
AN14263
Implement LVGL GUI Face Recognition on Framework
Rev. 1 — 19 April 2024 Application note

Document information
Information Content

Keywords Face recognition, LVGL GUI, Framework

Abstract This application note describes how to enable AI&ML vision algorithm model for face recognition
on framework to implement face recognition function with a simple LVGL GUI example on SLN-
TLHMI-IOT board.

https://www.nxp.com

NXP Semiconductors AN14263
Implement LVGL GUI Face Recognition on Framework

1 Overview

NXP has launched a solution development kit named SLN-TLHMI-IOT that focuses on smart HMI applications.
It enables smart HMI with ML vision, voice, and graphics UI implemented on one NXP i.MX RT117H MCU.
Based on the SDK, the solution software is constructed on a design called framework that supports flexible
designs and customization of vision and voice functions. To help users to use the software platform better, some
basic documents are provided, for example, the software development user guide. The guide introduces the
basic software design and architecture of the applications covering all components of the solution including the
framework to help the developers more easily and efficiently implement their applications using the SLN-TLHMI-
IOT.

For more details about the solution and relevant documents, visit the web page of the NXP EdgeReady Smart
HMI Solution Based on i.MX RT117H with ML Vision, Voice, and Graphical UI.

However, it is still not so easy for the developers to implement their smart HMI applications referring to these
basic guides. A series of application notes are planned to help study the development on the framework step
by step. This application note is based on Implement LVGL GUI Camera Preview on Framework (document
AN14147).

This application note describes how to enable the AI&ML vision algorithm model for face recognition on the
framework to implement the face recognition function via camera preview on the GUI screen with a simple LVGL
GUI example on the SLN-TLHMI-IOT board.

In the application note, the example presents an LVGL GUI screen with a camera preview and some buttons
to trigger face registration, recognition, and removal. The registered face data is stored on Flash via a little file
system.

At a high level, the application note contains the below contents:

• Enable the face recognition feature on the framework.
• Add face database support on the framework via file system on Flash.
• Implement the LVGL GUI app.

Through the above introductions, this document helps the developers to:

• Understand the framework and the smart HMI solution software more deeply.
• Develop their AI&ML face recognition on framework with the LVGL GUI app.

1.1 Framework overview
The solution software is primarily designed around the use of the framework architecture that is composed of
several different parts:

• Device managers – the core part
• Hardware Abstraction Layer (HAL) Devices
• Messages/Events

As shown in Figure 1, the overview of the mechanism of the framework is:

Device managers are responsible for managing devices used by the system. Each device type (input, output,
and so on) has its own type-specific device manager. With a device manager starting after the devices being
registered to it, it waits and checks a message to transfer data to the devices and other managers after
initializing and starting the registered devices.

The HAL devices are written on top of the lower-level driver code, helping to increase code understandability by
abstracting many of the underlying details.

AN14263 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 19 April 2024
2 / 21

https://www.nxp.com/design/design-center/designs/nxp-edgeready-smart-hmi-solution-based-on-i-mx-rt117h-with-ml-vision-voice-and-graphical-ui:SLN-TLHMI-IOT-RD?tid=vanSLN-TLHMI-IOT-RD
http://nxp.com/doc/AN14147

NXP Semiconductors AN14263
Implement LVGL GUI Face Recognition on Framework

Events are a means by which information is communicated between different devices via their managers. When
an event is triggered, the device that first received the event communicates that event to its manager, then in
turn it notifies other managers designated to receive the event.

aaa-055483

Camera dev driver

HAL

Framework

Core

Display dev driver Algo dev driver Input dev driver Output dev driver

UI Algorithm callbacks Feature database Customer specific services Application

Low level driver
(CSI)

Software Low level driver

RGB cameraHardware IR camera 3D camera LCD GPIO button UART

Low level driver
(MIPI CSI2)

Low level driver
(SPI)

Low level driver
(GPIO)

Low level driver
(USB)

MSG

MSG

Dev0

Camera
manager

...

MSG

MSG

Dev0

Display
manager

...

MSG

MSG

Dev0

Algorithm
manager

...

MSG

MSG

Dev0

Input
manager

...

MSG

MSG

Dev0

Output
manager

...

Figure 1. Smart HMI SW architecture on framework

The architectural design of the framework was centered on three primary goals:

1. Ease-of-use
2. Flexibility/Portability
3. Performance

The framework is designed with the goal of speeding up the time to market for vision and other machine-
learning applications. To ensure a speedy time to market, it is critical that the software itself is easy to
understand and modify. Keeping this goal in mind, the architecture of the framework is easy to modify without
being restrictive, and without coming at the cost of performance.

For more details about the framework, see Smart HMI Software Development User Guide (document MCU-
SMHMI-SDUG).

1.2 Light and Versatile Graphics Library (LVGL)
LVGL (Light and Versatile Graphics Library) is a free and open-source graphics library providing everything
that you need to create an embedded GUI with easy-to-use graphical elements, beautiful visual effects and low
memory footprint.

