application uses 24-bit addresses, the M68HC12’s
multiply instruction is so fast that a corrected index can be generated
in three cycles. In this example, the calculation correction is by 3, and
not by 2:

ldab porta
ldaa #3 ;2 byte increments
mul ;only 3 cycles in the cpu12
tfr d, x ;new to the hc11
jsr [table,x] ;new to the cpu12

Check Boundaries

Although this example does not include it, there is a chance that the
calculations would point to a subroutine that was not defined in the
table. In the next example, there is now a 3-position dipswitch. When
the switch is read, there is a possibility that 0, 1, 2, 3, 4, 5 will be read.
Since there are no subroutines defined for positions 4 and 5, the
course of action may depend on the kind of error handling that is
desired.

One way to handle this error condition would be to use the AND
instruction and force the unused bits to zeros. Another way would be
to check the value against an upper limit and force it to the maximum
allowed value or to the minimum allowed value.

In the current example, the cost of adding additional code is more
expensive than adding two more subroutine labels. The new table is:

table:
fdb all_switches_off
fdb option_1_on
fdb option_2_on
fdb all_switches_on
fdb dipswitch_error_handler
fdb dipswitch_error_handler
AN1716

9  
For More Information On This Product,

  Go to: www.freescale.com



Application Note

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

The M68HC12 has instructions that are very useful for boundary
checking. In the current example, it is now assumed that the table is
not extended, but instead includes instructions for boundary
checking. The computed GOTO section would look like this:

table:
fdb all_switches_off
fdb option_1_on
fdb option_2_on
fdb all_switches_on

table_end:
fdb dipswitch_error_handler
fdb (table_end-table) ;largest legal offset

computed_GOTO:
ldx #table
ldab porta
aslb ;2 byte increments
clra ;fast
emind (table_end+2),x ;check bounds – new to HC12
jsr [d,x] ;new to the hc12
... ;continue from here

Here, the calculation section works a little differently than before
because the EMIND instruction uses indexed addressing modes.

Make Jump

Several types of jumps need to be considered. While most can
accomplish the same thing in one way or another, good program
design requires planning, since each implementation has effects in
both the generation of the computed GOTOs as well as with the
subroutines the GOTOs will call. There are also the usual trade-offs
among code complexity, speed of execution, and modularity.

• JMP — Using JMP indexed indirect is the fastest of all jumps that
can be used. Advantages include speed of execution, no stacking,
and no additional jump manager code after the JMP instruction.
Disadvantages are lack of modularity and no chance to have
useful exit code after the JMP instruction. The exit software is
important since JMP relies on the returns of the subroutines it
calls. It cannot be used both for interrupts and in-line code at the
same time. Careful use of exit code can aid in reuse and reliability.
AN1716

10   
For More Information On This Product,

  Go to: www.freescale.com



Application Note
Techniques

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

• JSR — Using JSR indexed indirect is probably the best of all
choices. It is fast, allows modularity, allows exit code, and the
stacking it does provides ample opportunities for sophisticated
stack operations.

• CALL — The call instruction can be used best when the M68HC12
is in a memory expansion scheme. In memory expansion routines,
CALL can be immensely useful, since its indexed indirect
addressing mode allows tabling of the expansion page value as
well as the 16-bit address. This allows the M68HC12 to use
multiple pages in a single jump (in this case call) table.

• BRA, BSR, LBRA, and LBSR — Since these instructions do not
have indexed addressing modes, they are not valid candidates for
computed GOTOs. However, there is a relationship between
LBRA, LBSR, JMP and JSR, which is shown here:

jmp destination-*,pc ;same as LBRA
jsr destination-*,pc ;same as LBSR
(LBSR not a standard HC12 mnemonic)

An Important
Variation

In this variation, the table is placed directly after an indexed indirect JMP
using the program counter relative mode of addressing. This has the
advantage of not using an index register, thus avoiding the loads
required. The trade-off is that flexibility is not as great, as JMP is the
central GOTO mechanism.

computed_GOTO:
ldab porta
rolb ;2 byte increments
clra ;fast
jmp [d,pc] ;new to the hc12

table:
fdb all_switches_off
fdb option_1_on
fdb option_2_on
fdb all_switches_on

table_end:
... ;continue from here
AN1716

11  
For More Information On This Product,

  Go to: www.freescale.com



Application Note

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Stack Operations

Subroutine
Variable Passing

In indexed indirect addressing mode, since the program works with the
pointer to the data and not the data itself, this mode can easily be used
from the stack. This is efficient because the programmer only has to
pass an index which can be used to represent large amounts of data. By
using indexing indirect, the data does not have to be removed from the
stack or loaded into an index register. An example of using the indexed
indirect addressing mode to access variables on the stack is:

calling_code:
movw #a_variable_address 2,-sp a way of making a push

;immediate
movw #a_subroutine_address 2,-sp
jsr called_routine
leas 4,sp
... ; code continuation

called_routine:
jsr [2,sp] ;will execute the routine at

;“a_subroutine_address”
addd [4,sp] ;will add the value pointed to by

;“a_subroutine_address”
rts

Notice that an index register was not used and there were no
unnecessary loads to use these variables after they were passed to the
stack. Stack cleanup is quick and efficient by using the LEAS instruction
to update the stack.
AN1716

12   
For More Information On This Product,

  Go to: www.freescale.com



Application Note
The CALL Instruction

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Data after Call
Technique (Use
Indirect to Fetch
Data Located after
the Call)

