AN14900

Using eDMA and Ping-Pong buffer to Deserialize Multi-channel ADC Result
FIFO

Rev. 1.0 — 29 December 2025

Application note

Document information

Information Content

Keywords AN14900, eDMA/ADC

Abstract This application note describes how to use eDMA to tackle the ADC Result FIFO and Deserialize
each channel data in FIFO to respectively buffer for each channel.

https://www.nxp.com

NXP Semiconductors AN 1 4900

Using eDMA and Ping-Pong buffer to Deserialize Multi-channel ADC Result FIFO

1 Introduction

This application note describes how to use eDMA to tackle the Analog-to-Digital Converter (ADC) result First-
In First-Out (FIFO) and deserialize each channel data in FIFO to respective buffer for each channel. It is useful
for high-speed and multi-channel ADC result process by reducing CPU loading and improving data processing
speed.

The MCX Nx4x series microcontrollers combine the Arm Cortex-M33 TrustZone core with a CoolFlux BSP32,
a PowerQuad DSP Co-processor, and multiple high-speed connectivity options running at 150 MHz. It delivers
exceptional processing power and advanced integration.

Enhanced Direct Memory Access (eDMA) empowers efficient data transfers between memory and peripherals,
alleviating CPU workload and enhancing system performance. MCX Nx4x series microcontrollers offer a
versatile eDMA controller that can be configured to meet a wide range of data transfer requirements.

This demo uses one FRDM-MCXN947 board. The corresponding demo code can be found on NXP
AppCodeHub.

2 Overview

Figure 1 shows the functions, which this application must realize. The buffer size of each channel depends on
the application.

ADC Using eDMA to move data
Result

FIFO
CH4
CH3
CH2
CH1

lewt] | 1 .. | few2f |] ..] fews] | | .. | Jewa| | | ..]

aaa-064337

Figure 1. Demo process diagram

2.1 MCX Nx4x ADC block description
This section describes the MCX Nx4x ADC block.

2.1.1 Overview

The MCX Nx4x has two instances of 16-bit ADC.

The 16-bit ADC is a dual successive approximation ADC, which is designed for operation within an integrated
microcontroller system-on-a-chip. Figure 2 shows the ADC diagram.

AN14900 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 29 December 2025 Document feedback
2/17

https://github.com/nxp-appcodehub
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14900

NXP Semiconductors AN 1 4900

Using eDMA and Ping-Pong buffer to Deserialize Multi-channel ADC Result FIFO

SWTRIG[SWTa] ﬂ TCTRLA[HTEN] ﬂ TCTRLa[TPRI] ﬂ TCTRLa[TCMD] ﬂ TCTRLa[TDLY] ﬂ

Trig‘ger 0

/{Ligger 2

Trigger detect and
command selector CMDa-CMDHa:CMDlLa register

T
H 5] wl | al o zl 2 5
| Hardware trigger sources are | 3 gy S5 s8ezE g 8
| frominternal sources andare | =} (= Sle|9z|» R 5 g g
| chip- and instance-specific. Not all | g) 38 g On-chip clock
| trigger inputs are implemented. | I 8 5 ADCK +—— generation
| See the chip-specific ADC : - Control sequencer 38 (external to ADC)
1 information for details. ptional A al e
[] channel g 8
increment 1w AVG LooP | [3 E
4 count count L 8 FCTRLa
;
| T
| Some channel input options are | . HEIR E 2 !
| frominternal sources and are | Optional s/ g g g g‘ i Result FIFO
| chip- and instance-specific. Not all | channel [«—— Z| §| §| 3 g !
| input channels are implemented. : increment
H -
1 I
I

See the chip-specific ADC
information for details.

F4 [S N
- T RESFIFO
i storage buffer
s N ALTBEN CMDHa [CMPEN]

CVa[CVH, CVL]

CHOAC—
CHIAD—] x Store
.3
E
3
cHaoAD—| § Cumpare true
cH3tAD—{ <

(A-B) data
B-side data FCOUNT FWMARK
!—' A-side data
e (o] -
. Successlve |
CH30BO— 7 approximation register IRQ and DMA nterrupt requests
CH31BO— logic DMA requests
VINA

[Asice
—————— N v DAC or CMP
T Somomomoss avoone | e [Forie | [Fone] [Fowvoe
FOFIE || FWMIE | |FWMDE
I reference option. Some instances | VReFH D ——————~ > VINB

I'h ltiple ref ti Bside
ave multiple reference options. [- DAC or OMP
See the chip-specific ADC | 1
I |
i
|
]

7

B-side mux

I
: information for details.