1.3 GUI Guider
GUI Guider is a user-friendly graphical user interface development tool from NXP that enables rapid
development of high quality displays with the open-source LVGL graphics library. GUI Guider's drag-and-drop
editor makes it easy to use many features of LVGL such as widgets, animations, and styles to create a GUI with
minimal or no coding at all.

AN14263 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 19 April 2024
3 / 21

http://nxp.com/doc/MCU-SMHMI-SDUG
http://nxp.com/doc/MCU-SMHMI-SDUG
https://www.nxp.com/design/software/embedded-software/lvgl-open-source-graphics-library:LITTLEVGL-OPEN-SOURCE-GRAPHICS-LIBRARY

NXP Semiconductors AN14263
Implement LVGL GUI Face Recognition on Framework

With the click of a button, you can run your application in a simulated environment or export it to a target project.
Generated code from GUI Guider can easily be added to your project, accelerating the development process
and allowing you to seamlessly add an embedded user interface to your application.

GUI Guider is free to use with NXP’s general purpose and crossover MCUs and includes built-in project
templates for several supported platforms.

To learn more about LVGL and GUI development on GUI Guider, check Light and Versatile Graphics Library
and GUI Guider.

2 Development environment

First, prepare and set up the hardware and software environment for implementing the example on the
framework.

Hardware environment

The hardware environment is set up for verifying the example:

• The smart HMI development kit based on NXP i.MX RT117H (the SLN_TLHMI_IOT kit)
• SEGGER J-Link with a 9-pin Cortex-M adapter and V7.84a or a newer version of the driver

Software environment

The software environment is set up for developing the example:

• MCUXpresso IDE V11.7.0
• GUI Guider V1.6.1-GA
• lvgl_gui_camera_preview_cm7 – example code of the second application note as the basis software of

the development. For details, see: https://mcuxpresso.nxp.com/appcodehub.
• RT1170 SDK V2.13.0 – as the code resource for the development.
• SLN-TLHMI-IOT software V1.1.2 – smart HMI source code released on the NXP GitHub repository as the

code resource for the development. For details, see: GitHub - NXP/mcu-smhmi at v1.1.2

For details about the acquirement and setup of the software environment, see: Getting Started with the SLN-
TLHMI-IOT.

3 Vision architecture on framework

The vision architecture on the framework is shown in Figure 2. The vision algo HAL (OASIS_HAL) has the below
processes:

• Do face registration and recognition through the AI&ML vision algorithm model after receiving the related
events from the output UI HAL. Notify the inference results from the algorithm model to the output UI HAL.

• Accesses (add, delete…) the face feature database based on the little file system by calling the APIs of
FaceDB HAL after receiving the related events from the output UI HAL.

• Request the camera video frame from the camera HAL when doing face registration and recognition.

AN14263 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 19 April 2024
4 / 21

https://lvgl.io/
https://www.nxp.com/design/software/development-software/gui-guider:GUI-GUIDER
https://mcuxpresso.nxp.com/appcodehub
https://github.com/NXP/mcu-smhmi/tree/v1.1.2
https://www.nxp.com/document/guide/getting-started-with-the-sln-tlhmi-iot:GS-SLN-TLHMI-IOT
https://www.nxp.com/document/guide/getting-started-with-the-sln-tlhmi-iot:GS-SLN-TLHMI-IOT

NXP Semiconductors AN14263
Implement LVGL GUI Face Recognition on Framework

aaa-055484

Camera manager

RGB camera HAL

Framework
core

Framework
HAL

Oasis lite runtime libraryMiddleware Little filesystem

CameraLow level
drivers MIPI CAAMFlash memory

Vision algo manager

OASIS_HAL

RequestFrame

Notify events
(Registration,
recognition)

Notify events to add,
delete user

Notify inference resultsResponseFrame

Output manager

UI HAL

FaceDB HAL

Add/delete face

Figure 2. Vision architecture

4 Implement face recognition on framework

The LVGL GUI face recognition example (the example is provided later) on the framework is implemented
based on the example codes of Implement LVGL GUI Camera Preview on Framework (document AN14147).

For demonstrating the face recognition in the example, the basic function of the GUI app (see the main screen
in Figure 3) is designed as described below:

• The GUI app triggers the face registration or recognition event to the output UI HAL when clicking the button
Registration or Recognition. And the output UI HAL notifies the event of adding a user to the vision algo
HAL after the face registration is successful.

• The GUI app triggers the event of deleting a user to the output UI HAL when clicking the button Delete User
after the face of the user is recognized.

• The GUI app triggers the event of stopping the oasis algo running to the output UI HAL when clicking the
screen outside the buttons and images.

Figure 3. LVGL GUI face recognition app main screen

SW Preparations
AN14263 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 19 April 2024
5 / 21

http://nxp.com/doc/AN14147

NXP Semiconductors AN14263
Implement LVGL GUI Face Recognition on Framework

Prepare the software package for the implementation of the example.

• Clone the base software lvgl_gui_camera_preview_cm7. Change the project name and the main
filename to lvgl_gui_face_rec_cm7.

• The framework is needed to be updated in the software as the source codes for the framework core have
started to be public on GitHub from the version 1.1.2.

