
AN14260
Dynamic Loading of Code by Overlay
Rev. 1.0 — 10 April 2024 Application note

Document information
Information Content

Keywords AN14260, overlay, linker, performance optimization, code execution from RAM, GCC, EWEARM,
Keil

Abstract In this application note, overlay is introduced to show that it is still effective for modern
microcontrollers to improve performance.

https://www.nxp.com

NXP Semiconductors AN14260
Dynamic Loading of Code by Overlay

1 Introduction

Overlay is a feature of the linker that loads different code at the same address. It has been a popular technique
in the early home computer systems, which lacked enough memory to load entire code in it at the same time.

In this application note, overlay is introduced to show that it is still effective for modern microcontrollers to
improve performance. It is even applicable to BareMetal without any operating system.

1.1 Overview
i.MX RT series microcontrollers support high-core frequency as shown in Table 1.

Products Maximum core frequency

RT1010/1020 500 MHz

RT1040/1050/1060 600 MHz

RT1180 800 MHz

RT1170 1000 MHz

Table 1. i.MX RT series supports high-core frequency

These products support high-core frequency. However, they do not have internal flash because it is difficult to
miniaturize the flash at the same standard as the core. It means that the internal flash cannot be manufactured
using the same process as the core. Therefore, external memory is required to store the code for the i.MX RT
series.

While XIP is supported for external memory, it is slower than on-chip RAM1. Therefore, ITCM is the best
location to fetch code in terms of performance because read access is expected to finish in one cycle2.

Unfortunately, if RAM size is insufficient for an application, there is no choice but to locate code in the external
memory. However, the external memory bandwidth is slower than the instruction fetch bandwidth at high-core
frequency. Therefore, even if cache is enabled, under low locality of reference, it results in worse performance.
Furthermore, TCM size is relatively small because high-core frequency sacrifices TCM size due to the longer
signal delay by the bigger TCM area.

Therefore, by loading the code dynamically, limited TCM can be used at the best. The performance is improved
because the core does not have to fetch code from external memory every time. Moreover, if less ITCM is
required for an application, DTCM can be expanded in FlexRAM, which also leads to better performance.

For the sample project attached, code is dynamically loaded from external flash to ITCM on RT1170-EVKB by
MCUXpresso IDE, IAR Embedded Workbench for Arm, or Keil μVision IDE.

The concrete specification is as follows:

• The section segment0 and the section segment1 are loaded dynamically from the external flash to ITCM, as
shown in Figure 1.
– Each segment is loaded by calling load_code() on demand.
– When segment0 is loaded, any function in segment1 cannot be called and vice versa.
– Any function in segment0 cannot call any function in segment1 and vice versa.

• The section CodeQuickAccess is statistically located in ITCM.
• Other code in the section .text* is statistically located in the external flash.

1 i.MX RT Series Performance Optimization (document AN12437)
2 Using the i.MX RT FlexRAM (document AN12077)

AN14260 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 10 April 2024
2 / 13

https://www.nxp.com/doc/AN12437
https://www.nxp.com/doc/AN12077

NXP Semiconductors AN14260
Dynamic Loading of Code by Overlay

0x0 (ITCM) 0x30000000 (FlexSPI)

Overlaid here

CodeQuick
access

segment0

segment1

.text*

Figure 1. Memory map

2 Software implementation overview

This section describes the software implementation for MCUXpresso IDE (GCC), Keil μVision IDE, and IAR
embedded workbench for Arm.

2.1 Linker script
A linker script describes where the object is located and where it is to be loaded at the execution time. The
linker script must be customized to meet the requirements of the application.

2.1.1 MCUXpresso IDE (GCC)

Assume that the directory structure is as follows. The key point is that the source directory has segment0 and
segment1 directories.

├── CMSIS
├── board
├── component
├── device
├── doc
├── drivers
├── linker_script
├── startup
├── utilities
├── xip
└── source
 ├── segment0
 └── segment1

All the code in source/segment0 and source/segment1 is defined as segment0/1 and overlaid by the
following three steps. The linker script is based on evkbmimxrt1170_hello_world_demo_cm7_Debug.ld,
which locates all the code in the external flash.

1. By using the EXLUDE_FILE directive, the .text* section under source/segment0, and source/
segment1 are excluded from matching with the .text* section.
*(EXCLUDE_FILE(
 ./source/segment0/*.o ./source/segment1/*.o
) .text*)

2. By using the OVERLAY directive, all the code under source/segment0 and source/segment1 is in
BOARD_FLASH and is to be loaded in SRAM_ITC_cm7 and are defined as segment0/1.

