AN14879

FS6500 and FS4500 software quick start guide

Rev. 1.0 — 17 December 2025

Application note

Document information

Information	Content
Keywords	FS4500, FS6500, safety, SBC, software, ASIL B, ASIL D
Abstract	This application note is meant to be used as a launching point for software engineers, as a complement or a substitute for NXP's software drivers.

FS6500 and FS4500 software quick start guide

1 Introduction

This application note is meant for software engineers who use the FS6500 and FS4500 series of devices.

This document gives guidelines on the implementation of the serial peripheral interface (SPI) communication protocol between the MCU and the SBC, illustrates the initialization procedure of the FS6500 and FS4500 series of devices, watchdog refresh, and fail-safe pin releases to help software engineers quickly start with development.

1.1 Device introduction

The FS6500 and FS4500 SMARTMOS devices are a multi-output, power supply, integrated circuit (IC), including controller area network (CAN) flexible data (FD) and/or local interconnect network (LIN) transceivers, dedicated to the automotive market. The FS6500 and FS4500 include configurable fail-safe/fail-silent safety behavior and features, with two fail-safe outputs, becoming a full part of a safety-oriented system partitioning. There are ASIL B and ASIL D parts to fit different system requirements.

1.2 Reference documents

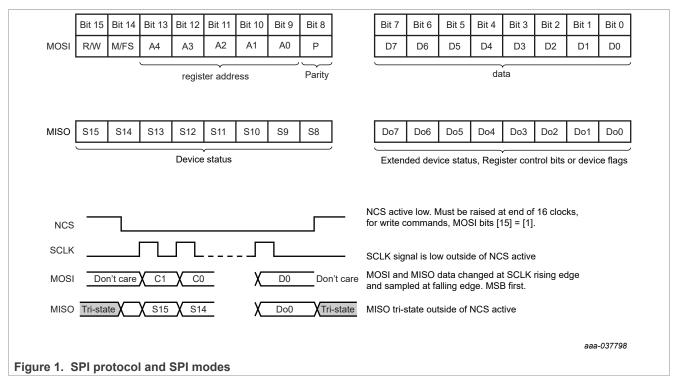
Reference documents and various materials are available on the <u>FS6500 and FS4500 series devices webpage</u> and <u>NXP SBC/PMIC - real-time drivers site</u>. The webpage provides more detailed information about specific topics:

<u>FS4500-FS6500 data sheet</u>: Information, such as features, functional description, parametric description, register mapping.

<u>FS4500-FS6500 hardware design guideline application note (AN5238)</u>: Information, such as application schematics, bill of materials, placement and layout guidelines, application validation data including ISO/non-ISO pulses, electromagnetic compatibility (EMC).

BSPs and device drivers: There are demo drivers and examples with MPC574xP-MC33FS65xx/MC33FS45xx and Embedded Software Driver.

<u>FS6500 and FS4500 SBC Autosar 4.4 version 0.8.0</u>: AUTOSAR and ISO 26262-compliant basic start-up drivers for low-level interfaces, software driver package (FS4500 and FS6500 series devices share the same driver), detailing supported features, such as:


- SBC_FS65 CDD: Complex driver for the device.
- WDG FS65: Watchdog function services.
- CANTRCV FS65: CAN PHY driver and functions.
- · LINTRCV FS65: LIN PHY driver and functions.

FS6500 and FS4500 software quick start guide

2 SPI protocol and configurations

Shown in Figure 1, the device uses a 16-bit SPI with the following register bits definitions and arrangements:

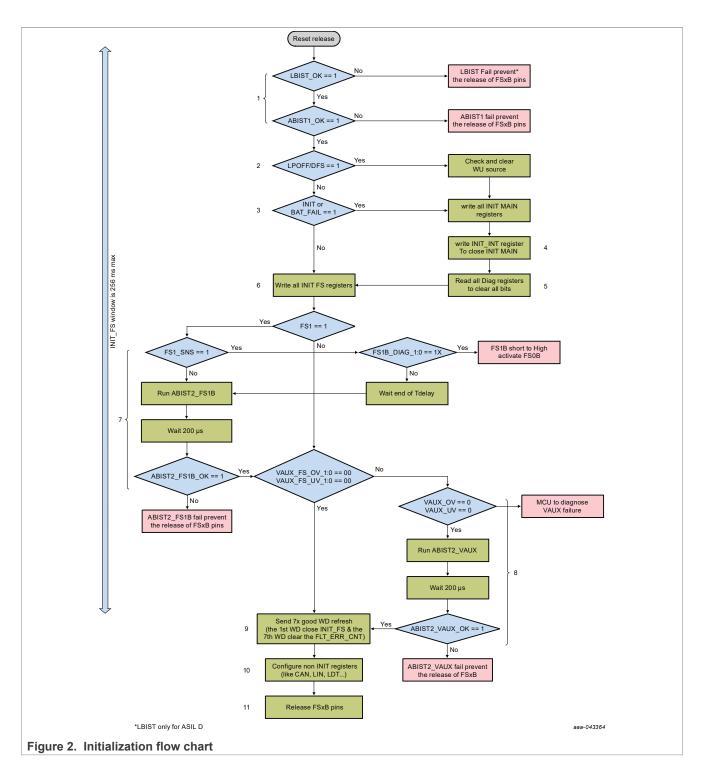
- MOSI Bit 15: R/W: 0 Read, 1 Write
- MOSI Bit 14: M/FS: 0 Main, 1 Fail-safe
- MOSI Bit 9~13: Register address
- MOSI Bit 8: Parity bit, 0 Number of 1 (bit 15:9 and bit 7:0) is odd. 1 Number of 1 (bit 15:9 and bit 7:0) is
 even
- MOSI Bit 7~0: in Write mode. Must be set to 00h in Read mode.
- MISO Bit 15~8: Device status
- MISO Bit 7~0: Extended device status. Register control bits or device flags.