• Replace the framework folder with the copy of V1.1.2 from GitHub except for the files fwk_log.h and
fwk_common.h under inc\ as they have been modified for the series of application note. The operations are
shown in Figure 4:

copy replace

1

2

copy

copy

replace

replace

Figure 4. Update framework

• Delete the folder framework_cm7 under the libs group and remove the library framework_cm7 and its
search path configured in Project > Properties > C/C++ Build > settings > Tool Settings
> MCU C++ Linker > Libraries since the source code of the core is provided.

4.1 Enable face recognition feature on framework
The face recognition feature is built on the ML vision algorithm model provided as a static library – an oasis lite
runtime library by NXP. The library is a tiny, highly efficient, customized, and optimized AI library. The model
includes face detection, face recognition, glass detection, and liveness detection.

It mainly provides the API OASISLT_run_extended() to run the face recognition pipeline while updating
results to the caller through event callbacks, and add/update/delete faces in the database through the face
database callbacks after specifying the source frame information, callbacks, and memory pool used by the
library by calling another API OASISLT_init() on initialization.

The calling of the APIs and the callback functions are implemented in the vision algo HAL of the framework.

4.1.1 Add vision algo model library

1. Copy folder oasis containing the library and the related header file from smart HMI\coffee_machine
\cm7\libs\ into the folder libs of the example SW.

2. Add the search path of the header file in Project > Properties > C/C++ Build > settings >
Tool Settings > MCU C compiler > Includes and MCU C++ compiler > Includes:

"${workspace_loc:/${ProjName}/libs/oasis/include}"

AN14263 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 19 April 2024
6 / 21

NXP Semiconductors AN14263
Implement LVGL GUI Face Recognition on Framework

3. Add the lib and its search path on Project > Properties > C/C++ Build > settings > MCU C+
+ Linker > Libraries:

liboasis_lite2D_DEFAULT_117f_ae.a
"${workspace_loc:/${ProjName}/libs/oasis}"

and the macro definition to enable the feature on Project > Properties > C/C++ Build >
settings > Tool Settings > MCU C compiler > Preprocessor and MCU C++ compiler >
Preprocessor:

SMART_TLHMI_2D

4.1.2 Enable vision algo HAL

The vision algo HAL drives the vision algo model to work and responds the results to the UI output HAL after
receiving the events from it.

To enable it, clone the existed similar HAL driver file where the below functions are implemented:

• Implement the callbacks of face database operations and events handling.
• Drive the vision algo to work by calling the APIs of the oasis library.
• Access user face database and app database (it is not needed in the example).
• Receive events from and send results to output UI HAL.

The major works to implement the HAL for the example are:

• Clone the existed similar HAL driver file and change the related names.
• Remove the codes related to the app data operations.
• Update the definitions and functions for handling the events from the output UI HAL per the example design.
• Add the configurations required in oasis initialization.

The detailed steps are as below:

1. Clone hal_vision_algo_oasis_coffeemachine.c. Change the filename to
hal_vision_algo_oasis_guifacerec.c. And replace all strings CoffeeMachine with GUIFaceRec
in the file.

2. Remove the codes containing the string coffeedb (not case sensitive) related to the app database, for
example, #include hal_sln_coffeedb.h.

3. Modify the function HAL_VisionAlgoDev_OasisGUIFaceRec_InputNotify() for handling the events
from the output UI HAL.
• Change the event definition kEventFaceRecId_RegisterCoffeeSelection to
kEventFaceRecId_RegisterUserFace and the structure string regCoffeeSelection to
regGUIFaceRec for the event handling to add new face feature data to the database.

• To show the standard process of the face recognition actions in the example, modify the handling in the
case of kEventFaceRecID_OasisSetState with the definitions of the states:

kOASISLiteState_Registration
kOASISLiteState_Recognition
kOASISLiteState_Stopped

4. Add and modify the definitions of the events mentioned in the above step.
• Copy the header file smart_tlhmi_event_descriptor.h from smart HMI\coffee_machine
\cm7\source\event_handlers\ into the folder source of the example SW. Update the file as below:

• Change the event definition kEventFaceRecId_RegisterCoffeeSelection to
kEventFaceRecId_RegisterUserFace in the enum type _event_smart_tlhmi_id and the
structure string regCoffeeSelection to regGUIFaceRec in the struct _event_smart_tlhmi.

AN14263 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 19 April 2024
7 / 21

NXP Semiconductors AN14263
Implement LVGL GUI Face Recognition on Framework

So, change the struct register_coffee_selection_event_t for regCoffeeSelection to
register_gui_facerec_event_t.

• Delete the else contents used for the coffee machine app, for example, the code line about voice:
#include "hal_event_descriptor_voice.h".