AN14260 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 10 April 2024
3 / 13

NXP Semiconductors AN14260
Dynamic Loading of Code by Overlay

In each segment, for a function to be called, software must copy a segment from BOARD_FLASH to
SRAM_ITC_cm7 on demand.
OVERLAY : NOCROSSREFS
{
segment0 { ./source/segment0/*.o(.text*) }
segment1 { ./source/segment1/*.o(.text*) }
} > SRAM_ITC_cm7 AT>BOARD_FLASH

Note:
Any function in segment0 cannot be called from any function in segment1 and vice versa.
With the NOCROSSREFS option enabled, it causes an error "prohibited cross-reference" at linking time.

3. By using the PROVIDE directive, the two symbols, __load_size_segment0, and
__load_size_segment1 are defined to let the programmer know the section size.
__load_start_segment0 and __load_start_segment1 are automatically defined to determine
the location of each segment in the ROM and are used in the Section 3. The definition of the
__load_size_segment0/1 is as follows:
PROVIDE(__load_size_segment0 = SIZEOF(segment0));
PROVIDE(__load_size_segment1 = SIZEOF(segment1));

ROM and RAM addresses are known at linking time. It can be seen in the map file as follows:
segment0 0x00000000 0x30 load address 0x300085a8
 ./source/segment0/*.o(SORT_BY_ALIGNMENT(.text*))
 .text.task0 0x00000000 0x28 ./source/segment0/task0.o
 0x00000000 task0
 .text.task0.__stub
 0x00000028 0x8 linker stubs
 0x300085a8 PROVIDE (__load_start_segment0 = LOADADDR (segment0))
 [!provide] PROVIDE (__load_stop_segment0 = (LOADADDR (segment0) +
 SIZEOF (segment0)))
segment1 0x00000000 0x30 load address 0x300085d8
 ./source/segment1/*.o(SORT_BY_ALIGNMENT(.text*))
 .text.task1 0x00000000 0x28 ./source/segment1/task1.o
 0x00000000 task1
 .text.task1.__stub
 0x00000028 0x8 linker stubs
 0x300085d8 PROVIDE (__load_start_segment1 = LOADADDR (segment1))
 [!provide] PROVIDE (__load_stop_segment1 = (LOADADDR (segment1) +
 SIZEOF (segment1)))
 0x00000030 PROVIDE (__load_size_segment0 = SIZEOF (segment0))
 0x00000030 PROVIDE (__load_size_segment1 = SIZEOF (segment1))

The segment0, segment1, and symbols are defined properly. Segment information can be retrieved from the
map file, as shown in Table 2.

Segment RAM address ROM address Size

0 0x0 0x3000085A8 0x30

1 0x0 0x3000085D8 0x30

Table 2. Segment information

2.1.2 Keil μVision IDE

The following steps overlay all the code in source/segment0 and source/segment1. The linker script is
based on MIMXRT1176xxxxx_cm7_flexspi_nor.scf, which locates all the code in the external flash.

1. By using the pragma directive, a default section in the C source file can be specified. The definition of the
default section in source/segment0/task0.c is as follows:
#pragma clang section text="segment0"

AN14260 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 10 April 2024
4 / 13

NXP Semiconductors AN14260
Dynamic Loading of Code by Overlay

2. By using the OVERLAY attribute, RW_m_segment0/1 are loaded at the same address. The section name
(segment0/1) is used instead of the directory name in contrast with GCC.
The ScatterAssert function prevents the code placed to the ITCM from exceeding the size of the ITCM.
The definition of the execution region with the OVERLAY attribute is as follows:
 RW_m_segment0 m_qacode_start OVERLAY
 {
 * (segment0)
 }
 RW_m_segment1 m_qacode_start OVERLAY
 {
 * (segment1)
 }
 RW_m_ram_text +0 { ;
 * (CodeQuickAccess)
 }
 ScatterAssert((LoadLength(RW_m_segment0) + LoadLength(RW_m_ram_text)) <
 m_qacode_size)
 ScatterAssert((LoadLength(RW_m_segment1) + LoadLength(RW_m_ram_text)) <
 m_qacode_size)

Note:
Armlink does not have a counterpart of the NOCROSSREFS option in GCC.
A custom script to interpret cross-reference information from the armlink must be created to detect invalid
cross-references.