When configuring the SPI protocol in the MCU driver or in the configuration tool, configure it as:

- 16-bit SPI
- NCS active low
- MSB first
- SPI mode1: CPOL = 0 and CPHA = 1: CLK idle state = low, data sampled on the falling edge and shifted on the rising edge

Detailed main and fail-safe register addresses and bits descriptions can reach to data sheet <u>ref.[1]</u>, in Section 13.2, "Detailed operation".

FS6500 and FS4500 software quick start guide


3 FS6500 and FS4500 initialization flow chart and demo commands

3.1 Software flow chart

<u>Figure 2</u> is a flow chart to describe the initialization process of FS6500 and FS4500 devices. The process can be described as follows:

- 1. Check LBIST/ABIST1 check result. FSxB cannot be released when either check is a failure.
- 2. Check power-up reason: When the device is POR(BAT_FAIL = 1) and wakeup is from LPOFF/DFS, both main and fail-safe initial registers are configured and all Diag registers are read once to clear initial states. When the device has entered Main mode and an RSTB event happens, only fail-safe initial registers are configured.
- 3. ABIST2 is run by MCU SPI commands to check VAUX and FS1B block safety states. If either ABIST2 fails, FSxB cannot be released.
- 4. Seven continuous good watchdog refreshes are needed to clear a fault error counter value, as it is 1 by default when device goes through power-on reset (POR) or wakes up from LPOFF.
- 5. Configure non-initial registers.
- 6. Release FSxB with required commands.

FS6500 and FS4500 software quick start guide

3.2 SPI commands of initialization

Startup SPI sequence example SPI commands based on FS6500 and FS4500 flow chart. A SPI command can be a quick-check command to quick start or issue debug.

FS6500 and FS4500 software quick start guide

Table 1. Startup SPI sequence

		Register	Read	Write	Comment		
1	Check BIST	BIST	0x4400	_	Check LBIST_OK and ABIST1_OK bits ^[1]		
2	Check WU source	WU_SOURCE	0x1200	_	Check wake-up sources if wake-up from LPOFF		
3	Check POR	INIT_VREG	0x0200	_	Check BAT_FAIL bit		
		INIT_VREG	_	0x8210	Activate Vcan monitoring Vaux tracker disable		
4	INIT_MAIN	INIT_WU1	_	0x8440	Default value IO_0 wake-up on rising edge or high-level enable		
		INIT_WU2	_	0x8600	Default value		
		INIT_INH_INT	_	0x8A00	Default value		
		INIT_INT	-	0x8900	Default value		
		DIAG_VPRE	0x1800	_	Clear VPRE_UV after POR or wake-up		
		DIAG_VCORE	0x1A00	_	Clear VCORE_FB_UV after POR or wake-up		
5	Read Diag registers	DIAG_VCCA	0x1C00	_	Clear VCCA_UV after POR or wake-up		
ı	Tread Diag registers	DIAG_VAUX	0x1E00	_	Clear VAUX_UV after POR or wake-up		
		DIAG_VSUP_VCAN	0x2000	_	Clear VSNS_UV and VSUP_UV_7 after POR Clear VCAN_UV after wake-up		
		INIT_FS1B_Timing	_	0xC265	Default value		
		INIT_SUPERVISOR	<u> </u>	0xC70C	Default value		
		INIT_FAULT	_	0xC80C	FLT_ERR_CNT = 6, FS1B has no impact on CAN		
		INIT_FSSM	-	0xCB0C	IO_2:3 and IO_4:5 are not safety critical		
		INIT_SF_IMPACT	_	0xCD18	Default value FS1B Tdelay. Reset only at WD_CNT_ERR final value		
6	INIT_FS	INIT_WD_CNT	_	0xD90C	Default value WD_CNT_ERR = WD_CNT_RFR = 6		
		INIT_VCORE_UVOV_ IMPACT	_	0xE3E7	Default value VCORE_FB_OV impact on RSTB and FS0B, VCORE_FB_UV impact on FS0B only		
		INIT_VCCA_UVOV_ IMPACT	_	0xE5E7	Default value VCCA_OV impact on RSTB and FS0B, VCCA_UV impact on FS0B only		
		INIT_VAUX_UVOV_ IMPACT	_	0xE6E7	Default value VAUX_OV impact on RSTB and FS0B, VAUX_UV impact on FS0B only		
		Device_ID_FS	0x6800	_	Check FS1 bit		
7	ABIST	RELEASE_FSxB	0x5400	_	Check FS1B_SNS bit		
1	FS1B	BIST	_	0xC44D	Start FS1B ABIST		
		BIST	0x4400	_	Check FS1B ABIST result		
Ω	ABIST	BIST	_	0xC424	Start VAUX ABIST ^[2]		
8	VAUX	BIST	0x4400	_	Check VAUX ABIST result		
		WD_LFSR	0x5000	_	Read LFSR		
0	Ty good MD refresh	WD_ANSWER	_	0xD34D	Watchdog answer to be calculated ^[3]		
9	7x good WD refresh	WD_LFSR	0x5000	_	Read LFSR		
		WD_ANSWER	_	0xD29B	Watchdog answer to be calculated ^[3]		