• Add the types kOASISLiteState_Stopped and kOASISLiteState_Running to the enum type
oasis_lite_state_t in hal_vision_algo.h under framework>hal>vision in the project as
below:

typedef enum _oasis_lite_state
{
 kOASISLiteState_Running,
 kOASISLiteState_Stopped,
 kOASISLiteState_Recognition,
 kOASISLiteState_Registration,
 kOASISLiteState_DeRegistration,
 kOASISLiteState_RemoteRegistration,
 kOASISLiteState_Count
} oasis_lite_state_t;

• Use the above updated struct oasis_lite_state_t to refine the struct oasis_state_event_t in
hal_event_descriptor_face_rec.h under framework>hal>vision in the project as below:

typedef struct _oasis_state_event_t
{
 oasis_lite_state_t state;
} oasis_state_event_t;

5. Change all kEventInfo_Remote to kEventInfo_Local for sending events from the vision algo HAL to
other HALs running on the same core as single core instead of dual-core is used in the example.

6. Add and modify the below configurations for oasis initialization in OASISLT_init():
• Add the macro definitions and memory sections for the video frame in board_define.h:

#define OASIS_RGB_FRAME_WIDTH 800
#define OASIS_RGB_FRAME_HEIGHT 600
#define OASIS_RGB_FRAME_SRC_FORMAT kPixelFormat_YUV1P444_RGB
#define OASIS_RGB_FRAME_BYTE_PER_PIXEL 3

#define AT_FB_SHMEM_SECTION_ALIGN(var, alignbytes) \
 __attribute__((section(".bss.$fb_sh_mem,\"aw\",%nobits @"))) var
 __attribute__((aligned(alignbytes)))

• Config the memory assignment to the above memory section fb_sh_mem on Project > Properties
> C/C++ Build > MCU Settings shown in Figure 5:

AN14263 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 19 April 2024
8 / 21

NXP Semiconductors AN14263
Implement LVGL GUI Face Recognition on Framework

Figure 5. Memory assignment to the section fb_sh_mem
• Declare the global variable g_DTCOPBuf in lvgl_gui_face_rec_cm7.cpp:

AT_NONCACHEABLE_SECTION_ALIGN_DTC
(uint8_t g_DTCOPBuf[DTC_OPTIMIZE_BUFFER_SIZE], 4);

• Continue to add the definitions used in the above variable:
• Define the above section in board_define.h:

#define AT_NONCACHEABLE_SECTION_ALIGN_DTC(var, alignbytes) \
__attribute__((section(".bss.$SRAM_DTC_cm7,\"aw\",%nobits @"))) var
__attribute__((aligned(alignbytes)))

• Include the header file hal_vision_algo.h containing the macro definition
DTC_OPTIMIZE_BUFFER_SIZE in app_config.h included in lvgl_gui_face_rec_cm7.cpp.

7. Set the variable s_debugOption to true for showing the progress status on face recognition.
8. Add the search path of the header files of the vision HAL on Project > Properties >C/C++ Build

> settings > Tool Settings > MCU C compiler > Includes and MCU C++ compiler >
Includes:

"${workspace_loc:/${ProjName}/framework/hal/vision}"

9. Add the below definition to enable vision algo HAL in board_define.h:

#define ENABLE_VISIONALGO_DEV_Oasis_GUIFaceRec

4.1.3 Enable output UI HAL

The output UI HAL notifies the events to the vision algo HAL and responds to the inference results from the
vision algo HAL. With the GUI app, the events are generally triggered by the app and the results are shown on
the app.

To enable it, clone the existed similar HAL driver file where generally the below functions are implemented:

• Notify the events for face recognition and database access.
• Implement the callbacks for the GUI app to trigger the events.
• Handle the inference results from the vision algo module.
• Show the process and results of the events handling on the UI by the progress bar controlled with the timers

and face guide rectangle.

The major works to implement the HAL for the example used in this document are:

• Clone the existed similar HAL driver file and change the related names.
• Remove the codes related to the app.
AN14263 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 19 April 2024
9 / 21

NXP Semiconductors AN14263
Implement LVGL GUI Face Recognition on Framework

• Update the functions for the events notification and results response per the example design.
• Add the callbacks for the GUI app to trigger the events.

The detailed steps are as below:

1. Clone hal_output_ui_coffee_machine.c. Change the filename to hal_
output_ui_guifacerec.c.

2. Replace all strings CoffeeMachine with GUIFaceRec in the file.
3. Remove the codes related to the app – coffee machine.

• Remove the functions WakeUp() and _StandBy() and the related codes (may search the string
wake_up and standby for them).

• Remove preview mode events handling related codes in HAL_OutputDev_UiGUIFaceRec_Input
Notify().

• Remove the functions UI_xxx_Callback() and the codes containing the string gui_ and screen
related to the GUI of the coffee machine except for gui_set_virtual_face() for the preview mode
feature.

• Remove all codes involved with the variables s_IsWaitingAnotherSelection and
s_IsWaitingRegisterSelection related to the coffee machine app.