VREFHN 0— Dual SAR converter

VREFH Mux

VREFH 0—

Figure 2. ADC block diagram

2.1.2 ADC features

ADC features are listed below:

* Linear successive approximation algorithm
— Differential operation with 16-bit or 13-bit resolution
— Single-ended operation with 16-bit or 12-bit resolution
— Support for two simultaneous single-ended conversions

» Configurable analog input sample time

» Configurable speed options to accommodate operation in low-power modes of SoC

* Trigger detection with up to four trigger sources with priority level configuration. Software or hardware trigger
option for each.

* 15 command buffers, to allow independent options selection and channel sequence scanning

» Automatic comparisons for less-than, greater-than, within range, or out-of-range with store on true and
repeat until true options

* Two independent result FIFOs, each containing 16 entries. Each FIFO has configurable watermark and
overflow detection.

* Interrupt, Direct Memory Access (DMA), or polled operation

* Linearity and gain adjustment calibration logic

2.1.3 Functional description

ADC performs analog-to-digital conversions on any of the software-selectable analog input channels via a
successive approximation algorithm.

AN14900 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 29 December 2025 Document feedback
3/17

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14900

NXP Semiconductors AN 1 4900

Using eDMA and Ping-Pong buffer to Deserialize Multi-channel ADC Result FIFO

The ADC module can average the result of multiple conversions on a channel before storing the calculated
result. The hardware average function is enabled by setting CMDHn [AVGS] to a non-zero value. The function
operates in any conversion mode or configuration.

When the conversion and averaging loops finish, the resulting data is placed in one of the two available FIFO
data buffers. The data includes tag information associated with the result. When the number of stored data
words exceeds the setting, a configurable watermark level supports interrupts or DMA requests. Interrupts can
also be enabled to indicate when FIFO overflow errors occur.

The module initializes to its lowest power state during reset.

ADC includes multiple command buffers to provide flexibility for channel scanning and independent channel
selections for different trigger sources.

2.1.4 Result FIFO operation

ADC includes two 16-entry FIFOs in which the result of ADC conversions are stored. In addition, a valid
indicator bit, the trigger source, the source command, and the loop count are also stored with the data.
FCTRLn [FCOUNT] indicates how many valid data words are stored in each RESFIFO.

A programmable watermark threshold supports configurable notification of data availability. When

FCTRLn [FCOUNT] is greater than FCTRLn [FWMARK], the associated RDY flag is asserted. When IE[FWMIEnN]
=1, a watermark interrupt request is issued. When DE[FWMDER] = 1, a DMA request is issued. Reading
RESFIFO provides the oldest unread data word entry in the FIFO and decrements FCTRLn [FCOUNT]. When
FCTRLn [FCOUNT] falls equal to or below FCTRLn [FWMARK], the RDY flag is cleared.

Each FIFO can be emptied by successive reads of RESFIFOn. When RESFIFOn [VALID] is 1, the
associated FIFO entry is valid. Reading RESFIFOn when the FIFO is empty (when RESFIFONn[VALID]
= 0 and FCTRLn[FCOUNT] = Oh) provides an undefined data word. All FIFOs are reset by writing 1b to
CTRL[RSTFIFOn].

If ADC attempts to store a data word to the FIFO when the FIFO is full, the FIFO overflow flag (FCTRLn [FOF])
is set. When IE[FOFIEN] = 1, an overflow interrupt request is issued. The FOF flag is cleared by writing 1 to
STAT [FOFn]. When overflow events occur, no new data is stored and the data associated with the storage
event that triggered the overflow is lost.