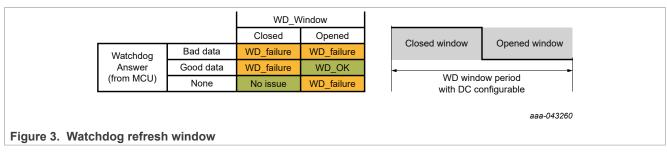
FS6500 and FS4500 software quick start guide

Table 1. Startup SPI sequence...continued

		Register	Read	Write	Comment
		WD_LFSR	0x5000	_	Read LFSR
		WD_ANSWER	_	0xD237	Watchdog answer to be calculated ^[3]
		WD_LFSR	0x5000	_	Read LFSR
		WD_ANSWER	_	0xD26E	Watchdog answer to be calculated ^[3]
		WD_LFSR	0x5000	_	Read LFSR
		WD_ANSWER	_	0xD2DC	Watchdog answer to be calculated ^[3]
		WD_LFSR	0x5000	_	Read LFSR
		WD_ANSWER	_	0xD2B9	Watchdog answer to be calculated ^[3]
		WD_LFSR	0x5000	_	Read LFSR
		WD_ANSWER	_	0xD372	Watchdog answer to be calculated ^[3]
10	CAN_LIN_MODE	CAN_LIN_MODE	_	0xB0C0	CAN in normal operation mode
		SF_OUTPUT_ REQUEST	_	0xD60C	Close S1 switch between VPRE and VPU_FS ^[4]
11	RELEASE FSxB	WD_LFSR	0x5000	<u> </u>	Read LFSR
		RELEASE_FSxB	_	0xD4A7	Release both FS0B and FS1B at the same time RELEASE_FSxB_4:0 to be calculated

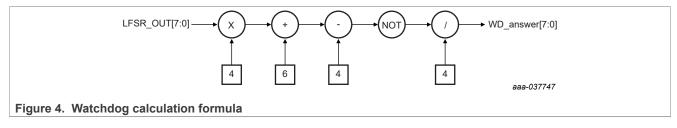
LBIST for ASIL D only. ABIST on FS1B and VAUX can be launched simultaneously with SPI command 0xC465. The wait time remains $200~\mu s$ for both ABIST. [1] [2]

For ASIL B version, only write commands in WD_ANSWER register are needed.


When FS1B is used, the switch S1 can be closed earlier, just after ABIST2 on FS1B, to allow the charge of Cpd while the fault error counter is cleared, reducing the application starting time.

FS6500 and FS4500 software quick start guide

4 Watchdog refresh procedure


A windowed watchdog is implemented in the FS6500 and FS4500, and is based on the question/answer principle (challenger). The watchdog must be continuously triggered by the MCU in the open watchdog window, otherwise an error is generated. The Fail-Safe state machine manages error handling and watchdog operations.

The first good watchdog refresh closes the initialization phase (INIT_FS). As soon as the initialization phase is closed, the watchdog monitors the software failures from the MCU by doing a periodic handshake with the FS6500 and FS4500 through the SPI communication protocol. The watchdog must be continuously triggered by the MCU in the open watchdog window, otherwise an error is generated. The Fail-Safe state machine manages error handling and watchdog operations. The MCU must refresh the watchdog periodically in the middle of the open window by writing the right watchdog answer in the WD_ANSWER register.

