
F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

n
c

..
.

Order this document
by AN1711/D

AN1711

DMA08 Systems Compatibilities
By Bill Getka

CSIC Design Engineering
Austin, Texas

Introduction

The direct memory access (DMA) module for the HC08 Family
architecture (DMA08) provides numerous system functions. Some
functions are germane to the fact that it is a DMA, such as the ability to
do efficient block transfers, whereas other functions are not as obvious,
like the ability to service module interrupts without having to exit the CPU
from low-power mode.

To demonstrate the advantages of using the DMA, this application note
illustrates many of the system capabilities the DMA offers through a
single code example that has the DMA simultaneously servicing three
separate module interrupts while the CPU is either doing other work or
is in a lower-power mode.
For More Information On This Product,
 Go to: www.freescale.com

rxzb30
ForwardLine

rxzb30
fslcopyrightline

rxzb30
freescalecolorjpeg

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The DMA’s main features that are highlighted in this application note are:

• Ability to service a block transfer to a module while the CPU does
something else concurrently

• Ability to do either a block memory transfer under software control
or to be interrupt driven under module control (doing a block 1 byte
at a time as requested by a module).

• Ability of DMA and other modules to operate in wait mode where
the address bus and data bus are inactive except when DMA
transfers occur

• Other miscellaneous DMA features, including byte mode versus
word mode, loop mode versus no loop mode, and selectable
interrupt creation at the end of block transfers

Although many of the DMA capabilities are explained in detail in this
application note, a complete description of the DMA08 module is not
contained here. Refer to the DMA08 Direct Memory Access Reference
Manual (Motorola order number DMA08RM/AD) for a complete
description of the module’s functionality. The reference manual also
contains numerous application examples describing how to use the
DMA to do specific tasks such as software-initiated block transfers and
service of serial communication and a timer. In each case, performance
improvements achieved by using the DMA versus not using the DMA are
noted. In addition to this reference, the general release specification of
every microcontroller unit (MCU) containing a DMA has a specific
chapter describing its functionality.
AN1711

2
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Advantages of the DMA

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Advantages of the DMA

Using a DMA in a system has many advantages. These advantages can
be seen by analyzing a typical interrupt service routine. Instead of having
to stack the registers, check and clear interrupt flags, manage data and
corresponding pointers, and unstack each time a simple interrupt
occurs, the DMA in two cycles can service many types of interrupt
requests. This is particularly valuable if the MCU is kept primarily in wait
mode except when servicing interrupts. This reduction in bus activity
from dozens of cycles to two can add up to significant power savings.
Even when the MCU is not in wait mode, this improved efficiency frees
the CPU to handle other tasks. Efficient interrupt servicing also means
that other pending interrupts can be serviced more quickly, thereby
reducing the overall system latency.1 And, since the DMA can be
programmed easily to implement complex queuing functions, it’s usage
will many times reduce code size and complexity. Still other advantages
are possible, and these will be highlighted later in the application note.
This short list is meant to convince the reader that exploring usage of the
DMA is worthwhile.

1. See the appendices of the DMA08 reference manual for some examples of cycle efficiency
gained when using the DMA. Some specific examples related directly to this application code
appear later as well.
AN1711

3
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DMA Operation

In the HC08 architecture, the DMA08 acts as a secondary bus master to
the CPU. The DMA has the ability to steal a programmable percentage
of bus cycles from the CPU to do memory-to-memory transfers. These
transfers can be between any two addressable memory locations, such
as RAM, ROM, module data registers, and port data registers. Each
DMA channel has a separate 16-bit source and destination address
pointer that can be programmed to increment, decrement, or remain
static with each byte transferred. In addition, each channel has a block
length register to control the total number of bytes transferred and a byte
count register to keep track of how many bytes have been transferred.
Other control registers dictate whether block transfers are repeated
(loop mode), whether a CPU interrupt occurs at the end of each block,
whether the DMA can be active in wait mode, and other transfer
properties. With this flexibility, the DMA can implement customized
queuing functions to service module data requests or transfer data
blocks in an efficient manner.

A DMA transfer can be initiated by either a hardware module (such as a
serial communications interface (SCI) or analog-to-digital (A/D)
converter) or by the software directly. In the case of hardware initiation,
a given module will have a control bit that indicates whether the
generated interrupt flag should be directed to the CPU or DMA. Typical
interrupt flags might indicate a transmit buffer is empty or a receive
buffer is full. When configured for DMA servicing, this module’s interrupt
flag will cause the DMA to do a transfer with the appropriate register.
That is, a write of data might be done to service a transmit empty request
whereas a read might be done to service a receive buffer full request.
This read or write access automatically will cause the module to lower its
interrupt flag to the DMA. Once the next byte is needed, the module
reasserts its interrupt until the transfer is complete again. This simple
handshaking protocol continues until the DMA is disabled, which is
usually when the block length is reached.
AN1711

4
For More Information On This Product,

 Go to: www.freescale.com

Application Note
DMA Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A hardware-initiated DMA example could be a given program that is
intended to transfer 50 bytes of data out of the SCI while simultaneously
receiving 30 bytes. Two DMA channels could be used to manage these
transfers, one for the transmission and one for the reception. To handle
data transmission, the first DMA channel’s source register would be set
to the beginning of a buffer containing the 50 bytes of data to be sent. Its
destination register would be set to the SCI data register, and its block
length register would be set to 50. The addressing modes of the pointer
registers would be set such that the source address would increment
with each byte transferred while the destination address would remain
static. Once both the SCI and DMA were enabled properly, the SCI
transmitter empty interrupt to the DMA would cause the DMA to do a
read from the data buffer followed by a write of that data to the SCI data
register. This write action would clear the request to the DMA. The next
transmitter empty request would cause the next byte in the buffer to be
transferred until all 50 were finished. Once the byte count was reached,
the DMA could have been configured to disable this channel
automatically and interrupt the CPU to indicate the end of the transfer.
The reception of data would occur on the second channel in much the
same way. In this case, the source address is set statically to the SCI
data register, and the destination is an incremented buffer pointer. Here
transfers are caused by the receiver full flag, which is cleared by reads
from the data register. Again, the transfer completes when the byte
count is reached or no more receiver full flags are set.

In a software-initiated transfer, a bit is set in a DMA control register to
initiate the transfer. The transfer involves doing a read from the source
location and a write to the destination location for each byte of the block.
Again, different addressing modes allow the source and destination
pointers to increment, decrement, or remain static. The transfer runs at
the programmed bandwidth until complete unless it is interrupted by a
higher priority channel. The fundamental difference between a
hardware-initiated transfer and a software-initiated transfer is that a
hardware transfer typically progresses one byte (or word) at a time at a
rate dictated by the module’s needs, whereas a software transfer
typically does a full block transfer at a programmable rate without
interruption.
AN1711

5
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

As previously mentioned, the DMA is very flexible. It has various controls
that allow the user to customize the DMA transfer properties to best suit
the application. The bandwidth control allows the user to select what
percentage of bus cycles an active DMA transfer uses. Choices are
100%, 67%, 50%, or 25%. A separate control determines whether or not
a CPU interrupt can interrupt an active DMA transfer. This same control
assigns the priority levels to the existing channels. Yet another control
determines if a channel is disabled at the end of a transfer or allowed to
loop on the block. A related control determines if the end of a block can
cause a CPU interrupt. A different control determines if each transfer is
a byte long or a word long, and another determines if transfer can
happen in wait mode.

A final control maps potential interrupt sources to available channels.
For instance, the HC08XL36 has eight sources that can cause DMA
interrupts, but it has only three DMA channels. Each channel has a 3-bit
field in a control register which maps a given source to that channel. This
mapping capability enables the system to use all available hardware
efficiently. If a given channel is meant for software transfers, then this
channel has to be mapped to an unused DMA interrupt source. See the
DMA08 reference manual for a precise description of all available control
registers, as well as a step-by-step programming sequence to use to
configure these registers for the desired results.
AN1711

6
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Overview of the Application Code

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Overview of the Application Code

The code written for this application note is meant to tie several features
provided by the DMA into a concrete example around which the user can
develop his own applications. This sample application produces a simple
PWM waveform that can be viewed on an oscilloscope. The PWM duty
cycle varies from a user-selectable minimum to maximum at a user-
selectable step size. (See Figure 1 .) Increasing the step size makes the
waveform appear to move more quickly between the minimum and
maximum values. To get a good view of the waveform, configure the
oscilloscope to display 2 volts/div and 10 ms/div with positive edge
triggering.

Figure 1. Example of PWM Waveform
Produced on Oscilloscope

The PWM waveform is supplied by the output compare function of the
TIM08 module in conjunction with the DMA. The various pulse width
values come from a RAM table via the DMA. For the waveform to move
slowly enough to be seen, the timer is clocked externally. This external
clock actually is provided by wiring the timer’s external clock input to the
SPI’s MOSI output. (See Figure 6 on page 43.) With the help of the
DMA, the SPI is sending $OF at its slowest baud rate continuously,
which effectively creates a slow-running clock.