If the time it takes to stack arguments is a problem, indexed indirect
addressing can be used to access an operand. This technique has some
disadvantages; the necessity for stack cleanup is one, but programming
is a constant trade-off among speed, size, modularity, and other
performance characteristics. An example of this technique is:

calling_code:
jsr called_routine
fcb parameter_value
... ;code continuation

called_routine:
ldaa [0,sp]
staa porta ;we can get to this store quickly
ldd 0,sp ;load the return address
addd #1 ;correct for space taken by

“parameter_value”
std 0,sp ;restore on stack
rts ;now its ok to return

The CALL Instruction

The CALL instruction and its complementary instruction RTC (return
from call) are special instructions which operate differently from JSR and
RTS in useful ways. The primary purpose of the CALL instruction is to
enable system designers to use the memory expansion on the
M68HC12 while retaining code compatibility with the M68HC11,
including the stack frame. The CALL instruction essentially is a 24-bit
JSR instruction which updates a memory expansion register allowing the
MCU to access additional memory via expansion address bits. Without
the CALL instruction, 16-bit machines resorted to complex memory
expansion schemes with significant software overhead. If an MCU does
not have external memory or peripherals connected to the memory
expansion chip selects, the CALL instruction may still be used, but is
less efficient than simple JSRs.
AN1716

13  
For More Information On This Product,

  Go to: www.freescale.com



Application Note

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Indirect Addressing Special

When designing the CALL instruction, the indexed indirect mode will not
work efficiently without making a modification. When using the indexed
indirect addressing, the final result pointed to by the indirect pointer is
not a 16-bit value, but rather a 24-bit value.

The 24-bit addressing of the M68HC12 is stored in a way which makes
it code-compatible with the M68HC11. The stack image for a CALL looks
exactly like that of an M68HC11 with an extra byte stacked. All a
programmer has to do is pull a byte off of the stack to get a stack image
identical to that of an M68HC11. This feature is also convenient for
changing the return page with a simple pull/push combination.
Remember that the M68HC12 has a 64-Kbyte CPU with memory
expansion that offers many new possibilities to the programmer.

Memory Management

There is a another form of memory management that is easily
implemented with indexed indirect addressing that potentially could be
very useful. This form of memory management is not an original idea,
but is used by the Apple Macintosh operating system.

In this scheme, system memory is divided into two sections: The first
section is a small area, which is in a fixed location and never moves; the
second location is the memory that can be allocated, deallocated, and
moved by the memory manager.

When a program needs memory, it makes a request to a firmware
routine. The firmware routine then looks in the large second area for a
block the size that was requested. When it finds the block, it places the
address of the block into the next available location in the first small
section. Then, the address in the first small section is handed to the
program which originally made the request.

The real power of this technique is that when the memory manager
moves blocks to de-fragment memory, it simply moves the memory and
then updates its location in the first small area. As long as the main
program only refers to allocated memory via the pointer, it will never lose
the block.
AN1716

14   
For More Information On This Product,

  Go to: www.freescale.com



Application Note
Complementary Information

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Complementary Information

LEA Indirect
Addressing

A quick look at the LEA instruction reveals that it does not have an
indexed indirect addressing mode. While it seems that this is an
omission, there are equivalent instructions. These are:

ldy 0,x ;y gets the content of address 0+x
leay 0,x ;y gets the value 0+x
ldy [0,x] ;y gets the content of address pointed to

;by 0+x
leay [0,x] ;y gets the content of 0+x

;(but this doesn’t exist)
ldy 0,x ;y gets the content of address 0+x (this

;is the equivalent)

Another example:
leax [0,y] ;doesn’t exist
ldx 0,y ;equivalent

The EMAXD Genre
(Bounds
Checking)

Several new instructions in the CPU12 can aid in boundary checking.
These max and min instructions (EMAXD, EMAXM, EMIND, EMINM,
MAXM, MAXA, MINM, and MINA) can be used to perform boundary
checks when doing computed GOTOs. These instructions are the
equivalent of a series of instructions.

An example of using the EMIND instruction is:
emind (table_end-table),x ;check bounds - new to HC12

Before using this instruction, the D accumulator should have the index
value of the routine that it should execute selected from a table of
possible routines. Since there is a possibility of calculating the index to
a routine which puts the value outside the range of allowable values, the
EMIND instruction will compare the index to the maximum allowable
index and then replace it with the maximum allowable, if necessary. This
will keep the CPU12 program from going into an error condition.
AN1716

15  
For More Information On This Product,

  Go to: www.freescale.com



 
N

O
N

-
D

I
S

C
L

O
S

U
R

E
 

A
G

R
E

E
M

E
N

T
 

R
E

Q
U

I
R

E
D

Application Note

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   

Freescale Semiconductor, Inc.
n

c
..

.

AN1716/D  

   
   

  

For More Information On This Product,
  Go to: www.freescale.com

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

rxzb30
hibbertleft


	Introduction
	How IIA Works
	16-Bit Offset IIA Mode
	D Accumulator Offset IIA Mode
	Techniques
	Jump Tables ���� and Data Tables
	Where Can I Use Them?
	Computed GOTOs
	Step-by-Step Example
	An Important Variation


	Stack Operations
	Subroutine Variable Passing
	Data after Call Technique (Use Indirect to Fetch D...

	The CALL Instruction
	Indirect Addressing Special
	Memory Management
	Complementary Information
	LEA Indirect Addressing
	The EMAXD Genre (Bounds Checking)