Conversion results can be steered to any FIFO in the design. TCTRLn [FIFO_SEL A] and

TCTRLn [FIFO SEL B] determine into which FIFO the final result is written. Depending on which trigger
is executing, the results can be steered to different locations. Depending on the type of conversion
selected, the FIFO destination register fields are interpreted differently. During either differential or single-
ended mode (CMDLn[CTYPE] != 3h) only one result is produced. The destination during these modes is
determined from TCTRLn [FIFO SEL A]. In dual-single-ended mode, both TCTRLn [FIFO_SEL A] and
TCTRLn [FIFO SEL B] determine the Channel A and Channel B destinations respectively.

2.1.4.1 FIFO control register (FCTRLO - FCTRL1)

Offset

Register Offset

FCTRLO EOh

FCTRL1 E4h

Function
AN14900 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 29 December 2025 Document feedback

4/17

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14900

NXP Semiconductors AN 1 4900

Using eDMA and Ping-Pong buffer to Deserialize Multi-channel ADC Result FIFO

Contains control and status fields for each FIFO in the design. A programmable watermark can be set for each
FIFO, which can be used to trigger an interrupt. In addition, the number of entries stored in each FIFO can be
monitored by reading FCTRLn [FCOUNT].

Diagram

Bits 31‘30‘29‘28‘27‘26‘25‘24‘23‘22‘21’20 19‘18‘17‘16
R 0 FWMARK

w

Reset 0 | 0 | ol o] o] of]of]olo|lo |l ol o]o]ol]ol]o
Bits | 15 | 14 | 13 12 | 11 |10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 0
R 0 FCOUNT

w

Reset| 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0o | o ‘ 0 ‘ 0 ‘ 0 ‘ 0

Field

Field Function

31-20 Reserved

19-16 Watermark Level Selection

FWMARK Selects the storage threshold for the ADC Result FIFO. When the number of data words
stored in the FIFO is greater than this value, the STAT [RDYO0] flag is asserted. When
IE[FWMIEnN] = 1, an interrupt request is generated. When DE[FWMDEn] = 1, a DMA request is
generated

15-5 Reserved

4-0 Result FIFO Counter

FCOUNT Indicates the number of data words stored in the result FIFO. This value may be used with
PARAM [FIFOSIZE] to calculate how much room is left in the result FIFO. This field is
incremented with each storage of new data into the result FIFO and decremented with each
read of the result FIFO. The FIFO is reset by writing to CTRL [RSTFIFOn], which initializes
FCTRLn [FCOUNT] to Oh.

2.1.4.2 Data result FIFO register (RESFIFOO - RESFIFO1)

Offset

Register Offset
RESFIFO0 300h
RESFIFO1 304h
Function

Stores the data result of ADC conversions in a 16-entry FIFO. Several tag fields of source command and trigger
information are stored with the data. FCTRLn [FCOUNT] indicates how many valid data words are stored in

the RESFIFO. Reading RESFIFO provides the oldest unread data word entry in the FIFO and decrements
FCTRLn [FCOUNT]. The FIFO can be emptied by successive reads of RESFIFO. The FIFO is reset by writing
Ob1to CTRL[RSTFIFOn].

AN14900 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 December 2025 Document feedback
5/17

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14900

NXP Semiconductors

AN14900

Using eDMA and Ping-Pong buffer to Deserialize Multi-channel ADC Result FIFO

The following table describes the format of data in the result FIFO in different modes of operation. The sign bit is

the MSB in signed 2's complement modes. For example, when configured for 12-bit single-ended mode, D[15]
and D[2:0] become 0. When configured for 13-bit differential mode, D[15] is the sign bit, and D[2:0] becomes 0.