For FS6500 and FS4500 ASIL B version, the watchdog is simple and refreshed by the MCU using any key. The only requirement is the watchdog refresh time must in the second half (open window) of the whole watchdog window. It is suggested to make the watchdog refresh at 3/4 of the watchdog window.

For FS6500 and FS4500 ASIL D version, the watchdog is a challenger watchdog that must be refreshed with a key calculated from the seed value, which can be read in the WD_LFSR register. (The seed can also be written by the MCU during INIT_FS). At the INIT_FS phase, the MCU must read the seed value before starting in order to calculate the watchdog answer using the formula shown in Figure 4. It is suggested to make the watchdog refresh at 3/4 of the watchdog window.

FS6500 and FS4500 software quick start guide

5 Release FSxB calculation procedure

- 1. ABIST2 VAUX OK = 1, except if VAUX FS OV 1:0 = VAUX FS UV 1:0 = 00
- 2. ABIST2 FS1B OK = 1, if part number with FS1B
- 3. Close S1 switch between VPRE and VPU FS if FS1B is pulled up to VPU FS
- Fault error counter must be at 0; decrease it with N consecutive good WD refreshes with N = FLT_ERR_2:0 x (WD_RFR_2:0 + 1)
- 5. Read LSFR data via the SPI
- 6. Invert all bits of LFSR and swap MSB and LSB bits; the new byte is used to fill in the RELEASE_FSxB register as described in <u>Table 2</u>:

Table 2. RELEASE_FSxB register

	WD_LFSR_7:0	b7	b6	b5	b4	b3	b2	b1	b0
Release FS0B	Release_FSxB_7:0	0	1	1	b0	<u>b1</u>	b 2	b 3	b4
Release FS1B	Release_FSxB_7:0	1	1	0	b 3	b4	b5	b 6	b7
Release FS0B and FS1B	Release_FSxB_7:0	1	0	1	b0	b1	b2	b6	b7

Note: It is recommended to release FS0B in Application mode rather than Boot Loader mode.

The RELEASE_FSxB write command must be done after the WD_LFSR read command within the same WD period, and one time only. If FS0B and FS1B are released sequentially, the procedure must be done a first time for FS0B, and a second time for FS1B.

FS6500 and FS4500 software quick start guide

6 References

- [1] FS6500-FS4500-ASILD Safety power system basis chip with CAN FD and LIN transceivers, data sheet
- [2] AN5238 FS6500 and FS4500 safe system basis chip hardware design and product guidelines, application note
- [3] FS45FS65 software drivers at NXP website: https://www.nxp.com/products/FS4500, https://www.nxp.com/products/FS4500, https://www.nxp.com/products/FS4500, https://www.nxp.com/products/FS4500, https://www.nxp.com/products/FS4500
- [4] FS45FS65 AUTOSAR Driver website: https://nxp.flexnetoperations.com/control/frse/product?entitlement Id=672573417&lineNum=1&authContactId=113165297&authPartyId=120061187

FS6500 and FS4500 software quick start guide

7 Revision history

Table 3. Revision history

Document ID	Release date	Description
AN14879 v.1.0	17 December 2025	Initial version

FS6500 and FS4500 software quick start guide

Legal information

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at https://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Suitability for use in automotive applications — This NXP product has been qualified for use in automotive applications. If this product is used by customer in the development of, or for incorporation into, products or services (a) used in safety critical applications or (b) in which failure could lead to death, personal injury, or severe physical or environmental damage (such products and services hereinafter referred to as "Critical Applications"), then customer makes the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, safety, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. As such, customer assumes all risk related to use of any products in Critical Applications and NXP and its suppliers shall not be liable for any such use by customer. Accordingly, customer will indemnify and hold NXP harmless from any claims, liabilities, damages and associated costs and expenses (including attorneys' fees) that NXP may incur related to customer's incorporation of any product in a Critical Application.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

HTML publications — An HTML version, if available, of this document is provided as a courtesy. Definitive information is contained in the applicable document in PDF format. If there is a discrepancy between the HTML document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

 $\ensuremath{\mathsf{NXP}}\xspace \ensuremath{\mathsf{B.V.}}\xspace - \ensuremath{\mathsf{NXP}}\xspace \ensuremath{\mathsf{B.V.}}\xspace$ is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

FS6500 and FS4500 software quick start guide

Tables

Tab. 1.	Startup SPI sequence6	Tab. 3.	Revision history1
Tab. 2.	RELEASE_FSxB register9		

FS6500 and FS4500 software quick start guide

Figures

Fig. 1.	SPI protocol and SPI modes3	Fig. 3.	Watchdog refresh window
Fig. 2.	Initialization flow chart5	Fig. 4.	Watchdog calculation formula

FS6500 and FS4500 software quick start guide

Contents

2
2
2
s 3
n flow
4
4
5
8
edure9
10
11
12

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.