In addition to the waveform, the application also provides a user
interface. This user interface communicates through a standard serial
communication interface (SCI) module at 9600 baud, in conjunction with
an RS-232 chip to a dumb terminal. Keystrokes entered on the dumb
terminal direct changes in the output waveform. A typical screen display
of the dumb terminal is shown in Figure 2 .

MINIMUM DUTY CYCLE STEP SIZE

MAXIMUM DUTY CYCLE
AN1711

7
For More Information On This Product,

 Go to: www.freescale.com

Application Note

 at

 at

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 2. Example Display of User Interface

The messages printed are built up in a RAM buffer. The DMA brings
pieces from ROM data structures into RAM under CPU control. Once an
entire message is constructed, it is broadcast out of the SCI module
under DMA control. With this project overview in mind, the remainder of
this application note describes specific code details that highlight
advantages of using the DMA.

Currently generating a waveform that varies from a duty cycle of 25 to 75
a step size of 1.

Please choose which you would like to alter.

Would you like to change
 0) back to the default values
 1) the minimum duty cycle value
 2) the maximum duty cycle value
 3) the step size of the change in duty cycle

? 1

Please enter the minimum duty cycle [must be an integer between 10

1 entered by user.

and 75--the current maximum duty cycle]: 50 50 entered by user.

Currently generating a waveform that varies from a duty cycle of 50 to 75
a step size of 1.

Please choose which you would like to alter.
AN1711

8
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Highlights of DMA Usage in Application Code

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Highlights of DMA Usage in Application Code

The first advantage that can be highlighted in the code is cycle
efficiency. An example can be seen in the initramsci routine on
page 30. Here the DMA is used to initialize the RAM’s timer output
compare buffer with a series of constants. The data structure used is
configured such that every other byte in the table is the absolute
maximum duty cycle. Therefore, the DMA was used to copy the decimal
word 0099 into each entry in the buffer. This required 164 transfers at
two cycles per transfer with 38 cycles of programming overhead, for a
total of 366 cycles. Figure 3 shows a code segment that accomplishes
the same end result without DMA assistance. In this case, each word
required 10 cycles plus an additional 13 bytes of overhead, for a total of
833 cycles. Hence, there was a significant cycle savings in the DMA
approach even when the source data was a constant. A generic move
routine would save an even higher percentage. (See the Software-
Initiated Block Transfer section of the DMA08 reference manual.)

Figure 3. Code to Fill RAM Buffer without the DMA

Another feature highlighted by this same code segment is the ability of
the DMA channel to be initiated under software control. By writing a
binary 4 to the lower three bits of the D2C register, the program maps
interrupt source 4 (of 8) to channel 2. After channel 2 is enabled
properly, setting bit 4 in the DC2 register begins the transfer just as if the
hardware module connected to that source had asserted its interrupt.

initramsci: lda #maxbuf
lsra
psha
ldhx #bufbegin
lda #absmaxduty
incx
sta ,X
incx
dbnz 1, sp, nxtbyte
pula

nxtbyte:

; Do two bytes in each loop

; Set dest addr to be buffer pointer
; Value to fill in every other byte
; Don’t care what’s in other byte
; Put constant in this byte
; Point at next byte to store
; Check for end of block fill
; Remove byte count from stack
AN1711

9
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Another point to be highlighted about this code segment is how transfers
can be done on a word basis instead of on a byte basis. The advantage
here is that the desired effect is to transfer a number of 2-byte constants
to a buffer. Therefore, the source address had to vary over two locations
while the destination address was to increment over 164 locations. By
using word mode, the source addressing mode was declared as static
while the destination mode was incremented, and the byte count was set
to the number of bytes to transfer. This would not have been possible if
only byte mode was available because only one of the two bytes of the
word would have been chosen. Word mode is equally important when
dealing with 16-bit registers (such as the timer’s channel registers) for
this same reason. Note that word mode transfers will use 100% of the
bandwidth regardless of the bandwidth register’s setting. The bandwidth
setting only applies to byte mode. (See Appendix B of the DMA08
reference manual.)

Another section of code to notice is the start waveform (srtwvfrm)
routine on page 31. The first part of this routine programs DMA channel
0 to service SPI transmitter empty interrupts. Recall that the SPI is being
used (wastefully) to provide a continuous clock output. To achieve this,
the source address points at a constant byte ($OF) while the destination
is the SPI data register. The key feature is that the DMA is put in loop
mode so that the transfer continues to occur until the DMA is disabled
manually by the CPU. Loop mode not only works on a single byte, but it
also can work on a block as well. When the DMA traverses through a
block, neither the value of the source nor the destination registers
change, even in increment and decrement addressing modes. Instead,
the DMA uses a dedicated ALU to add the current byte count to the
address pointers to allow them to remain constant. Once the block
length is reached, the byte count is simply reset to 0 to start the next
loop. An example of this type of multi-byte loop is demonstrated in the
srtwvfrm routine using TIM channel 0 and DMA channel 1.

Although the DMA usually simplifies the overall application, there are
times when slightly different methods need to be employed to make
DMA usage possible. The PWM creation highlights this point.
AN1711

10
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Highlights of DMA Usage in Application Code

r

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

To create the varying PWM output, DMA channel 1 feeds TIM channel 0
with a different value each time a period is complete. The structure of this
RAM table is shown in Figure 4 .

Figure 4. RAM Buffer Data Structure for the PWM

The timer’s overflow register is set to 100. Each time the timer hits this
value, it toggles its output high. Timer channel 0 is set up such that each
time the value in its channel register is reached, it lowers its output and
requests a new value from the DMA. The RAM buffer is set up such that
the next value fetched is less than the overflow value but greater than
any valid table entry so that exactly two table entries are fetched in one
period. This is necessary to prevent PWM values from being missed. For
instance, if a table entry of 50 were followed by a table value of 60, the
output would be cleared when 50 was reached, the value of 60 would be
fetched, and the pin would be cleared again when 60 was reached with
the next value fetched. This would effectively cause the value of 60 to be
skipped. By placing a value of 99 as the next table entry after every valid
entry, it is guaranteed that the timer counter is higher than the next value
fetched, thereby preventing the false edge. Since reaching the value of

min duty cycle
99
min duty cycle + 2*step size
99
min duty cycle + 4*step size
99
...
min duty cycle + 2n*step size
99
max duty cycle
99
max duty cycle - 2*step size
99
max duty cycle - 4*step size
99
...
max duty cycle - 2n*step size
99

Must be greater than or equal to 10

Stops when next entry would be greate
than maximum duty cycle.

Stops when next entry would be less
than minimum duty cycle.

Must be less than or equal to 90
AN1711

11
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

99 in the timer register only causes the already low pin to be cleared, this
extra fetch goes unnoticed by the user. Instead, it serves to fetch the
next valid entry for the next period.

A final functional aspect of the application worth noting involves how
messages are transferred to the user. Many of the messages to the user
involve giving status on current waveform properties and asking for new
valid entries. These strings, therefore, are made up of constant string
messages with occasional integer variable values thrown in (for
instance, current max duty cycle, current step size, etc.). To form an
entire message, a number of strings and variable values are put
together. A full message is built in the RAM buffer by the CPU and, when
ready, the DMA transmits it to the SCI. The CPU uses the DMA to
transfer message segments from ROM to RAM. This process is shown
in the strxfr routine found on page 37. If an integer variable value
needs to be appended to the end of the string as the message forms, the
CPU goes off and begins calculating the ASCII value of that integer at
the same time the DMA is transferring the preceding string (see the
h2axfr routine found on page 36). Since the CPU knows the length of
the string, it just places the ASCII result at the end of the RAM segment
being filled by the DMA. Once the CPU is finished, it checks to see if the
DMA is done. If it is not done, the CPU goes into wait mode until the DMA
is done so it can proceed with the next segment (see the waitdma2

routine found on page 38). This process repeats until the entire string is
built, at which point the DMA can start sending bytes of data to the SCI
for transmission (see the xmitstr routine found on page 38). While this
transfer occurs, the CPU either calculates buffer values or goes back
into wait. Meanwhile, the DMA simultaneously is servicing the SPI, SCI,
and TIM modules.

In wait mode, the address and data buses of the entire MCU are static
and many clocks are disabled to reduce power consumption. Enabled
modules can continue running. Also the DMA can run in wait mode,
transferring data using the otherwise static address and data buses
without waking the CPU. Block complete interrupts from the DMA are
used to wake the CPU at the end of a transfer. Such an interrupt is used
in this case to let the CPU know that the prompt sent to the user via the
SCI transfer is complete so the CPU can begin looking for a reply.
AN1711

12
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Highlights of DMA Usage in Application Code

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

As the waitdma2 routine shows, wait entry must be done carefully. In
this case, there is only one system interrupt that can pull the MCU out of
wait, the DMA block complete interrupt. Since both block lengths and the
amount of work done by the CPU before entering wait mode varies, it is
possible for a DMA transfer to end at about the same time the CPU is
ready to enter wait mode. In a worst case scenario, the DMA would
interrupt the CPU right before the WAIT instruction was executed. The
interrupt would be serviced, then the WAIT instruction would be
executed. Since the DMA block complete interrupt already occurred, no
interrupt would ever pull the MCU out of wait, thereby hanging the
system. The code in the waitdma2 routine makes it impossible for this
scenario to occur. It begins by masking interrupts to ensure this critical
interrupt cannot occur until after wait mode is entered. Then it verifies
that the transfer is still in process. If it is, the necessary interrupt will still
become pending at some point in the future. It will not be serviced until
after the WAIT instruction is executed because all interrupts remain
masked. The WAIT instruction itself clears the interrupt mask, thereby
allowing this interrupt later to pull the MCU out of wait. So even if the
DMA transfer ends between the check of the flag and the WAIT
instruction, the interrupt will not fail to pull the MCU out of wait.