Conversion |D15 D14 |D13 |D12 |D11 |D10 |D9 D8 |D7 D6 |D5 |D4 |D3 |D2 |D1 |DO |Format
mode
16-bit s p@ p b b Db D D D D |[D |[D |[D D D |D |Signed2s
differential complement
16-bit single- |D D D D D D D |[D [D D |[D (D |[D |[D D |D [|Unsigned, 16-
ended bit magnitude
13-bit S D D D D D D |[D [D D |[D (D |[D |0 |0 |0 [Signed2's
differential complement,
left justified,
zero extended
12-bit single- |0 D D D D D D |[D D D (D (D |[D |0 |0 |0 [Unsigned,
ended zero in D[15]
and D[2:0]
[1] Sign bit
[2] Data, 2's complement data when indicated
Diagram
Bits | 31 30‘29‘28 27‘26‘25‘24 23‘22‘21]20 19 | 18 | 17 | 16
R |VALID 0 CMDSRC LOOPCNT 0 TSRC
w
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R D
w
Reset0‘O‘0‘O‘0‘0‘0‘0‘0‘0‘0’0‘0‘0‘0‘0
Field Function
31 FIFO Entry is Valid
VALID Indicates whether the FIFO entry is valid, which determines what happens to reads from RESFIFO.
0b - FIFO is empty. Discard any read from RESFIFO.
1b - FIFO contains data. FIFO record read from RESFIFO is valid.
30-28 Reserved
27-24 Command Buffer Source
CMDSRS Indicates the executed command buffer that generated this result.
0000b - Not a valid value CMDSRC value for a data word in RESFIFO. Oh is only found in the initial
FIFO state, prior to the storage of an ADC conversion result into a RESFIFO buffer.
0001b - CMD1
0010b-1110b - Corresponding command buffer used as control settings for this conversion.
1111b - CMD15
23-20 Loop Count Value

AN14900

All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note

Rev. 1.0 — 29 December 2025 Document feedback

6/17

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14900

NXP Semiconductors AN 1 4900

Using eDMA and Ping-Pong buffer to Deserialize Multi-channel ADC Result FIFO

Field Function

LOOPCNT Indicates the loop count value during the command that generated this result. When CMDHn [LOOP] is
non-zero, results are stored multiple times during command execution at the loop boundary.

0000b - Result is from initial conversion in command.

0001b - Result is from second conversion in command.

0010b-1110b - Result is from (LOOPCNT + 1) conversion in command.

1111b - Result is from 16th conversion in command.

19-18 Reserved
17-16 Trigger Source
TSRC Indicates the trigger source that initiated a conversion and generated this result. When multiple

commands are chained together using CMDHn [NEXT], this field indicates the trigger source that
started the command sequence.

00b - Trigger source 0
01b - Trigger source 1
10b - Trigger source 2
11b - Trigger source 3

15-0 Data Result
D Contains the result of an ADC conversion.
The following for the data in D is summarized in Table 370.

2.2 MCX Nx4x eDMA block description
This section describes the MCX Nx4x eDMA block.

2.2.1 Overview

The eDMA is a highly programmable data-transfer engine optimized to minimize any required intervention from
the host processor. It is intended for use in applications where the data size to be transferred is statically known
and is not defined within the transferred data itself.

The enhanced direct memory access (eDMA) controller can perform complex data transfers with minimal
intervention from a host processor. The hardware microarchitecture includes:

* A DMA engine that performs:
— Source address and destination address calculations
— Data-movement operations
* Local memory containing transfer control descriptors for each of the 16 channels

Figure 3 illustrates the components of the eDMA system, including the eDMA module (engine).

AN14900 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 December 2025 Document feedback
7117

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14900

NXP Semiconductors AN 1 4900

Using eDMA and Ping-Pong buffer to Deserialize Multi-channel ADC Result FIFO

eDMA system P ————— e e e e —— -
Write address |

Write data :

—————— (2}
>
Qo
—————— [
2
2 =
g Transfer control | | _ _ _ _ | §_
% descriptor (TCD) n-1 S
2 £
£ 2
o 64 <
o
2L S 4
£
1S F T T T T T N ¥ Read d
2 | eDMA engine | ead data
E : Program model/ :
, Read data channel arbitration |
| ! |
| Address path [«—| |
| |
Control
: Data path S :
| |
| |
Il]
Write data
Address

eDMA eDMA
peripheral done
request aaa-055674

Figure 3. eDMA block diagram

For more Information, see the MCX Nx4x Reference Manual (document MCXNX4XRM) or MCX Nx4x:
Unleashing the Power of eDMA Controller (document AN14300).