3. ROM and RAM addresses are known at linking time. It can be seen in the map file as follows:
 Load Region LR_m_text (Base: 0x30000400, Size: 0x00005900, Max: 0x03fbfc00,
 ABSOLUTE)
 Execution Region RW_m_segment0 (Exec base: 0x00000000, Load base: 0x30005c18,
 Size: 0x0000004c, Max: 0xffffffff, OVERLAY)
 Exec Addr Load Addr Size Type Attr Idx E Section Name
 Object
 0x00000000 0x30005c18 0x0000000a Ven RO 761 Veneer$$Code
 anon$$obj.o
 0x0000000a 0x30005c22 0x00000006 PAD
 0x00000010 0x30005c28 0x0000003c Code RO 623 segment0
 task0.o
 Execution Region RW_m_segment1 (Exec base: 0x00000000, Load base: 0x30005c68,
 Size: 0x0000004c, Max: 0xffffffff, OVERLAY)
 Exec Addr Load Addr Size Type Attr Idx E Section Name
 Object
 0x00000000 0x30005c68 0x0000000a Ven RO 762 Veneer$$Code
 anon$$obj.o
 0x0000000a 0x30005c72 0x00000006 PAD
 0x00000010 0x30005c78 0x0000003c Code RO 632 segment1
 task1.o

The segment0 and segment1 are defined properly. Segment information can be retrieved from the map file, as
shown in Table 3.

Segment RAM address ROM address Size

0 0x10 0x300005C28 0x3C

1 0x10 0x300005C72 0x3C

Table 3. Segment information

2.1.3 IAR embedded workbench for Arm

The following steps overlay all the code in source/segment0 and source/segment1. The linker script is
based on MIMXRT1176xxxxx_cm7_flexspi_nor.icf, which locates all the code in the external flash.

AN14260 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 10 April 2024
5 / 13

NXP Semiconductors AN14260
Dynamic Loading of Code by Overlay

1. Similar to Keil μVision IDE, by using a pragma directive, a default section in the C source file can be
specified.
The definition of the default section in source/segment0/task0.c is as follows:
#pragma default_function_attributes = @ "segment0"

2. By using the define overlay directive, segment0/1 is defined as Overlay.
By using the initialize manually directive, the section is split into sections for initializers and
initialized data. The initialization is not handled automatically at the startup. For more information, refer IAR
C/C++ Development Guide.
The definition of the named Overlay is as follows:
define overlay Overlay { section segment0 };
define overlay Overlay { section segment1 };
initialize manually { section segment0, section segment1 };

3. By using the place directive, the named Overlay is in the QACODE_region (ITCM). The placement of the
Overlay is as follows:
place in QACODE_region { overlay Overlay, block QACCESS_CODE };

ROM and RAM addresses are known at linking time. It can be seen in the map file as follows:
 Section Kind Address Size Object
 ------- ---- ------- ---- ------
"P8": 0x48
 Overlay 0x0 0x24 <Overlay>
 part 1:
 Overlay:1-1 0x0 0x24 <Init block>
 Veneer inited 0x0 0x8 - Linker created -
 segment0 inited 0x8 0x1c task0.o [7]part 2:
 Overlay:2-1 0x0 0x24 <Init block>
 Veneer inited 0x0 0x8 - Linker created
 –segment1 inited 0x8 0x1c task1.o [8]
…………
……………
 segment0_init 0x3000'6520 0x24 <Block>
 Initializer bytes const 0x3000'6520 0x24 <for Overlay:1-1>
 segment1_init 0x3000'6544 0x24 <Block>
 Initializer bytes const 0x3000'6544 0x24 <for Overlay:2-1>

The segment0 and segment1 are defined properly. Segment information can be retrieved from the map file, as
shown in Table 4.

Segment RAM address ROM address Size

0 0x0 0x300006520 0x24

1 0x0 0x300006544 0x24

Table 4. Segment information

3 Programming interface

In Section 2, RAM address, ROM address, and its size have been retrieved from the map file. For a
programmer, linker-defined symbols can be used to refer to the segment information. The defined symbols
depend on the tool chain, but the basic concept is common.