When transferring data to the user, the DMA is simultaneously servicing
all three of the SCI, SPI, and TIM requests while the CPU is either doing
other work or is in wait mode. Since none of these modules create
interrupts very often, this leaves the bus idle for other activities or
nothing at all. If the CPU were used to manage the various queues
instead of the DMA, a far greater percentage of cycles would be required
to maintain the waveform while increasing the latency of other CPU
functions.

The remainder of the code is used to manage the user interface and fill
the RAM buffer with PWM values calculated from user-selected
parameters. This latter function is a good example where the DMA is not
appropriate. Even though a large buffer needs to be filled, each byte
needs to be calculated based on a simple algorithm. This can be done
only by a CPU loop and cannot be done by the DMA because the DMA
can only move data, not manipulate it.
AN1711

13
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

This simple MCU system helps to illustrate the many reasons that a
DMA can be useful. Although not designed to be used without
modifications, many of the code segments can be adapted to real
applications. DMA programming sequences and the wait entry protocol
are particularly useful. A similar approach to PWM generation may be
helpful also. Regardless of the amount of code reuse, the application
note should serve to highlight how the DMA can improve the
performance of many system solutions.
AN1711

14
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Software Flowcharts

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Software Flowcharts

Figure 5. Software Flowchart (Sheet 1 of 13)

DISABLE COP;
ENABLE INTERRUPTS;
CONFIGURE GLOBAL

DMA REGISTERS

initramsci — PAGE 15
INITIALIZE RAM & SCI,

STARTING INTRO

strwvfrm — PAGE 16
START THE PWM

WAVEFORM

waitdma2 — PAGE 18
WAIT FOR DMA CH2

TO FINISH INTRO
MESSAGE

sendstat — PAGE 18
SEND STATUS

STRING TO THE USER

xmitstr — PAGE 16
BEGIN TRANSFER

OF FUNCTION
SELECT MESSAGE

waitdma2 — PAGE 18
WAIT FOR DAM CH2
TO FINISH SELECT A
FUNCTION MESSAGE

PROG_BODY:

MAINLOOP:

getdigit — PAGE 19
GET A VALID RESPONSE
FROM THE USER (<= 3)

selresp — PAGE 21
RESPOND TO USER’S

REQUEST

SETUP DMA CH2 TO
FILL RAM BUFFER WITH

ABSOLUTE MAXIMUM
DUTY CONSTANT

xmitstr — PAGE 16
BEGIN TRANSFER

OF INTRO MESSAGE

setupbuf — PAGE 17
HAVE CPU BUILD

RAM BUFFER WITH
DEFAULT PWM VALUES

initramsci:

INITIATE THE DMA
TRANSFER AND DISABLE

CHANNEL WHEN
FINISHED

CONFIGURE THE SCI
TO TRANSMIT AT
9600 BAUD USING

DMA

RETURN

initramsciSTART

(see code page 29) (see code page 30)

(see code page 30)
AN1711

15
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 5. Software Flowchart (Sheet 2 of 13)

SET DMA CH0
SOURCE TO CONSTANT
DATA; SET DESTINATION

TO BE SPI DATA REGISTER

CONFIGURE DMA CH0
AS STATIC SOURCE AND
DESTINATION SERVICING
SPI TRANSMIT REQUESTS.

ENABLE LOOPING.

SET UP SPI AS DIV128
BAUD RATE WITH SPI
INTERRUPTS GOING

TO DMA

SET UP TIMER TO BE
CLOCKED EXTERNALLY,

AND SET OVERFLOW
TO BE 100

CONFIGURE TIM CH0
AS UNBUFFERED PWM

TO BE SERVICED
BY THE DMA

strwvfrm: SET DMA CH2
SOURCE TO START
OF STRING BUFFER

ADDRESS

ENABLE DMA CH2
WITH CPU INTERRUPT
REQUESTS ENABLED

xmitstr:

SET DMA CH2
DESTINATION
TO SCI DATA

REGISTER

SET DMA CH2
TO INCREMENT SOURCE,

STATIC DESTINATION,
BYTE MODE,

SERVICING SCI
TRANSMIT REQUESTS

RETURN

xmitstrstrwvfrm

SET DMA CH1
SOURCE TO BEGINNING
OF PWM DATA BUFFER

AND DESTINATION
TO BE CH0 CHANNEL

REGISTER

CONFIGURE DMA CH1
AS INCREMENT SOURCE,

STATIC DESTINATION,
BYTE TRANSFER

TO TIM CH0

SET BLOCK LENGTH
TO CURRENT
BUFFER SIZE

ENABLE DMA CH1
TO LOOP, ENABLE DMA

CH1 WITHOUT
INTERRUPTS, AND START

TIMER TO BEGIN
WAVEFORM

RETURN

(see code page 31) (see code page 38)
AN1711

16
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Software Flowcharts

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 5. Software Flowchart (Sheet 3 of 13)

MAKE TRUE STEP SIZE
TWICE THAT OF

ENTERED STEP SIZE.
POINT TO START OF
BUFFER, BEGIN WITH

MINIMUM DUTY
CYCLE AND A BUFFER

SIZE OF ZERO

STORE CURRENT VALUE
TO CURRENT BUFFER
POSITION, INCREMENT

POSITION BY 2, AND
BUFFER SIZE BY 1

INCREMENT PWM
VALUE TO WRITE BY

ADJUSTED STEP SIZE

IS VALUE TO
WRITE LESS THAN
MAX DUTY CYCLE?

DOUBLE SIZE OF
BUFFER COUNTER
AND STORE FOR

LATER

setupbuf:

setupbuf

SET NEXT VALUE TO
WRITE TO BUFFER
TO MAXIMUM DUTY
CYCLE AND CLEAR

BUFFER SIZE

STORE CURRENT VALUE
TO CURRENT BUFFER
POSITION, INCREMENT

POSITION BY 2, AND
BUFFER SIZE BY 1

DECREMENT PWM
VALUE TO WRITE BY

ADJUSTED STEP SIZE

DOUBLE SIZE OF BUFFER
COUNTER, ADD TO

STORED VALUE,
AND SAVE RESULT AS

GLOBAL BUFFER
SIZE

RETURN

storebuf1:

storebuf2:

IS VALUE TO
WRITE GREATER THAN

MIN DUTY CYCLE?

NO

YES

NOYES

(see code page 39)

(see code page 39)

(see code page 39)
AN1711

17
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 5. Software Flowchart (Sheet 4 of 13)

IS TRANSFER
ON DMA CH2

STILL GOING?

MASK GLOBAL
INTERRUPTS

ENTER WAIT MODE

CLEAR GLOBAL
INTERRUPT MASK

waitdma2:

waitdma2

appendmes — PAGE 26
BUILD FIRST PART OF

STATUS MESSAGE
(UP TO MIN DUTY
CYCLE VARIABLE)

dma2wait:

sendstat:

YES

dma2done:

IS TRANSFER
ON DMA CH2
COMPLETE?

NO

MASK GLOBAL
INTERRUPTS

NO

RETURN

YES

sendstat

appendmes — PAGE 26
BUILD SECOND PART
OF STATUS MESSAGE

(UP TO MAX DUTY
CYCLE VARIABLE)

appendmes — PAGE 26
BUILD THIRD PART OF

STATUS MESSAGE
(UP TO DUTY CYCLE

STEP SIZE VARIABLE)

finishmes — PAGE 26
FINISH BUILD OF

STATUS MESSAGE
AND TRANSMIT ENTIRE
MESSAGE TO THE USER

RETURN

(see code page 38)

(see code page 38)

(see code page 38)

(see code page 36)
AN1711

18
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Software Flowcharts

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 5. Software Flowchart (Sheet 5 of 13)

CLEAR ANY PENDING
SCI RECEIVER
INTERRUPTS

IS RECEIVER
STILL ENABLED?

getdigit:

getdigit

SET DMA CH2 SOURCE
TO START OF MESSAGE;

SET DESTINATION TO
START OF RAM

BUFFER

CONFIGURE DMA CH2
AS INCREMENT SOURCE,
INCREMENT DETINATION,

BYTE MODE

SET DMA CH2 BLOCK
LENGTH TO LENGTH OF

MESSAGE STRING

ENABLE DMA CH2
WITH INTERRUPTS

AND INITIATE
DMA CH2 TRANSFER

UNDER
SOFTWARE CONTROL

RETURN

getwt:

strxfr:

YES

ENABLE SCI
RECEIVER WITH CPU

INTERRUPT REQUESTS

PUT CPU IN WAIT
MODE UNTIL AN

INTERRUPT OCCURS

IS VALUE LESS
THAN LOWER BOUND?