2.2.2 Major and minor

Each time a channel is activated and executes, a number of bytes, NBYTES, are transferred from the source

to the destination. This is referred to as a minor transfer loop. A major transfer loop consists of a number of
minor transfer loops. This number is specified within the TCD. As iterations of the minor loop are completed, the
current iteration (CITER) TCD field is decremented. When the current iteration field has been exhausted, the
channel has completed a major transfer loop.

Figure 4 shows the relationship between major and minor loops. In this example, a channel is configured so that
a major loop consists of three iterations of a minor loop. The minor loop is configured to be a transfer of four
bytes.

AN14900 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 December 2025 Document feedback
8/17

https://www.nxp.com/doc/MCXNX4XRM
https://www.nxp.com/doc/AN14300
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14900

NXP Semiconductors AN 1 4900

Using eDMA and Ping-Pong buffer to Deserialize Multi-channel ADC Result FIFO

Source Data
transferred

DMA Request . (bvtes —n=4)

Minor
loop

DMA Request

Time

DMA Request

v

Figure 4. Major and minor transfer loops

The channel performs a selection of tasks upon completion of each minor and major transfer loop.

2.2.3 Completing a minor transfer loop

On completion of the minor loop, excluding the final minor loop, the eDMA carries out the following tasks:

» Decrementing the current iteration (CITER) counter.

» Updating the source address by adding the current source address to the signed source offset: SADDR =
SADDR + SOFF (source address is updated automatically as transfers are performed. On completion of the
minor loop, the source address contains the source address for the last piece of data that was read in the
minor loop; offset is added to this value).

» Updating the destination address by adding the current destination address to the signed destination offset:
DADDR = DADDR + DOFF.

* Updating channel status bits and requesting (enabled) interrupts.
* Asserting the start bit of the linked channel upon completion of a minor loop, if channel linking is enabled.

2.2.4 Completing a major transfer loop

On completion of the major/final minor loop, the eDMA performs the following:

* Updating the source address by adding the current source address to the last source address adjustment:
SADDR = SADDR + SLAST

Updating the destination address by adding the current destination address to the last destination address
adjustment: DADDR = DADDR + DLAST

» Updating the channel status bits and requesting (enabled) interrupts
* Asserting the start bit of the linked channel upon completion of a minor loop, if the channel linking is enabled
Reloading current iteration (CITER) from the beginning major iteration count (BITER) field

AN14900 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 29 December 2025 Document feedback
9/17

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14900

NXP Semiconductors

AN14900

Using eDMA and Ping-Pong buffer to Deserialize Multi-channel ADC Result FIFO

3 MCU features and peripheral settings

Figure 5 shows the eDMA data move procedure: 1->2...->5->6..., each Minor loop.

Finish 4ch Data (CH1- CH4) moving from ADC result FIFO into respective channel buffer. And the major loop
finishes one block data (including 4ch data) moving (for example, one block contains all 4ch data and each

channel contains 1024 data).

Abc Using eDMA to move data

Minor loop offset
-(4*CHANNEL_BUFF_LENGTH-1) *2

[destOffset destOffset destOffset

v

CHANNEL_BUFF_LENGTH CHANNEL_BUFF_LENGTH CHANNEL_BUFF_LENGTH

[(2EHANNEL_BUFF_LENGTH)) +[(2*CHANNEL_BUFF_LENGTH) 3| (2*CHANNEL_BUFF_LENGTH) +
1 5 2) 6 3 7

4 8

CHANNEL_BUFF_LENGTH

Figure 5. Data moving process diagram

3.1 MCU peripheral settings

Figure 6 shows using Ping-pong buffer to keep the sampling continuity. In Internal Service Routine (ISR), each
channel data stored in a ping or pong buffer is copied to a permanent channel buffer.