• Remove the codes related to voice, audio, and language. For example:

#include "hal_voice_algo_asr_local.h",
#include "hal_event_descriptor_voice.h"

4. For the various events notification, implement the new functions _OutputManagerNotify(),
_SetFaceRec(), _RegisterGUIFaceRec(), and DeregisterGUIFaceRec() referring to the functions
_StopFaceRec(), _RegisterCoffeeSelection(), and DeregisterCoffeeSelection() before
deleting them.
• The _OutputManagerNotify() implements the basic event output function to send an event to the

vision algo HAL. The below functions call it to send their own events.
• The _SetFaceRec() sends the event kEventFaceRecID_OasisSetState to trigger the vision algo

for face registration, recognition, and stop the algo.
• The _RegisterGUIFaceRec() sends the event kEventFaceRecId_RegisterGUIFaceRec that

is defined in smart_tlhmi_event_descriptor.h to add face feature data to the database when
registration OK.

• The DeregisterGUIFaceRec() sends the event kEventFaceRecID_DelUser to delete the face
feature data from the database when passing the face recognition.

5. Update the codes to take the corresponding actions including refresh the GUI by calling the APIs
from the LVGL GUI app for the inference results of face registration and recognition in the function
_InferComplete_Vision() per the example’s design. For example, when face registration is
successful,
• Stop showing the progress by calling _FaceRecProcess_Stop();
• Stop the face registration by calling _SetFaceRec(kOASISLiteState_Stopped);
• Show the successful result on the GUI: gui_show_face_rec_result(kFaceRecResult_OK,
s_UserId);

• Register the face data to the database: _RegisterUserFace(s_UserId);
6. Add UI callback functions to handle the events: preview, face registration, recognition, and deleting user

triggered from the GUI. For example, the face registration callback:

void UI_Registration_Callback()
{
 _SetFaceRec(kOASISLiteState_Registration);
 _FaceRecProcess_Start();

AN14263 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 19 April 2024
10 / 21

NXP Semiconductors AN14263
Implement LVGL GUI Face Recognition on Framework

}

• And add the functions _FaceRecProcess_Start() and _FaceRecProcess_Stop() to show the
progress and status in the different events and results.

• Update the timer ISR callback function _SessionTimer_Callback() to handle the case of time-out by
calling:

gui_show_face_rec_result(kFaceRecResult_TimeOut,
 s_UserId);

7. Add the below definitions to enable UI output HAL in board_define.h:

#define ENABLE_OUTPUT_DEV_UiGUIFaceRec

Notice:

To present the face recognition feature better, keep the function to show the process and results of face
recognition in the output UI HAL. The function is described as below:

• The face guide rectangle shows blue, and the progress bar shows the progress when starting the face
registration or recognition.

• The face guide rectangle shows red when face registration is successful.
• The face guide rectangle shows green when face recognition is successful.
• The face guide rectangle keeps blue, and the progress bar shows full progress when the action is

unsuccessful after the timer expiration. At that point, stop the face registration or recognition.

The progress bar and face guide rectangle are presented as the icons that are built into the resource binary
file to be programmed into Flash. The pointers to the icons data on SDRAM are set up in the function
LoadIcons(APP_ICONS_BASE) called on the output UI HAL device initialization in the output UI HAL. It must
implement the icons support for the function.

4.1.4 Implement the icons support

1. Build the resource combining the icons with the images used in the LVGL GUI app:
• Clone the four icon header files process_bar_240x14.h, virtual_face_blue_420x426.h,
virtual_face_green_420x426.h, and virtual_face_red_420x426.h from smart HMI
\coffee machine\resource\icons\ to the new folder icons under the resource folder of the
example SW.

• Add the search path for the four icon files in the camera_preview_resource.txt file in the resource
folder, for example: icon ../resource/icons/process_bar_240x14.h

• Execute camera_preview_resource_build.bat to build the images and icons resources to generate
the bin file camera_preview_resource.bin and the info file resource_information_table.txt
(See Figure 6).

AN14263 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 19 April 2024
11 / 21

NXP Semiconductors AN14263
Implement LVGL GUI Face Recognition on Framework

Figure 6. The info generated in resource_information_table.txt
2. Define the start address on SDRAM and the size of the icons in app_config.h. The address starts next to

the images of the GUI app. The size is generated in the info file.

#define APP_ICONS_BASE (APP_RES_SHMEM_BASE +
 APP_LVGL_IMGS_SIZE)
#define APP_ICONS_SIZE 0x107c40

3. Update the assigned size of the memory section named res_sh_mem to 0x200000 by redefining it in
app_config.h:

#define RES_SHMEM_TOTAL_SIZE 0x200000

and the corresponding setting in Project > Properties > C/C++ Build > MCU settings.
4. Add the icon size to the total size of the resource loaded from Flash to SDRAM in the function

APP_LoadResource() in the main file lvgl_gui_face_rec_cm7.cpp:

memcpy((void *)APP_LVGL_IMGS_BASE, pLvglImages, APP_LVGL_IMGS_SIZE +
 APP_ICONS_SIZE);

Notice: To complete the face recognition feature, the LVGL GUI app support is needed. The UI callback
functions in the output UI HAL are called by the LVGL GUI app for handling the events from the UI screen. On
the other hand, the output UI HAL calls the APIs from the LVGL GUI app to update the UI for showing the result
and status. The development of the LVGL GUI app is relatively independent and introduced in Section 4.3.