IS VALUE
GREATER THAN
UPPER BOUND?

YES

YES

CONVERT RECEIVED
VALUE TO DECIMAL

RETURN

ECHO VALID CHARACTER
TO USER VIA THE

SCI.CONVERT SCI BACK
TO BEING READY FOR

DMA SERVICING

NO

strxfr

getval:
(see code page 35)

(see code page 36)

(see code page 37)

NO

NO
AN1711

19
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 5. Software Flowchart (Sheet 6 of 13)

RETURN

LOAD IN DECIMAL
VALUE FROM LOOKUP
TABLE AND MASK OFF

LOWER NIBBLE

SHIFT UPPER NIBBLE
DOWN TO LOWER

NIBBLE AND CONVERT
NUMBER TO ASCII VALUE

STORE ASCII VALUE
INTO MESSAGE BUFFER
AND UPDATE MESSAGE

BUFFER POINTER
TO BE NEXT VALUE

h2axfr:

h2axfr

IS UPPER
NIBBLE EQUAL

TO 0

NO

LOAD IN PLACE TO
STORE ASCII VALUE

YES

LOAD IN PLACE TO
STORE ASCII VALUE

MASK OFF UPPER NIBBLE
OF VALUE TO PRINT

CONVERT LOWER NIBBLE
TO ASCII AND STORE

VALUE INTO
MESSAGE BUFFER

UPDATE END OF
MESSAGE BUFFER

POINTER

dolower:

skipld:

(see code page 36)

(see code page 37)

(see code page 37)
AN1711

20
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Software Flowcharts

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 5. Software Flowchart (Sheet 7 of 13)

selresp:

selresp

DID USER
ENTER

0?

NO

YES

DID USER
ENTER

1?

NO

DID USER
ENTER

2?

NO

prmtdcs — PAGE 22
USER MUST HAVE

ENTERED 3, SO PROMPT
THEM FOR A NEW DUTY

CYCLE STEP SIZE

check1:

check2:

do3:

resetwv — PAGE 22
RESET WAVEFORM

PROPERTIES TO
DEFAULT VALUES

YES

prmtmin — PAGE 23
PROMPT USER TO

ENTER A NEW
MINIMUM DUTY CYCLE

YES

prmtmax — PAGE 24
PROMPT USER TO

ENTER A NEW
MAXIMUM DUTY CYCLE

NOTE: All routines are called with a jump and
end with an rts which causes them to
return to the place that called the
selresp routine.

(see code page 32)

(see code page 32)

(see code page 32)

(see code page 32)
AN1711

21
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 5. Software Flowchart (Sheet 8 of 13)

prmtdcs:

prmtdcs

LOAD DEFAULT
VALUES INTO

WAVEFORM VARIABLES

resetwv:

resetwv

updatebuf — PAGE 25
UPDATE PWM BUFFER

USING WAVEFORM
VARIABLES

RETURN

xmitstr — PAGE 16
TRANSMIT STATIC
PROMPT FOR NEW

DUTY CYCLE STEP SIZE
STRING TO USER

waitdma2 — PAGE 18
WAIT FOR DMA CH2
TO FINISH STRING

TRANSFER

getdigit — PAGE 19
GET A NEW STEP
SIZE FROM USER

DID THE USER
ENTER A NON-ZERO

NUMBER?

xmitstr — PAGE 16
TRANSMIT STATIC

STEP SIZE TOO LOW
MESSAGE TO USER

waitdma2 — PAGE 18
WAIT FOR DMA CH2 TO

FINISH STRING TRANSFER

NO STORE RESPONSE AS
NEW DUTY CYCLE

STEP SIZE

goodss:

updatebuf — PAGE 25
UPDATE PWM BUFFER

USING NEW DUTY CYCLE
STEP SIZE

RETURN

YES

(see code page 32)(see code page 34)

(see code page 34)
AN1711

22
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Software Flowcharts

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 5. Software Flowchart (Sheet 9 of 13)

prmtmin:

prmtmin

appendmes — PAGE 26
BUILD FIRST HALF OF

THE MESSAGE TO
PROMPT USER FOR NEW

MIN DUTY CYCLE

finishmes — PAGE 26
FINISH MESSAGE
AND TRANSMIT IT

getpbcd — PAGE 25
GET PACKED

BCD RESPONSE
FROM THE USER

IS RESPONSE LESS
THAN CURRENT

MAX?

appendmes — PAGE 26
BUILD FIRST HALF

OF MIN > MAX
MESSAGE

finishmes — PAGE 26
FINISH MESSAGE
AND TRANSMIT IT

NO STORE RESPONSE
AS NEW MIN
DUTY CYCLE

goodmin:

updatebuf — PAGE 25
UPDATE PWM BUFFER

WITH NEW MIN
DUTY CYCLE

RETURN

YES
IS RESPONSE

GREATER
THAN ABSOLUTE

MIN?

mintoolow:

YES

xmitstr — PAGE 16
TRANSMIT STATIC

MINIMUM TOO
LOW MESSAGE

waitdma2 — PAGE 18
WAIT FOR DMA CH2 TO

FINISH MESSAGE TRANSFER

NO

(see code page 32)

(see code page 33)

(see code page 33)
AN1711

23
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 5. Software Flowchart (Sheet 10 of 13)

prmtmax:

prmtmax

appendmes — PAGE 26
BUILD FIRST HALF OF

THE MESSAGE TO
PROMPT USER FOR NEW

MAX DUTY CYCLE

finishmes — PAGE 26
FINISH MESSAGE
AND TRANSMIT IT

getpbcd — PAGE 25
GET PACKED

BCD RESPONSE
FROM THE USER

IS RESPONSE
GREATER THAN
CURRENT MIN?

appendmes — PAGE 26
BUILD FIRST HALF

OF MAX < MIN
MESSAGE

finishmes — PAGE 26
FINISH MESSAGE
AND TRANSMIT IT

NO STORE RESPONSE
AS NEW MAX
DUTY CYCLE

goodmax:

updatebuf — PAGE 25
UPDATE PWM BUFFER

WITH NEW MAX
DUTY CYCLE

RETURN

YES IS RESPONSE LESS
THAN ABSOLUTE

MAX?

maxtoobig:

YES

xmitstr — PAGE 16
TRANSMIT STATIC

MAXIMUM TOO
BIG MESSAGE

waitdma2 — PAGE 18
WAIT FOR DMA CH2 TO

FINISH MESSAGE TRANSFER

NO

(see code page 33)

(see code page 34)

(see code page 34)
AN1711

24
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Software Flowcharts

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 5. Software Flowchart (Sheet 11 of 13)

RETURN

getdigit — PAGE 19
GET A DIGIT LESS THAN

OR EQUAL TO 9

MULTIPLY PREVIOUS
RESULT BY 4

DISABLE TIMER’S DMA
CHANNEL AND CLEAR

BYTE COUNT

updatebuf:

updatebuf

setupbuf — PAGE 17
UPDATE VALUES

IN RAM PWM
BUFFER

RETURN

MOVE NEW BUFFER SIZE
INTO DMA CH1’S BLOCK

LENGTH REGISTER

RESTART THE TIMER’S
PWM BY ENABLING

DMA CH1

getpbcd:

getpbcd

getdigit — PAGE 19
GET A DIGIT LESS

THAN OR EQUAL TO 9

MULTIPLY REPLY BY 2
AND SAVE RESULT

ADD 2* ENTERED
NUMBER TO 8*

ENTERED NUMBER
TO GET 10* ENTERED
NUMBER AND SAVE

RESULT

ADD REPLY TO
PREVIOUSLY SAVED
RESULT AND STORE

FINAL RESULT AS
USER’S RESPONSE

(see code page 35) (see code page 35)
AN1711

25
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 5. Software Flowchart (Sheet 12 of 13)

RETURN
RETURN

waitdma2 — PAGE 18
WAIT FOR DMA CH2
TO FINISH STRING

TRANSFER

h2axfr — PAGE 20
TRANSFER ASCII

VALUE OF SELECTED
VARIABLE INTO THE

NEXT MESSAGE
BUFFER LOCATION

strxfr — PAGE 19
TRANSFER STRING INTO

RAM BUFFER

waitdma2 — PAGE 18
WAIT FOR DMA CH2
TO FINISH MESSAGE

TRANSMISSION

UPDATE MESSAGE
POINTER TO WHERE NEXT

BYTE SHOULD GO

APPENDMES FINISHMES

strxfr — PAGE 19
TRANSFER END OF

STRING INTO RAM BUFFER

CALCULATE TOTAL SIZE
OF MESSAGE

waitdma2 — PAGE 18
WAIT FOR DMA CH2 TO

FINISH STRING TRANSFER

xmitstr — PAGE 16
TRANSMIT ENTIRE STRING

OF THE USER

NOTE: These code segments are text macros. They will be inserted into the code stream
of each calling subroutine instead of being the target of a jump or branch.