Ping Pong Buffer opc

Result

ISR

Pong ‘ Channel
Buffer Buffer

Figure 6. Ping Pong buffer process diagram

The example configuration code is listed as below.

static void EDMAO_Configuration(void)

{
edma transfer config t transferConfig[2];
edma channel config t lpadcDmaChnlConfig;
edma config t userConfig;

AN14900 All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 December 2025

Document feedback
10/17

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14900

NXP Semiconductors AN 1 4900

Using eDMA and Ping-Pong buffer to Deserialize Multi-channel ADC Result FIFO

destAddr ping
destAddr pong =

_destAddr pingl[2];
_destAddr pong[2];

_destAddr ping[0] = Ox5A5A;
_destAddr ping[l] = DEMO CHANNEL BUFF LENGTH * 4;
_destAddr pong[0] = Ox5A5A;
_destAddr pong[l] = DEMO CHANNEL BUFF LENGTH * 4;
= &
&

PRINTF ("destAddr ping = 0x%d, destAddr ping[l] = Ox%d\r

\n",sizeof (destAddr ping),sizeof (destAddr ping[0]));
lpadcDmaChnlConfig.channelDataSignExtensionBitPosition = 0U;
lpadcDmaChnlConfig.channelPreemptionConfig.enableChannelPreemption = false;
lpadcDmaChnlConfig.channelPreemptionConfig.enablePreemptAbility = true;

lpadcDmaChnlConfig.channelRequestSource =
DEMO DMA REQUEST;
lpadcDmaChnlConfig.protectionLevel =
kEDMA ChannelProtectionLevelUser;
#if ! (defined(FSL_FEATURE EDMA HAS NO CH SBR SEC) &&
FSL FEATURE EDMA HAS NO CH SBR_SEC)
lpadcDmaChnlConfig.securityLevel = kEDMA ChannelSecurityLevelNonSecure;
#endif /* ! (defined(FSL FEATURE EDMA HAS NO CH SBR_SEC) &&
FSL FEATURE EDMA HAS NO CH SBR SEC) */

/* Configure EDMA channel for one shot transfer */
EDMA GetDefaultConfig (&userConfig);
EDMA_Init(DEMO_DMA_BASEADDR, &userConfiqg) ;

EDMA CreateHandle (&g DMAO Handle, DEMO DMA BASEADDR, DEMO DMA CHANNEL 0) ;
EDMA SetCallback (&g DMAO Handle, DMAO Callback, NULL);
EDMA InstallTCDMemory (&g DMAO Handle, g DMAO Tcd, 2);

#if (defined(FSL_FEATURE LPADC FIFO COUNT) && (FSL FEATURE LPADC FIFO COUNT ==
20))

void *srcAddr = (uint32 t *)& (DEMO_LPADC BASE->RESFIFO[0U]) ;
#else
void *srcAddr = (uint32 t *)& (DEMO_ LPADC BASE->RESFIFO) ;
#endif /* (defined(FSLiFEATUREiLPADciFIF07COUNT) &&
(FSLiFEATUREiLPADciFIFOicOUNT == 20U)) */

EDMA PrepareTransfer (&transferConfig[0], srcAddr, sizeof (uintl6 t),
destAddr ping, sizeof (destAddr ping[0]), sizeof (destAddr ping[0]) *4,
DEMO CHANNEL BUFF LENGTH * 4 * 2, kEDMA PeripheralToMemory) ;

transferConfig[0] .destOffset = DEMO CHANNEL BUFF LENGTH*2;

transferConfig[0] .minorLoopOffset = (int32_t)(—1)*((DEMO_CHANNEL_BUFF_LENGTH
* 4-1)*2);
transferConfig[0] .enableDstMinorLoopOffset = true;

/* Used to change the destination address to the original value */
transferConfig[0] .dstMajorLoopOffset = (int32 t) ((-1)
* sizeof (destAddr ping));

EDMA PrepareTransfer (&transferConfig[l], srcAddr, sizeof (uintl6 t),
destAddr pong, sizeof (destAddr pong[0]), sizeof (destAddr pong[0]) *4,
DEMO CHANNEL BUFF LENGTH * 4 * 2, kEDMA_PeripheralToMemory);

transferConfig[l].destOffset = DEMO CHANNEL BUFF LENGTH*2;
transferConfig[l] .minorLoopOffset = (int32 t) (-1)* ((DEMO CHANNEL BUFF LENGTH
* 4-1)%2) ;
transferConfig[l].enableDstMinorLoopOffset = true;
AN14900 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 December 2025 Document feedback
111717

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14900

NXP Semiconductors AN 1 4900

Using eDMA and Ping-Pong buffer to Deserialize Multi-channel ADC Result FIFO

/* Used to change the destination address to the original value */
transferConfig[l].dstMajorLoopOffset = (int32 t) ((-1)