4.1.5 Start HAL devices and managers for face recognition

The enabled vision algo HAL and UI output HAL and their managers are started in the main file
lvgl_gui_face_rec_cm7.cpp following the conversions of development on the framework as below:

1. Include the header file related to the two HAL managers by adding the code line:

#include " fwk_output_manager.h "
#include "fwk_vision_algo_manager.h"

2. Declare the HAL devices:

HAL_VALGO_DEV_DECLARE(OasisGUIFaceRec);
HAL_OUTPUT_DEV_DECLARE(UiGUIFaceRec);

3. Register the HAL devices:

HAL_VALGO_DEV_REGISTER(OasisGUIFaceRec, ret);
HAL_OUTPUT_DEV_REGISTER(UiGUIFaceRec, ret);

AN14263 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 19 April 2024
12 / 21

NXP Semiconductors AN14263
Implement LVGL GUI Face Recognition on Framework

4. Initialize the managers:

FWK_MANAGER_INIT(VisionAlgoManager, ret);
FWK_MANAGER_INIT(OutputManager, ret);

5. Start the managers:

FWK_MANAGER_START(VisionAlgoManager, VISION_ALGO_MANAGER_TASK_PRIORITY, ret);
FWK_MANAGER_START(OutputManager, OUTPUT_MANAGER_TASK_PRIORITY, ret);

6. Define the priority of the manager tasks:

#define VISION_ALGO_MANAGER_TASK_PRIORITY 3
#define OUTPUT_MANAGER_TASK_PRIORITY 1

4.2 Add face database support on framework
The registered face feature data is accessed in the face database stored on Flash via a little file system. The
steps to add the face database support are described below.

4.2.1 Add drivers for Flash storage

Copy the Flash interface FlexSPI driver files fsl_flexspi.c and fsl_flexspi.h, and the data encryption
driver files fsl_caam.c and fsl_caam.h from the path SDK_2_13_0_MIMXRT1170-EVK\devices
\MIMRX1176\drivers\ to the drivers folder of the example SW.

4.2.2 Add board level support

1. Add the definitions of FlexSPI used for the Flash device on board in board.h:

#define BOARD_FLEXSPI FLEXSPI1
#define BOARD_FLEXSPI_CLOCK kCLOCK_FlexSpi1
#define BOARD_FLEXSPI_AMBA_BASE FlexSPI1_AMBA_BASE

2. Copy the operators and configurations files of the Flash device flexspi_nor_flash_ops.c,
flexspi_nor_flash_ops.h, sln_flash_config.c, sln_flash_config_w25q256jvs.h,
andsln_flash_ops.h under the path smart HMI\coffee_machine\cm7\source\flash_config\
 to the folder board of the example SW.
• Uncheck “Exclude resource from build” in C/C++ Build > Settings after right-clicking on the files’

name and opening the Properties for enabling them to be built into the project.
3. Change the included header filename sln_flash_config.h to sln_flash_config_w25q256jvs.h in

sln_flash_config.c and flexspi_nor_flash_ops.h.
4. Set the FlexSPI1 clock source in the file clock_config.c referring to the coffee machine app.

4.2.3 Add adapter and middle level support

1. Copy the files sln_flash.c, sln_flash.h, sln_encrypt.c, and sln_encrypt.h as adapter drivers
for the file system and app from the path of smart HMI\coffee_machine\cm7\source\ to the folder
source of the example. Update the new files:
• Uncheck “Exclude resource from build” on them for building.
• Change all the included header file name sln_flash_config.h to
sln_flash_config_w25q256jvs.h.

2. Copy the folder filesystem containing the APIs for the little filesystem and HAL driver from smart HMI
\coffee_machine\cm7\source\ to the example SW. And update for the new folder:
• Uncheck “Exclude resource from build” on it for building.

AN14263 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 19 April 2024
13 / 21

NXP Semiconductors AN14263
Implement LVGL GUI Face Recognition on Framework

• Add the include path for it in project settings: “${workspace_loc:/${ProjName}/filesystem}”
• Change the included header file name sln_flash_config.h to sln_flash_config_w25q256jvs.h

and fica_definition.h to app_config.h in the file sln_flash_littlefs.h.
3. Copy the folder littlefs containing the middle ware – little filesystem from the path SDK_2_13_0_

MIMXRT1170-EVK\middleware\ to the example SW. And update the new folder:
• Uncheck “Exclude resource from build” on it for building.
• Add the include path for it in project settings:

"${workspace_loc:/${ProjName}/littlefs}"

4.2.4 Add HAL drivers

There are two HAL devices - file system and face database HAL supported for the database access feature
and they are already implemented in the framework without any change. Enable them by adding the below
definitions in board_define.h:

#define ENABLE_FLASH_DEV_Littlefs
#define ENABLE_FACEDB

And change the face database name for the example:

#define OASIS_FACE_DB_DIR "oasis_gui_face_rec"

4.2.5 Add app level support

1. Update the main file lvgl_gui_face_rec_cm7.cpp:
• Include the header file related to the Flash file system HAL manager by adding the code line: #include
"fwk_flash.h"

• Declare and register file system HAL device:

HAL_FLASH_DEV_DECLARE(Littlefs);
HAL_FLASH_DEV_REGISTER(Littlefs, ret);

Note: The file system HAL device must be registered before all device managers are initialized in the
function APP_InitFramework().