APPENDMES: FINISHMES:
(see code page 28) (see code page 29)
AN1711

26
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Software Flowcharts

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 5. Software Flowchart (Sheet 13 of 13)

DISABLE SCI
RECEIVER INTERRUPTS,

AND SCI RECEIVER

RETURN

DMA_SVR:
IS DMA CH2

FLAG CLEAR?

NO

YES

NOTE: These code segments are interrupt service routines.

CLEAR THE DMA
CH2 INTERRUPT FLAG

CLEAR ANY SOFTWARE
INITIATED TRANSFERS

RETURNdmaend:

SCIRec_SVR:

MOVED RECEIVED VALUE
INTO A VARIABLE AND
CLEAR STATUS FLAGS

READ THE
STATUS FLAGS

(see code page 39)

(see code page 39)

(see code page 40)
AN1711

27
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Software Listing

**
* DMA App Note code
**

$include 'H708XL36.FRK'

* Program Equates
initmin EQU !25 ;Initial min duty cycle of 25%
initmax EQU !75 ;Initial max duty cycle of 75%
initstep EQU !1 ;Initial duty cycle step size = 1
maxbuf EQU !164 ;Code requires this to be < 256

* Program variables
 ORG RAM_Start
rcvbyte rmb 1
minduty rmb 1
maxduty rmb 1
dutystep rmb 1
bufsize rmb 1
mesptr rmb 2

* Data Buffers
bufbegin rmb maxbuf
mesbuf rmb !256

*
* APPENDMES: Macro that appends another string to a message under formation
* Inputs: %1 -- Three character string name indicator
* %2 -- Static variable name of a byte to append to
* the end of the string as a 1 or 2 byte ASCII char
* Outputs: The static variable mesptr is updated to indicate
* the next available byte in the message buffer.
*
* This macro should be used to form a segment of a message. Each message
* segment will have a string of characters to be printed followed
* by an integer variable to be printed at the end of that string.
* For instance, the message 'A max duty cycle of 15 is too small.' would
* be formed by first calling this macro to pass the first segment of
* the message. The string indicated by %1 would consist of
* 'A max duty cycle of ', and the variable would be the one that
* contained the value 15. Then the FINISHMES macro would be called
* to transfer the end of the message.
*

AN1711

28
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Software Listing

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

$MACRO APPENDMES
 ldhx #str%1 ;Transfer next string into message buffer
 lda #len%1 ;Load number of bytes in str into Acc
 jsr strxfr ;Transfer the string into RAM buffer
 ldhx mesptr ;Update message pointer to point to
 aix #len%1 ; where next string (in this case the
 sthx mesptr ; ASCII value) should begin.
 lda %2 ;Transfer a single byte value
 jsr h2axfr ; into the buffer as an ASCII value
 jsr waitdma2 ;Wait for string transfer to finish
$MACROEND

*
* FINISHMES: Macro ends the formation of a message and sends it to the user.
* Inputs: %1 -- Three character string name indicator
* Outputs: None
*

$MACRO FINISHMES
 ldhx #str%1 ;Transfer rest of string into RAM buffer
 lda #len%1
 jsr strxfr
 ldhx mesptr ;User buffer pointer to calculate total
 aix #len%1 ; message length
 sthx mesptr ;Update pointer properly
 ldhx #mesbuf ;Load in pointer to message to send
 txa ;Put lower byte of address into Acc
 psha ;Use value to calc # of bytes in message
 lda mesptr+1 ;Load least significant byte of pointer
 sub 1,sp ;Subtract least significant byte of start
 ais #1 ;Remove value from the stack
 jsr waitdma2 ;Wait for any previous transfer to finish
 jsr xmitstr ;Tranfer message to the user and
 jsr waitdma2 ; wait for string to finish transmission
$MACROEND

*
* Beginning of program execution
*

 ORG EPROM_Start
prog_body mov #COPD,MOR ;Disable the COP--for EPROM cfg
 ldhx #RAM_End+1 ;Load a pointer to top of RAM
 txs ;Set stack pointer to top of RAM
 cli ;Enable interrupts
AN1711

29
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

* Initialize global DMA configuration registers
 mov #$88,DSC ;Set DMAP, Disable Looping, Set DMAWE
 mov #$80,DC1 ;Set bandwidth of DMA to 67%

 jsr initramsci ;Initialize RAM and SCI using DMA CH2
 jsr srtwvfrm ;Start waveform w/ SPI/TIM/DMA
 jsr waitdma2 ;Wait for Intro message to finish
mainloop
 jsr sendstat ;Send status message to user
 ldhx #strsel ;Prompt user for which function
 lda #lensel ; they would like to select
 jsr xmitstr
 jsr waitdma2 ;Wait for transfer to finish
 lda #3 ;User can respond with 0 - 3
 jsr getdigit ;Get a valid value--dec result in Acc
 jsr selresp ;Respond to user's selection
 bra mainloop ;Keep going in the main loop

*
* initramsci--Use dma channel 2 to initialize RAM buffer and send
* introduction message via the SCI to the user.
* Inputs: None
* Outputs: None
* Note: The introduction message started in this routine will be using
* the SCI and DMA CH2. Any routine following this one that uses
* DMA CH2 should be sure to wait until this transfer is complete
* by executing a 'jsr waitdma2'.
*

initramsci ldhx #absmaxduty ;Set src addr to be abs max duty const
 sthx D2SH
 ldhx #bufbegin ;Set dest addr to be buffer pointer
 sthx D2DH
 mov #$2c,D2C ;Static src, inc dest, word, and
 ; set to SPI even though it is software
 mov #maxbuf,D2BL ;Fill in entire table with constant
 bset TEC2,DC1 ;Enable DMA CH2 w/o interrupts
 mov #$10,DC2 ;Initiate DMA transfer
 nop ;All DMA word transfers are 100%
 nop ; bandwidth. NOPs ensure DMA transfer
 ; had time to start before clear below
 clr DC2 ;DMA transfer should be finished now
 bclr IFC2,DSC ;Clear DMA CH2 interrupt flag

* Configure the SCI to ready it to transmit data sent to it from the DMA
 mov #$03,SCBR ;Initialize SCI Baud rate to 9600
 bset ENSCI,SCC1 ;Enable the SCI to ready it to transfer
 mov #$10,SCC3 ;Enable the DMA SCI transmitter interrupt
 mov #$88,SCC2 ;Enable the SCI transmitter
AN1711

30
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Software Listing

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

* Transfer intro message via the SCI
 ldhx #strint ;H:X must have pointer to start of message
 lda #lenint ;Acc must have number of bytes to send
 jsr xmitstr ;Transmit introduction to user screen

* Set up RAM buffer with initial waveform to send
 mov #initmin,minduty
 mov #initmax,maxduty
 mov #initstep,dutystep
 jsr setupbuf

 rts

* srtwvfrm: Set up SPI and DMA CH0 to create external clock for timer
* and DMA CH1 and TIM CH0 to start the PWM waveform.
* Inputs: None
* Outputs: None

srtwvfrm ldhx #spidata ;Set up pointer to SPI data to send
 sthx D0SH
 clr D0DH ;Destination is SPI data register
 mov #SPDR,D0DL
 mov #$05,D0C ;Static src & dest, byte, SPI Trans
 mov #$FF,D0BL ;Since looping on same byte (static src
 ; and dest), byte count is arbitrary
 bset L0,DSC ;Make it loop on this transfer
 bset TEC0,DC1 ;Enable DMA CH0 w/o interrupts
 mov #$03,SPSCR ;Set up SPI with div 128 baud rate
 mov #$63,SPCR ;Enable SPI as a mstr with dma xmit int

* Set up timer CH0 to create the PWM in conjunction with DMA CH1
 mov #$37,TSC ;Stop & reset timer; clock externally
 clr TMODH ;Set PWM period by programming
 mov #!100,TMODL ; overflow register
 clr TCH0H ;Initialize w/ a min duty cycle by
 mov minduty,TCH0L; writing a byte to channel reg 0
 mov #$5A,TSC0 ;Configure chan 0 as unbuffered PWM
 mov #$01,TDMA ; and enable it to be service by DMA