* sizeof (destAddr pong)) ;
EDMA SubmitLoopTransfer (&g DMAO Handle, transferConfig, 2);

EDMA InitChannel (DEMO DMA BASEADDR, DEMO DMA CHANNEL O,
&lpadcDmaChnlConfiqg) ;

EDMA EnableAutoStopRequest (DEMO DMA BASEADDR, DEMO DMA CHANNEL 0, false);

EnableIRQ (DEMO DMA IRQ);
EDMA EnableChannelRequest (DEMO DMA BASEADDR, DEMO DMA CHANNEL 0);

4 Demo setup and CPU loading performance

This section describes the demo setup and CPU loading performance.

4.1 Demo setup

This section describes how to set up a demo.

4.1.1 Board connection

Connect FRDM-N947 boards to the analog Input source by J1_M4 Arduino connector (the red part shows in the
J1_M4). Connect Channel 1 - Channel 4 to analog input source for 4CH analog input.

Use a USB type-C cable to connect to the FRDM board connector marked as MCU-Link. Download the code
using the debug button in the tool bar after the compiler. Select CMSIS-DAP or J-Link in Debug As according
to the firmware in your on-board debugger.

Figure 7 shows the board connection of this demo.

e

S FRDM-MCXN947
e

{1} 11T,

4CH analog input

Figure 7. Demo connection

AN14900 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 29 December 2025 Document feedback
12/17

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14900

NXP Semiconductors AN 1 4900

Using eDMA and Ping-Pong buffer to Deserialize Multi-channel ADC Result FIFO

4.1.2 Project setup in MCUXpresso IDE

To clone the demo code from Application Code Hub in MCUXpresso IDE, perform the following steps:

1. Open MCUXpresso IDE. In the Quick Start Panel, choose Import from Application Code Hub.

2. Find the demo that you need by searching the name directly or selecting the tags you are interested in.

Open the project, click the GitHub link and then Next.

Select the main branch and then click Next.

4. Select your local path for the repo in Destination->Directory: window. The MCUXpresso IDE clones the
repo to the path that you have selected. Click Next after the clone process.

5. Select Import existing Eclipse projects in Wizard for the project import window and then Next.

6. Select the project in this repo (only one project in this repo) and then Finish.

w

*

Global Variables
|

© Quickstart Panel x **Variables * Breakpoints © lled SDKs = Properties (2 Problems O Console X & Terminal & Image Info @ Debugger Console. % Offine Peripherals

Installed SO}

COT Build Console [rdmmon47. dev.cdc. veom afd br]

3 MCUXpresso IDE Quickstart
= pr 947 dev.cde.veom ech

cject: frdmmon47 ma [Det:

import a project

- Miscellaneous.
0 tems selected C/Cr+ Inderer:(30%)

Figure 8. Import demo code

4.1.3 Run the demo

To reset the board, perform the following steps:

1. Press SW3 on the FRDM board.
2. Debug the code and give the different analog input value.
3. Add to watch the channel data in the data buffer channelX pool in the code.

AN14900 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 December 2025 Document feedback
13717

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14900

NXP Semiconductors AN 1 4900

Using eDMA and Ping-Pong buffer to Deserialize Multi-channel ADC Result FIFO

5 Reference

See the following documents for more details:

* MCX Nx4x Reference Manual (document MCXNX4XRM)

* MCX Nx4x Data Sheet (document MCXNX4X-DS)

FRDM-MCXN947 Board User Manual (document UM12018)

MCX Nx4x: Unleashing the Power of eDMA Controller (document AN14300)

MPC57xx: Configuring and Using the eDMA Controller (document AN4765)

* Optimizing the S32K1xx eDMA for Performance Demanding Applications (document AN12972)

Some of the documents listed above are available only under a non-disclosure agreement (NDA). To access
such a document, contact a local NXP field applications engineer (FAE) or sales representative.

6 Note about the source code in the document

The example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2025 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS I1S" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

7 Revision history

Table 1 summarizes the revisions to this document.