The definition of the segment information table is as follows:

typedef struct _segment_table_t
{

AN14260 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 10 April 2024
6 / 13

https://wwwfiles.iar.com/arm/webic/doc/EWARM_DevelopmentGuide.ENU.pdf
https://wwwfiles.iar.com/arm/webic/doc/EWARM_DevelopmentGuide.ENU.pdf

NXP Semiconductors AN14260
Dynamic Loading of Code by Overlay

 uint32_t* ram_addr;
 uint32_t* rom_addr;
 uint32_t size;
} segment_table_t;

#if defined(__CC_ARM) || defined(__ARMCC_VERSION)
extern uint32_t Image$$RW_m_segment0$$Base[];
extern uint32_t Load$$RW_m_segment0$$Base[];
extern uint32_t Image$$RW_m_segment0$$Length[];
extern uint32_t Image$$RW_m_segment1$$Base[];
extern uint32_t Load$$RW_m_segment1$$Base[];
extern uint32_t Image$$RW_m_segment1$$Length[];
#define SEGMENT0_RAM_ADDR Image$$RW_m_segment0$$Base
#define SEGMENT0_ROM_ADDR Load$$RW_m_segment0$$Base
#define SEGMENT0_SIZE (uint32_t)Image$$RW_m_segment0$$Length
#define SEGMENT1_RAM_ADDR Image$$RW_m_segment1$$Base
#define SEGMENT1_ROM_ADDR Load$$RW_m_segment1$$Base
#define SEGMENT1_SIZE (uint32_t)Image$$RW_m_segment1$$Length
#elif defined(__MCUXPRESSO)
extern uint32_t __base_SRAM_ITC_cm7[];
extern uint32_t __load_start_segment0[];
extern uint32_t __load_stop_segment0[];
extern uint32_t __load_size_segment0[];
extern uint32_t __load_start_segment1[];
extern uint32_t __load_stop_segment1[];
extern uint32_t __load_size_segment1[];
#define SEGMENT0_RAM_ADDR __base_SRAM_ITC_cm7
#define SEGMENT0_ROM_ADDR __load_start_segment0
#define SEGMENT0_SIZE (uint32_t)__load_size_segment0
#define SEGMENT1_RAM_ADDR __base_SRAM_ITC_cm7
#define SEGMENT1_ROM_ADDR __load_start_segment1
#define SEGMENT1_SIZE (uint32_t)__load_size_segment1
#elif defined(__ICCARM__) || defined(__GNUC__)
#pragma section = "Overlay"
#pragma section = "segment0_init"
#pragma section = "segment1_init"
#define SEGMENT0_RAM_ADDR __section_begin("Overlay")
#define SEGMENT0_ROM_ADDR __section_begin("segment0_init")
#define SEGMENT0_SIZE __section_size ("segment0_init")
#define SEGMENT1_RAM_ADDR __section_begin("Overlay")
#define SEGMENT1_ROM_ADDR __section_begin("segment1_init")
#define SEGMENT1_SIZE __section_size ("segment1_init")
#endif

segment_table_t segment_table[SEGMENTNUM] =
{
 {SEGMENT0_RAM_ADDR, SEGMENT0_ROM_ADDR, SEGMENT0_SIZE},
 {SEGMENT1_RAM_ADDR, SEGMENT1_ROM_ADDR, SEGMENT1_SIZE},
};

The modern computer is based on von Neumann architecture. In other words, code is data. Therefore, code
can be easily copied from ROM to RAM by using the memcpy() function. Also, DSB and ISB instructions must
be called to avoid unexpected behavior caused due to the old code prefetched. If the core is busy for other
tasks, DMA can be used to reduce the core loading.

The following shows how to load the code from ROM to RAM:

static void load_code(segment_index_t index)
{
 memcpy(__segment_table[index].ram_addr, __segment_table[index].rom_addr,
 __segment_table[index].size);
 __DSB();
 __ISB();
}

AN14260 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 10 April 2024
7 / 13

NXP Semiconductors AN14260
Dynamic Loading of Code by Overlay

Note: Instruction cache must be invalidated after copy if OCRAM is used instead of ITCM when cache is
enabled.

The main() function is given below. The segment0 has task0() function and segment1 has task1()
function and CodeQuickAccess has task2().

int main(void) {
 /* Init board hardware. */
 BOARD_ConfigMPU();
 BOARD_InitPins();
 BOARD_BootClockRUN();
 BOARD_InitDebugConsole();

 while (1) {
 load_code(SEGMENT0); // Dynamically load code in SEGMENT0
 task0();
 load_code(SEGMENT1); // Dynamically load code in SEGMENT1
 task1();
 task2();
 PRINTF(" Press any key to start again.\r\n\r\n");
 GETCHAR();
 }
}

Each task prints its address and static variable value to check whether the values are properly held even if the
other code overrides the code. The following shows the task0 prints its address and static variable value:

void task0(void) {
 static uint32_t count;
 PRINTF("task0 at %p (count = %d)\r\n", &task0, count++);
}

4 Running the demo

This demo runs on RT1170-EVKB and the MCUXpresso IDE is used for testing.