* Set up DMA CH1 to receive timer CH0 interrupt
 ldhx #bufbegin ;Load in beginning of buffer
 sthx D1SH ;Store in source address of DMA CH1
 ldhx #TCH0L ;Load in address of TIM CH0
 sthx D1DH ;Store in dest address of DMA CH1
 mov #$80,D1C ;Inc src, static dest, byte xfer, TIM CH0
 mov bufsize,D1BL ;Load bytes in table for initial case
 bset L1,DSC ;Enable looping on this channel
 bset TEC1,DC1 ;Enable DMA CH1 w/o interrupts

 bclr TSTOP,TSC ;Start timer waveform
 rts
AN1711

31
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

*
* selresp: Select correct action based on user's response to main menu
* Inputs: Acc has user input value (decimal value from 0 to 3)
* Outputs: None, but registers altered
* Note, this routine does not directly execute an RTS. Instead it jumps
* to a routine that takes the appropriate action, and these routines
* are all ended by an RTS.
*

selresp tsta ;Did user enter 0
 bne check1 ;If not, see if it was 1
 jmp resetwv ;If 0, reset waveform to default values

check1 cmp #$01 ;Did user ask to do selection 1?
 bne check2 ;If not, look to see if it was 2
 jmp prmtmin ;If 1, prompt user for minimum value

check2 cmp #$02 ;Did user ask to do selection 2?
 bne do3 ;If not, must have asked for selection 3
 jmp prmtmax ;If 2, prompt user for maximum value

do3 jmp prmtdcs ;Since 3, prompt for duty cycle step size

*
* resetwv: Routine used to reset waveform back to it's default values
* Inputs: None
* Outputs: None
*

resetwv mov #initmin,minduty ;Reset buffer parameters back
 mov #initmax,maxduty ; to the default values as
 mov #initstep,dutystep ; requested by the user
 jsr updatebuf ;Update timer PWM buffer
 rts ;All we need to do for selection 0

*
* prmtmin: Prompt user to enter the minimum duty cycle value
* Inputs: None
* Outputs: None, but register are altered
*

prmtmin ldhx #mesbuf ;Load address to beginning of message buffer
 sthx mesptr ;Reset message pointer to start of buffer
 APPENDMES gmn maxduty;Prompt user to enter minimum duty
AN1711

32
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Software Listing

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 FINISHMES gmf ; cycle (strgmn + maxduty + gmf)
 jsr getpbcd ;Get the packed bcd response from user
 cmp maxduty ;Is this less than the max duty cycle
 blt mintoolow ;If so, make sure it isn't too low

 ldhx #mesbuf ;Load address to beginning of message buffer
 sthx mesptr ;Reset message pointer to start of buffer
 APPENDMES emh maxduty;Start the min-duty-too-high message
 FINISHMES fin ;Finish the min-duty-too-high message
 jmp prmtmin ;Prompt them again for the value

mintoolow cmp #9 ;Is the value greater than 9
 bgt goodmin ;If so, value is ok
 ldhx #streml ;Tell user they entered too small a value
 lda #leneml
 jsr xmitstr
 jsr waitdma2
 jmp prmtmin ;Prompt them again for the value

goodmin sta minduty ;Checks out ok, so save
 jsr updatebuf ;Update the timer buffer with this value
 rts ;All we need to do for 1 selection

*
* prmtmax: Prompt user to enter the maximum duty cycle value
* Inputs: None
* Outputs: None, but register are altered
*

prmtmax ldhx #mesbuf ;Load address to beginning of message buffer
 sthx mesptr ;Reset message pointer to start of buffer
 APPENDMES gmx minduty;Prompt user to enter maximum duty
 FINISHMES gxf ; cycle (strgmx + minduty + strgxf)
 jsr getpbcd ;Get the packed bcd response from user
 cmp minduty ;Is this greater than the min duty cycle
 bgt maxtoobig ;If so, make sure it isn't too large

 ldhx #mesbuf ;Load address to beginning of message buffer
 sthx mesptr ;Reset message pointer to start of buffer
 APPENDMES exl minduty;Start the max-duty-too-low message
 FINISHMES fin ;Finish the max-duty-too-low message
 jmp prmtmax ;Prompt them again for the value
AN1711

33
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

maxtoobig cmp #!91 ;Is the value less than 91
 blt goodmax ;If so, value is ok
 ldhx #strexh ;Tell user they entered too large a value
 lda #lenexh
 jsr xmitstr
 jsr waitdma2
 jmp prmtmax ;Prompt them again for the value

goodmax sta maxduty ;Checks out ok, so save
 jsr updatebuf ;Update the timer buffer with this value
 rts ;All we need to do for 2 selection

*
* prmtdcs: Prompt user to enter the duty cycle step size
* Inputs: None
* Outputs: None, but register are altered
*

prmtdcs ldhx #strdcs ;Prompt user to enter duty cycle step size
 lda #lendcs ; by sending the get duty cycle step string
 jsr xmitstr ; (strdcs) via the SCI/DMA
 jsr waitdma2 ;Wait for string transfer to finish
 lda #$9 ;Max value for the step size is 9
 jsr getdigit ;Get the digit from the user
 tsta ;Did he enter a non-zero number?
 bne goodss ;If so, then this is a good step size

 ldhx #strlss ;Tell user that step size is too low
 lda #lenlss
 jsr xmitstr
 jsr waitdma2
 jmp prmtdcs ;Prompt them again for the value

goodss sta dutystep ;Store value into global variable
 jsr updatebuf ;Update the timer buffer with this value
 rts ;All we need to do for 3 selection

*
* getbcd: Get a packed bcd number from the user
* Inputs:None
* Outputs:Packed BCD value will be in accumulator
* Note: Only valid decimal digits will be echoed to the user,
* and the routine requires two digits be entered, without the
* need for a carriage return.
*

AN1711

34
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Software Listing

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

getpbcd lda #$9 ;Set max potential digit to be 9
 jsr getdigit ;Get 1st digit of user's response
 asla ;Multiply digit by 2
 psha ;Save result
 asla ;User's digit times 4
 asla ;User's digit times 8
 add 1,sp ;Acc = 8*digit+2*digit = 10*digit
 sta 1,sp ;Save result over now useless data
 lda #$9 ;Set max potential digit to be 9
 jsr getdigit ;Get second digit of user's response
 add 1,sp ;Accumlator now has packed BCD value
 ais #1 ;Remove value from the stack
 rts ;Return with bcd number in acc

*
* updatebuf: Update timer PWM buffer
* Inputs: None
* Outpus: None
* Dependancy: The three static variables minduty, maxduty, and
* dutystep need to be properly setup before this
* routine is called. It uses the static variable
* bufsize which is altered by the setupbuf routine.
*

updatebuf bclr TEC1,DC1 ;Disable timer's DMA channel
 clr D1BC ; and ready it for a new transfer
 jsr setupbuf ;Update the buffer
 mov bufsize,D1BL ;Update the buffer size
 bset TEC1,DC1 ;Restart the timer PWM
 rts ;New PWM has begun

*
* getdigit: Accept input from the terminal, echoing only digits, and
* returning the decimal values to the calling routine
* Inputs:Maximum digit value acceptable in Acc
* Outputs:Decimal digit accepted from user in Acc
* Description: Clears all pending receiver interrupts, enables
* the receiver and its interrupts, and then waits for the
* interrupt. The receiver ISR will disable the RE bit,
* which tells this routine that a byte has been received.
* The ISR places the received byte in the static variable,
* rcvbyte. If the received byte is valid, it is echoed to
* the user, otherwise no response is made. Once a valid
* value is received, the decimal equivalent is returned.
*

getdigit psha ;Save max value
getval lda SCS1 ;Clear any pending SCI receive flags
 lda SCD
 bset RE,SCC2 ;Enable SCI receiver
 bset RIE,SCC2 ; with interrupts
AN1711

35
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

getwt wait ;Wait for digit to be accepted
 brset RE,SCC2,getwt ;If receiver still active, wait more
 lda #$30 ;Load acceptable lower bound
 cmp rcvbyte ;Is value less than lower bound?
 bgt getval ;If so, keep looking for valid value
 add 1,sp ;Acc now has upper limit
 cmp rcvbyte ;Is value greater than upper bound?
 blt getval ;If so, keep looking for valid value
 pula ;Clear value off of stack
 lda rcvbyte ;Load in the valid received value
 bclr TIE,SCC2 ;Disable SCI transmitter interrupts
 bclr DMATE,SCC3 ;Use the CPU to send 1 byte via SCI
 brclr SCTE,SCS1,* ;Wait for TE to become set
 sta SCD ;Echo back to screen
 bset DMATE,SCC3 ;Reconfigure SCI as a DMA interrupt
 bset TIE,SCC2 ;Reenable SCI transmitter interrupts
 sub #$30 ;Convert to a decimal value
 rts

* sendstat: Send the status string to the user
* Inputs: None
* Ouputs: None, but registers are altered
* To do so, we need to build up a status message in the RAM string buffer.
* This message consistents of 3 text segments each terminated with a value.
*

sendstat ldhx #mesbuf ;Load address to beginning of message buffer
 sthx mesptr ;Reset message pointer to start of buffer