• Call the function BOARD_ConfigMPU() in APP_BoardInit() to config MPU.
2. Set the file system assignment on Flash in the file app_config.h by defining the macro definitions used in

the file sln_flash_littlefs.h:

#define FICA_IMG_FILE_SYS_ADDR (FLASH_IMG_SIZE + RES_SHMEM_TOTAL_SIZE)
#define FICA_FILE_SYS_SIZE (0x280000)

4.2.6 Configurations

Some Flash-related codes are executed in the SRAM ITC area for enough performance. Copy the folder
linkscripts containing the linker configurations from the path smart HMI\coffee_machine\cm7\ to the
example SW.

4.3 Implement a LVGL GUI app
The development of a LVGL GUI app based on framework calls the APIs from output UI HAL and provides the
APIs to output UI HAL (See Section 4.1.3 for the implementation of output UI HAL).

AN14263 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 19 April 2024
14 / 21

NXP Semiconductors AN14263
Implement LVGL GUI Face Recognition on Framework

However, the detailed implementation of a LVGL GUI app depends on the requirements and design of the
application. The GUI app in this example is designed as described at the beginning of the section Section 4.

Below is the implementation introductions:

1. The customized codes are implemented in the custom.c and custom.h given by GUI Guider as the
interface between the GUI Guider project and the embedded system project.
• Add the new functions named gui_xxx() in custom.c to achieve the below functions:

– For output UI HAL and GUI app to update UI.
– For GUI app to trigger events by calling UI callback functions from output UI HAL.

For example, the new function gui_event_face_rec_action() calls UI callback functions to handle
one of the events of face registration, face recognition and deleting user triggered from the GUI app when
the related button is clicked.
Note: The function gui_set_virtual_face() called in output UI HAL for preview mode needs to be
implemented in custom.c:
• Clone function gui_set_virtual_face() from smart HMI\coffee_machine\cm4\custom
\custom.c.

• Change the widget’s name home_img_cameraPreview to screen_img_camera_preview in the
function.

• Implement the UI callback functions with the same prototype to all the ones in output UI HAL under the
control of the macro definition #ifndef RT_PLATFORM in custom.c for being compatible with the GUI
Guider project because these functions in output UI HAL are dependent with the embedded platform. In
custom.c, they depend on the simulator on GUI guider and are independent to the embedded platform.
For example, the face registration callback is implemented as below for the GUI Guider simulator running:

#ifndef RT_PLATFORM
void UI_Registration_Callback()
{
 gui_hide_del_user_btn(true);
 s_InAction = false;
 return;
}

Note: Refer to the same prototype of the function introduced in step 6 of Section 4.1.3
The macro definition RT_PLATFORM is set on the project settings of MCUXpresso as shown in Figure 7:

AN14263 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 19 April 2024
15 / 21

NXP Semiconductors AN14263
Implement LVGL GUI Face Recognition on Framework

Figure 7. The setup of macro definition “RT_PLATFORM” on project settings
• Declare all the functions named UI_xxx_Callback() and gui_xxx() in custom.h and add
custom.h included in smart_tlhmi_event_descriptor.h to share the GUI APIs to UI output HAL.

2. Develop the GUI on GUI Guider:
• Clone the folder camera preview containing the GUI Guider project software in the folder gui_guider

in the base software package lvgl_gui_camera_preview_cm7. Change the related name
camera_preview to face_rec for the new example.

• Copy the above updated custom.c and custom.h to the new GUI Guider project software.
• Open the new face_rec project on GUI Guider. Update as below:

– Add the new button labeled Delete User. Add the flag Hidden to it so that the button will be hidden
when the GUI app starts up.

– Add the code line of calling the API gui_event_face_rec_action() with different event ID
parameter on the “Released” trigger in the Event Setting of all the buttons Registration, Recognition
and Delete User for triggering the events of face registration, face recognition and deleting user.
Figure 8 shows the code for the event of the button Registriation:

click

Figure 8. Coding for the event of the button “Registration”
3. Update the generated code from GUI Guider to the MCUXpresso project.

• Replace the contents except for the folder images in the folder generated of the MCUXpresso project
SW with the corresponding ones in the folder generated of GUI Guider project SW.

Note: For more details about the modifications introduced above, check the example software at: https://
mcuxpresso.nxp.com/appcodehub.

AN14263 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 19 April 2024
16 / 21

https://mcuxpresso.nxp.com/appcodehub
https://mcuxpresso.nxp.com/appcodehub

NXP Semiconductors AN14263
Implement LVGL GUI Face Recognition on Framework

5 Verifications with the example project

To get the example software package containing the resources and tools for this application note, visit: https://
mcuxpresso.nxp.com/appcodehub.

Open the example project on MCUXpresso IDE. Build and program the .axf file to the address 0x30000000
and program the resource bin file camera_preview_resource.bin to the address 0x30800000.