To run the demo, perform the following steps:

1. Connect a USB cable between the host PC and the OpenSDA USB port on the target board.
2. Open a serial terminal with the following settings:

• 115,200 baud rate
• 8 data bits
• No parity
• One stop bit
• No flow control

3. Download the program to the target board.
4. To begin running the demo, either press the reset button on the board or launch the debugger in the IDE.

Figure 2 shows a serial terminal output. The task0 and task1 are fetched from the same address in ITCM.
The task2 is also fetched from ITCM. Static variables are properly held even if the code is dynamically loaded
or unloaded.

AN14260 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 10 April 2024
8 / 13

NXP Semiconductors AN14260
Dynamic Loading of Code by Overlay

Figure 2. Serial terminal on the demo

Note: The value "task0 at 1" indicates that the function pointer has a value of 0x1. However, Table 2
requires the physical address to be 0x0. This mismatch occurs because the least significant bit (LSB) of the
function pointer is set to indicate that it points to a Thumb instruction.

5 Benchmark test

Table 5 shows the CoreMark result in each section on the condition that the data is in DTCM. The code in
segment0/1 is as fast as the code in CodeQuickAccess. Code in .text* is about four times slower than
other section.

Section CoreMark

.text* 1145

segment0 4024

segment1 4024

CodeQuickAccess 4049

Table 5. CoreMark in each section

Note: ICACHE is disabled when CoreMark is measured in .text* section.

It is improved by enabling ICACHE, but it depends on the locality of reference.

6 Conclusion

The i.MX RT series has a high-performance core. However, if code is fetched from external memory under low
locality of reference, the core performance is not the best.

For some cases, overlay is effective to improve performance and is such a simple method that it is applicable
even to BareMetal without any operating system.

AN14260 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 10 April 2024
9 / 13

NXP Semiconductors AN14260
Dynamic Loading of Code by Overlay

On the other hand, it can get complex for software to manage many segments because the programmer must
pay attention to which function is in which segment. Otherwise, it causes a runtime error or cross-reference
error at linking time.

7 References

The references used to supplement this document are as follows:

• Placement of sections with overlays: ARM Compiler armlink User Guide Version 6.01
• Overlays
• Overlay Code with GCC: Overlay Code with GCC
• Overlay and manual initialization example: IAR C/C++ Development Guide

8 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

9 Revision history

Table 6 summarizes the revisions to this document.

Document ID Release date Description

AN14260 v.1.0 10 April 2024 Initial public release

Table 6. Revision history

AN14260 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 10 April 2024
10 / 13

https://developer.arm.com/documentation/dui0803/b/Scatter-loading-Features/Placement-of-sections-with-overlays?lang=en
https://ftp.gnu.org/old-gnu/Manuals/ld-2.9.1/html_node/ld_22.html
https://forums.parallax.com/discussion/163970/overlay-code-with-gcc
https://wwwfiles.iar.com/arm/webic/doc/EWARM_DevelopmentGuide.ENU.pdf

NXP Semiconductors AN14260
Dynamic Loading of Code by Overlay

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

AN14260 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 10 April 2024
11 / 13

mailto:PSIRT@nxp.com

NXP Semiconductors AN14260
Dynamic Loading of Code by Overlay

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

IAR — is a trademark of IAR Systems AB.
i.MX — is a trademark of NXP B.V.

AN14260 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 10 April 2024
12 / 13

NXP Semiconductors AN14260
Dynamic Loading of Code by Overlay

Contents
1 Introduction .. 2
1.1 Overview ..2
2 Software implementation overview3
2.1 Linker script ... 3
2.1.1 MCUXpresso IDE (GCC)3
2.1.2 Keil μVision IDE ...4
2.1.3 IAR embedded workbench for Arm 5
3 Programming interface 6
4 Running the demo ...8
5 Benchmark test ..9
6 Conclusion ... 9
7 References ..10
8 Note about the source code in the

document ..10
9 Revision history ...10

Legal information ...11

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com

Date of release: 10 April 2024
Document identifier: AN14260

	1 Introduction
	1.1 Overview

	2 Software implementation overview
	2.1 Linker script
	2.1.1 MCUXpresso IDE (GCC)
	2.1.2 Keil μVision IDE
	2.1.3 IAR embedded workbench for Arm

	3 Programming interface
	4 Running the demo
	5 Benchmark test
	6 Conclusion
	7 References
	8 Note about the source code in the document
	9 Revision history
	Legal information
	Contents