 APPENDMES sbg minduty;Part one of message and minduty const
 APPENDMES smd maxduty;Part two of message and maxduty const
 APPENDMES sed dutystep ;Part three of message and dutystep const
 FINISHMES sfn ;Finish and send the status message

 rts

* h2axfr: Convert a hex value into an ascii character, and then transfer
* it to the message buffer
* Inputs: Hex value to convert is in Acc.
* Buffer location to place ascii in mesptr variable.
* Outputs: Mesptr variable updated to point to next free location
*

h2axfr psha ;Save registers on the stack to preserve
 pshx
 pshh
AN1711

36
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Software Listing

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 clrh ;Clear H so that H:X has proper byte offset
 tax ;Transfer value into X to serve as offset
 lda h2pbcd,x ;Load in converted value
 psha ;Save value on stack
 and #$f0 ;Mask off lower nibble
 beq dolower ;Value is < 10, so only print 1 digit
 lsra ;Shift upper nibble into lower nibble
 lsra
 lsra
 lsra
 add #$30 ;Convert number to ascii
 ldhx mesptr ;Load in place to store value
 sta ,x ;Store into message table
 aix #1 ;Increment to next empty position in table
 bra skipld ;skip load of message point--in H:X
dolower ldhx mesptr ;Load in place to store converted value
skipld pula ;Restore converted value to print
 and #$0f ;Mask off upper nibble
 add #$30 ;Convert number to ascii
 sta ,x ;Store into message table
 aix #1 ;Increment to next empty position in table
 sthx mesptr ;Update static message pointer variable
 pulh ;Restore registers
 pulx
 pula
 rts

*
* strxfr: Use DMA CH2 to transfer an ascii string to RAM message buffer
* Inputs: Pointer to beginning of string to transfer in H:X
* Number of bytes in string in Acc
* Place to put string in a RAM message pointer--mesptr
* Outputs: None
*

strxfr pshx ;H:X will be altered so save on stack
 pshh
 sthx D2SH ;Source is beginning of string
 ldhx mesptr ;Set dest addr to be value in current
 sthx D2DH ; RAM message buffer pointer
 mov #$A4,D2C ;Inc src, inc dest, byte, and
 ; set to SPI receive (unused)
 sta D2BL ;Acc has number of bytes in string
 bset IEC2,DC1 ;Enable DMA CH2 w/ interrupts
 bset TEC2,DC1 ; so the software bit can be cleared
 bset 4,DC2 ;Initiate DMA transfer
 pulh ;Restore H:X off of stack
 pulx
 rts
AN1711

37
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

*
* waitdma2: Wait for DMA CH2 to finish its current transfer before returning
* Inputs: None
* Outputs: None
*

waitdma2 sei ;Don't allow interrupt that is
 ; needed to pull MCU out of wait
 ; to occur btwn brclr & wait
 brclr TEC2,DC1,dma2done ;Transfer complete already?
dma2wait wait ;Allow DMA CH2 to complete
 ; Also clears I bit to allow int
 sei ;Don't allow interrupt b/f wait
 brset TEC2,DC1,dma2wait ;DMA CH2 finished if TEC2 is clear
dma2done cli ;Interrupt has been taken,
 ; so allow others to occur
 rts

*
* xmitstr: Subroutine used to initiate a transfer to the SCI via DMA CH2
* Inputs: 1) 16 bit address pointer to beginning of string in H:X
* 2) Number of bytes in string in Acc (max of 256).
* Outputs: None, but DMA CH2 is enabled to transmit to SCI
* Assumptions: Channel 2 looping is disabled, DMA DMAP and bandwidth
* are configured as desired.
*

xmitstr sthx D2SH ;Pointer to start of string -> src reg
 clr D2DH ;Move SCI data register (in page zero)
 mov #SCD,D2DL ; into destination register
 mov #$87,D2C ;Select Inc. Source & Static Dest.,
 ; Byte transfers, and SCI Transmit Int
 sta D2BL ;Number of bytes to send -> block len reg
 bset IEC2,DC1 ;Enable DMA CH2 with interrupts
 bset TEC2,DC1
 rts

*
* setupbuf: Routine used to fill buffer with values to send to timer
* to create variable PWM on channel 0--registers unaltered
* Inputs: Correct values already set in minduty, maxduty, and
* dutystep variables.
* Outputs: Bufsize will contain the number of bytes in buffer
*

AN1711

38
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Software Listing

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

setupbuf pshh ;Save value of registers on stack
 pshx
 psha
 asl dutystep ;Double step size to keep buffer < 200 bytes
 ldhx #bufbegin ;Point to beginning of buffer
 lda minduty ;Load in first buffer value
 clr bufsize ;Initialize byte count to 0
storebuf1 sta ,x ;Store value into buffer
 aix #2 ;Skip over preset buffer value
 inc bufsize ;Increment number of entries
 add dutystep ;Increment PWM by step size
 cmp maxduty ;Compare to max value
 bls storebuf1 ;If not exceeded, store and do next
 lda bufsize ;Double buffer size to account
 add bufsize ; for fixed values stored in buffer
 psha ;Remember number of bytes stored so far

 lda maxduty ;Load in next buffer value
 clr bufsize ;Ready byte count for second half
storebuf2 sta ,x ;Store value into buffer
 aix #2 ;Skip over preset buffer value
 inc bufsize ;Increment number of entries
 sub dutystep ;Decrement PWM by step size
 cmp minduty ;Compare to min value
 bhs storebuf2 ;If still higher, store and do next
 lda bufsize ;Double buffer size to account
 add bufsize ; for fixed values stored in buffer
 add 1,sp ;Add in value from first half
 ais #1 ;Clear value off of the stack
 sta bufsize ;Store total off for later
 asr dutystep ;Restore step size back to entered value
 pula ;Restore registers from stack
 pulx
 pulh
 rts

*
* DMA_SVR: Interrupt service routine for the DMA
* Inputs: None
* Outputs: For channel 2, the IFC2 bit is cleared.
* Note: Only DMA CH2 can create interrupts.
*

DMA_SVR brclr IFC2,DSC,dmaend ;CH2 interrupt service routine
 bclr IFC2,DSC ;Clear CH2 flag
 clr DC2 ;Clear any software initiated transfer
 ; Not needed for SCI servicing
dmaend rti
AN1711

39
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

*
* SCIRec_SVR: Interrupt service routine for the SCI receiver
* Inputs: None
* Outputs: Received data byte put into static variable rcvbyte
* Note: SCI receiver is disabled after each received byte
*

SCIRec_SVR lda SCS1 ;Load status reg--ignore error flags
 mov SCD,rcvbyte ;Store received byte for other routines
 bclr RIE,SCC2 ;Disable the SCI receiver interrupts
 bclr RE,SCC2 ; and receiver itself between chars
 rti

*** Program constants
absmaxduty fdb !99 ;Change to next pulse width at 99% of period
 ; when increasing (two bytes for DMA)
spidata db $0f ;Create a clock with output of SPI MOSI
 ; By changing data, one can change freq
 ; of the clock used to generate PWM

*** Strings to be printed to the user
*** Naming convention: str<name> indicates the beginning of the <name> string
*** end<name> indicates the end of the <name> string
*** All end<name> labels should be followed by 1 byte to be consistent.
*** Following each string is an equate (called len<name>) that equals the
*** string's length in bytes (len<name> = end<name>-str<name>+1).
*** Some messages need to have numbers inserted into them, so there is
*** a separate string for each message segment.
*** This naming convention must be followed to use the defined macros.
*** Note that no message is allowed to have more than a total of 256 bytes.

* ASCII control character equates
cr EQU $0d ;Return cursor to beginning of line
lf EQU $0a ;Advance cursor one line
sub EQU $1a ;Clear screen

* Intro string (strint to endint)
strint db sub,'Welcome to the DMA demonstration. The SPI MOSI '
 db 'is being used to generate',cr,lf
 db 'an external clock for the timer which in turn is '
 db 'generating a varying',cr,lf
 db 'PWM on channel 0--both continuously driven '
 db 'by the DMA. Also, all text',cr,lf
 db 'is sent using the SCI via the DMA.',cr
endint db lf
lenint EQU endint-strint+1

* Status string begin (strsbg to endsbg)
strsbg db cr,lf,lf
 db 'Currently generating a waveform that varies from a '
 db 'duty cycle of'
endsbg db ' '
AN1711

40
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Software Listing

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

lensbg EQU endsbg-strsbg+1
* Status string middle (strsmd to endsmd)
strsmd db '% to'
endsmd db ' '
lensmd EQU endsmd-strsmd+1
* Status string end (strsed to endsed)
strsed db '% at',cr,lf,'a step size of'
endsed db ' '
lensed EQU endsed-strsed+1
* Status string finish (strsfn to endsfn)
strsfn db '. Please choose which you would like to alter'
endsfn db '.'
lensfn EQU endsfn-strsfn+1
* Function select string (strsel to endsel)
strsel db cr,lf,lf,'Would you like to change',cr,lf
 db ' 0) back to the default values',cr,lf
 db ' 1) the minimum duty cycle value',cr,lf
 db ' 2) the maximum duty cycle value',cr,lf
 db ' 3) the step size of the change in duty cycle',cr,lf
 db ' '
endsel db '?'
lensel EQU endsel-strsel+1
* Get minimum duty cycle value (strgmn to endgmn)
* Note, this is the first string of a two string message (goes with strgmf)
strgmn db cr,lf,lf,'Please enter the minimum duty cycle '
 db '[must be an integer between 10',cr,lf
 db 'and'
endgmn db ' '
lengmn EQU endgmn-strgmn+1

* End of get minimum duty cycle value (strgmf to endgmf)
strgmf db '--the current maximum duty cycle]:'
endgmf db ' '
lengmf EQU endgmf-strgmf+1