The LVGL GUI face recognition example works normally as below:

• Preview: With power up, the video streams captured by the camera shows on the specific area of camera
preview on the GUI screen. The status label displays “Preview…”. For details, see Figure 3. The button
Delete User is hidden. When clicking the area outside the buttons and images, it shows the preview state as
the above after the face registration or recognition action ends.

• Registration:
– Startup: When the Registration button is clicked, the face registration starts. The status label changes

to display “Registration…”, the face guide rectangle shows blue, and the progress bar starts showing the
progress. Make sure the user’s face showing into the blue face guide rectangle for registration.

– Success: The status label shows “Registration…OK” and the registered user ID number, the face guide
rectangle becomes red if the face registration is successful before the progress shows full on the bar.

– Failure -> Time out: The status label shows “Registration…Time out” if the face registration is still failed
when the progress shows full on the bar.

– Failure -> Duplication: The status label shows “Registration…Failed”, the face guide rectangle becomes
green if the registered face is recognized before the progress shows full on the bar.

• Recognition:
– Startup: When the Recognition button is clicked, the face recognition starts. The status label changes

to display “Recognition…”, the face guide rectangle shows blue, and the progress bar starts showing the
progress. Make sure the user’s face is shown into the blue face guide rectangle for registration.

– Success: The status label shows “Recognition…OK” and the recognized user ID number, the face guide
rectangle becomes green if the face recognition is successful before the progress shows full on the bar. At
the point, the button Delete User appears. It means that the user is allowed to be deleted only when it is
recognized.

– Failure: The status label shows “Recognition…Time out” if the face recognition is still failed when the
progress shows full on the bar.

• Delete User: When the button “Delete User” is clicked, after the face recognition is successful, the status
label changes to display “Delete User…OK” with the face guide rectangle becoming blue and the progress
showing full on the bar. The button Delete User is hidden again. The recognized face/user is deleted from the
database. It means this face/user cannot be recognized until is registered again.

6 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

AN14263 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 19 April 2024
17 / 21

https://mcuxpresso.nxp.com/appcodehub
https://mcuxpresso.nxp.com/appcodehub

NXP Semiconductors AN14263
Implement LVGL GUI Face Recognition on Framework

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

7 Revision history

Document ID Release date Description

AN14263 v.1 19 April 2024 Initial version

Table 1. Revision history

AN14263 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 19 April 2024
18 / 21

NXP Semiconductors AN14263
Implement LVGL GUI Face Recognition on Framework

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

AN14263 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 19 April 2024
19 / 21

mailto:PSIRT@nxp.com

NXP Semiconductors AN14263
Implement LVGL GUI Face Recognition on Framework

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

i.MX — is a trademark of NXP B.V.
J-Link — is a trademark of SEGGER Microcontroller GmbH.
Microsoft, Azure, and ThreadX — are trademarks of the Microsoft group of
companies.

AN14263 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 19 April 2024
20 / 21

NXP Semiconductors AN14263
Implement LVGL GUI Face Recognition on Framework

Contents
1 Overview ...2
1.1 Framework overview ..2
1.2 Light and Versatile Graphics Library (LVGL)3
1.3 GUI Guider .. 3
2 Development environment4
3 Vision architecture on framework4
4 Implement face recognition on

framework ...5
4.1 Enable face recognition feature on

framework .. 6
4.1.1 Add vision algo model library 6
4.1.2 Enable vision algo HAL 7
4.1.3 Enable output UI HAL 9
4.1.4 Implement the icons support 11
4.1.5 Start HAL devices and managers for face

recognition ... 12
4.2 Add face database support on framework 13
4.2.1 Add drivers for Flash storage 13
4.2.2 Add board level support 13
4.2.3 Add adapter and middle level support 13
4.2.4 Add HAL drivers .. 14
4.2.5 Add app level support 14
4.2.6 Configurations ..14
4.3 Implement a LVGL GUI app 14
5 Verifications with the example project17
6 Note about the source code in the

document ..17
7 Revision history ...18

Legal information ...19

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com

Date of release: 19 April 2024
Document identifier: AN14263

	1 Overview
	1.1 Framework overview
	1.2 Light and Versatile Graphics Library (LVGL)
	1.3 GUI Guider

	2 Development environment
	3 Vision architecture on framework
	4 Implement face recognition on framework
	4.1 Enable face recognition feature on framework
	4.1.1 Add vision algo model library
	4.1.2 Enable vision algo HAL
	4.1.3 Enable output UI HAL
	4.1.4 Implement the icons support
	4.1.5 Start HAL devices and managers for face recognition

	4.2 Add face database support on framework
	4.2.1 Add drivers for Flash storage
	4.2.2 Add board level support
	4.2.3 Add adapter and middle level support
	4.2.4 Add HAL drivers
	4.2.5 Add app level support
	4.2.6 Configurations

	4.3 Implement a LVGL GUI app

	5 Verifications with the example project
	6 Note about the source code in the document
	7 Revision history
	Legal information
	Contents