Table 1. Revision history

Document ID Release date Description

AN14900 v.1.0 29 December 2025 Initial public release

AN14900 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 29 December 2025 Document feedback

14 /17

https://www.nxp.com/doc/MCXNX4XRM
https://www.nxp.com/doc/MCXNX4X-DS
https://www.nxp.com/doc/UM12018
https://www.nxp.com/doc/AN14300
https://www.nxp.com/doc/AN4765
https://www.nxp.com/doc/AN12972
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14900

NXP Semiconductors

AN14900

Using eDMA and Ping-Pong buffer to Deserialize Multi-channel ADC Result FIFO

Legal information

Definitions

Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to

make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default

in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

AN14900

All information provided in this document is subject to legal disclaimers.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless

this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.

In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles

to reduce the effect of these vulnerabilities on customer’s applications

and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and

trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

© 2025 NXP B.V. All rights reserved.

Application note

Rev. 1.0 — 29 December 2025

Document feedback
15/17

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14900

NXP Semiconductors

AN14900

Using eDMA and Ping-Pong buffer to Deserialize Multi-channel ADC Result FIFO

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamlQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, pVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

AN14900

All information provided in this document is subject to legal disclaimers.

CoolFlux — is a trademark of NXP B.V.
J-Link — is a trademark of SEGGER Microcontroller GmbH.

Microsoft, Azure, and ThreadX — are trademarks of the Microsoft group of
companies.

© 2025 NXP B.V. All rights reserved.

Application note

Rev. 1.0 — 29 December 2025

Document feedback
16 /17

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14900

NXP Semiconductors

AN14900

Using eDMA and Ping-Pong buffer to Deserialize Multi-channel ADC Result FIFO

Contents
1 Introduction ... 2
2 OVEIVIBW ... 2
2.1 MCX Nx4x ADC block description 2
211 OVEIVIEW ...t
21.2 ADC features
2.1.3 Functional descriptionccccccccoeiiiiiiiiiiiininnns 3
214 Result FIFO operationccccccceeeeeiiiiiiiiiiinnn, 4
2.1.41 FIFO control register (FCTRLO - FCTRL1) 4
2.1.4.2 Data result FIFO register (RESFIFOO -

RESFIFOT) i 5
2.2 MCX Nx4x eDMA block description 7
2.21 OVEIVIEW ...t 7
222 Major and minorccccooiiieei i 8
2.2.3 Completing a minor transfer loopcc.c....... 9
224 Completing a major transfer loopcccce...... 9
3 MCU features and peripheral settings 10
3.1 MCU peripheral settingsccccoceeiiiiieneenns 10
4 Demo setup and CPU loading

performancecccccceeiieiiieeiec s 12
4.1 Demo Setup ...cccvvveviiiiieieieeee s 12
411 Board connectionccccciiiiiiiiiiie 12
4.1.2 Project setup in MCUXpresso IDE 13
41.3 Run the demo ... 13
5 Reference ... 14
6 Note about the source code in the

document ... 14
7 Revision historycociiiiioioiiicciereces 14

Legal informationcccoooiiiiiiiiiieeee 15

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2025 NXP B.V. All rights reserved.

For more information, please visit: https://www.nxp.com Document feedback

Date of release: 29 December 2025
Document identifier: AN14900

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14900

	1 Introduction
	2 Overview
	2.1 MCX Nx4x ADC block description
	2.1.1 Overview
	2.1.2 ADC features
	2.1.3 Functional description
	2.1.4 Result FIFO operation
	2.1.4.1 FIFO control register (FCTRL0 - FCTRL1)
	2.1.4.2 Data result FIFO register (RESFIFO0 - RESFIFO1)

	2.2 MCX Nx4x eDMA block description
	2.2.1 Overview
	2.2.2 Major and minor
	2.2.3 Completing a minor transfer loop
	2.2.4 Completing a major transfer loop

	3 MCU features and peripheral settings
	3.1 MCU peripheral settings

	4 Demo setup and CPU loading performance
	4.1 Demo setup
	4.1.1 Board connection
	4.1.2 Project setup in MCUXpresso IDE
	4.1.3 Run the demo

	5 Reference
	6 Note about the source code in the document
	7 Revision history
	Legal information
	Contents