* Error string: minimum duty cycle entered too high (stremh to endemh)
* Note, this is the first string of a two string message (goes with strmhf)
stremh db cr,lf,'The minimum duty cycle must be less than the '
 db 'current maximum duty cycle',cr,lf,'value of'
endemh db ' '
lenemh EQU endemh-stremh+1

* Finish of generic error message
strfin db '. Please try again'
endfin db '.'
lenfin EQU endfin-strfin+1

* Error string: minimum duty cycle entered too low (streml to endeml)
streml db cr,lf,'The minimum duty cycle must be greater than 9.'
 db ' Please try again'
endeml db '.'
leneml EQU endeml-streml+1
AN1711

41
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

* Get maximum duty cycle value (strgmx to endgmx)
* Note, this is the first string of a two string message (goes with strgmf)
strgmx db cr,lf,lf,'Please enter the maximum duty cycle '
 db '[must be an integer between'
endgmx db ' '
lengmx EQU endgmx-strgmx+1

* End of get maximum duty cycle value (strgxf to lengxf)
strgxf db '--current',cr,lf,'min duty cycle--and 90]:'
endgxf db ' '
lengxf EQU endgxf-strgxf+1

* Error string: maximum duty cycle entered too low (strexl to endexl)
* Note, this is the first string of a two string message (goes with strfin)
strexl db cr,lf,'The maximum duty cycle must be greater than the '
 db 'current minimum duty cycle',cr,lf,'value of'
endexl db ' '
lenexl EQU endexl-strexl+1

* Error string: maximum duty cycle entered too high (strexh to endexh)
strexh db cr,lf,'The maximum duty cycle must be less than 91.'
 db ' Please try again'
endexh db '.'
lenexh EQU endexh-strexh+1

* Get duty cycle step size value (strdcs to enddcs)
strdcs db cr,lf,lf,'Please enter the duty cycle step size '
 db '[must be an integer between 1 and 9]:'
enddcs db ' '
lendcs EQU enddcs-strdcs+1

* Error string: duty cycle step size entered too low (strlss to endlss)
strlss db cr,lf,'The duty cycle step size must be greater than 0.'
 db ' Please try again'
endlss db '.'
lenlss EQU endlss-strlss+1

*** Hex to packed BCD lookup table
h2pbcd db $00,$01,$02,$03,$04,$05,$06,$07,$08,$09
 db $10,$11,$12,$13,$14,$15,$16,$17,$18,$19
 db $20,$21,$22,$23,$24,$25,$26,$27,$28,$29
 db $30,$31,$32,$33,$34,$35,$36,$37,$38,$39
 db $40,$41,$42,$43,$44,$45,$46,$47,$48,$49
 db $50,$51,$52,$53,$54,$55,$56,$57,$58,$59
 db $60,$61,$62,$63,$64,$65,$66,$67,$68,$69
 db $70,$71,$72,$73,$74,$75,$76,$77,$78,$79
 db $80,$81,$82,$83,$84,$85,$86,$87,$88,$89
 db $90,$91,$92,$93,$94,$95,$96,$97,$98,$99

* Vector equates

 ORG SCIRec_INT
 fdb SCIRec_SVR

 ORG DMA_INT
 fdb DMA_SVR

 ORG RESET
 fdb prog_body
AN1711

42
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Software Listing

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

D
a
t
e
:

O
c
t
o
b
e
r

2
4
,

1
9
9
6
S
h
e
e
t

1
o
f

4

S
i
z
e
D
o
c
u
m
e
n
t

N
u
m
b
e
r

R
E
V

B
R
O
M
0
8
.
S
C
H

1

T
i
t
l
e

D
M
A

S
Y
S

T
E
S
T

B
O
A
R
D

M
o
t
o
r
o
l
a

-

C
S
I
C

S
t
r
a
t
e
g
i
c

A
p
p
l
i
c
a
t
i
o
n
s

D
1
L
E
D

V
D
D

C
1
1
0
u
F

V
C
C

2
x
V
D
D

+
5

V
o
l
t
s

S
y
s
t
e
m

P
o
w
e
r

1 2 3

P
1

P
W
R

T
E
R
M
-
3
I
N
P
U
T

+
1
0

V
o
l
t
s

C
2
1
0
u
F

S
1

S
W

D
P
D
T

R
2

1
k

D
M
A

S
Y
S

T
E
S
T

B
O
A
R
D

G
N
D

G
N
D

G
N
D

R
3

5
0

V
D
D

C
1
5

1
0
u
F

1
3

2
5

1
2

2
4

1
1

2
3

1
0

2
2

9

2
1

8

2
0

7

1
9

6

1
8

5

1
7

4

1
6

3

1
5

2

1
4

1

P
3

F
E
M
A
L
E

C
O
N
N

D
B
2
5

R
1
1
K

G
N
D

G
N
D

G
N
D

V
S
S

G
N
D

3

I
N
P
U
T

2

R
E
S
E
T

1

U
3

M
C
3
4
0
6
4

V
D
D

V
D
D

G
N
D

R
5
4
.
7
K

G
N
D

S
2

M
o
m
e
n
t
a
r
y

C
1
4

1
0
u
F

R
S
T

1

P
T
A
7

1
7

P
T
A
6

1
6

P
T
A
5

1
5

P
T
A
4

1
4

P
T
A
3

1
3

P
T
A
2

1
2

P
T
A
1

1
1

P
T
B
0

1
8

P
T
B
1

1
9

P
T
B
2

2
0

P
T
B
3

2
1

P
T
B
4

2
2

P
T
B
5

2
3

P
T
B
6

2
4

P
T
B
7

2
5

P
T
F
5

5
6

P
T
F
4

5
5

P
T
F
3
/
M
I
S
O

5
4

P
T
F
2
/
M
O
S
I

5
3

P
T
F
1
/
S
P
S
C
K

5
1

P
T
F
0
/
S
S

5
0

V
D
D

9

O
S
C
2

7

C
G
N
D

5
2

V
S
S

8

O
S
C
1

6

P
T
A
0

1
0

P
T
C
0

2
6

P
T
C
1

2
7

P
T
C
2

2
8

P
T
C
3

2
9

P
T
C
4

3
0

P
T
C
5

3
1

P
T
C
6

3
2

P
T
C
7

3
3

P
T
D
0

3
4

P
T
D
1

3
5

P
T
D
2

3
6

P
T
D
3

3
7

P
T
D
4

3
8

P
T
D
5

3
9

P
T
D
6

4
0

P
T
D
7

4
1

V
D
D
A

4

C
G
M
X
F
C

5

I
R
Q
1
/
V
P
P

2

I
R
Q
2

3

P
T
E
0

4
2

P
T
E
1
/
R
X
D

4
3

P
T
E
2
/
T
X
D

4
4

P
T
E
3
/
T
C
L
K

4
5

P
T
E
4
/
T
C
H
0

4
6

P
T
E
5
/
T
C
H
1

4
7

P
T
E
6
/
T
C
H
2

4
8

P
T
E
7
/
T
C
H
3

4
9

U
2

M
C
6
8
H
C
7
0
8
X
L
3
6
B

G
N
D

V
D
D

C
8
0
.
1
u
F

V
D
D

V
D
D

R
4

1
0
M

C
1
0

3
7
p
F

Y
1

4
.
9
1
5
2
M
H
z

C
1
1

3
7
p
F

G
N
D

C
1
2

0
.
1
u
F

T
C
L
K

V
D
D

T
R
A
N
S
M
I
T

R
E
C
E
I
V
E

G
N
D

G
N
D

C
1
3

1
0
u
F

T
R
A
N
S
M
I
T

R
E
C
E
I
V
E

C
2
-

3

V
S
S

4

R
X
1

5

T
X
1

6

R
X
2

7

T
X
2

8

R
X
3

9

G
N
D

2

D
O
3

1
2

C
2
+

1

D
I
2

1
3

D
I
1

1
5

D
O
1

1
6

V
D
D

1
7

C
1
-

1
8

V
C
C

1
9

C
1
+

2
0

D
O
2

1
4

T
X
3

1
0

D
I
3

1
1

U
4

M
C
1
4
5
4
0
7
P

G
N
D

G
N
D

C
1
6

1
0
u
F

C
1
7

.
0
1
u
F

G
N
D

A
l
t
e
r
n
a
t
e

S
e
r
i
a
l

C
o
n
n
e
c
t
o
r

5

9

4

8

3

7

2

6

1

P
4

F
E
M
A
L
E

C
O
N
N

D
B
9

G
N
D

G
N
D

G
N
D

F
ig

ur
e

6.
 D

M
A

 S
ys

te
m

 T
es

t B
oa

rd
AN1711

43
For More Information On This Product,

 Go to: www.freescale.com

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

For More Information On This Product,

 Go to: www.freescale.com

rxzb30
disclaimer

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	Introduction
	Advantages of the DMA
	DMA Operation
	Overview of the Application Code
	Highlights of DMA Usage in Application Code
	Software Flowcharts
	Software Listing

