
AN14170
SPI/DMA Implementations Using i.MX RT500
Rev. 1 — 25 January 2024 Application note

Document information
Information Content

Keywords i.MX RT500, i.MX RT600, SPI

Abstract This application note provides details on how to replicate and solve the SPI limitation that can
occur in case of high SPI DMA traffic use case.

https://www.nxp.com

NXP Semiconductors AN14170
SPI/DMA Implementations Using i.MX RT500

1 RT500 introduction

The i.MX RT500 is a family of dual-core microcontrollers for embedded applications featuring an Arm Cortex-
M33 CPU combined with a Cadence Xtensa Fusion F1 Audio Digital Signal Processor CPU. The Cortex-M33
includes two hardware coprocessors providing enhanced performance for an array of complex algorithms. The
family offers a rich set of peripherals and very low power consumption. The device has up to 5 MB SRAM,
two FlexSPIs (Octal/Quad SPI Interfaces) each with 32 KB cache, one with dynamic decryption, high-speed
USB device/ host + PHY, 12-bit 1 MS/s ADC, Analog Comparator, Audio subsystems supporting up to 8 DMIC
channels, 2.5D Vector GPU and LCD Controller with MIPI DSI PHY, 2 SDIO/eMMC; FlexIO; AES/SHA/Crypto
M33 coprocessor and PUF key generation.

The i.MX RT500 provides as well 12 Flexcomm modules that can be configured for one of these protocols:
USART, SPI, I2C, I2S.

Coupled with the DMA, the i.MX RT500 offers an efficient way to communicate with peripherals by offloading the
CPU that improves latency and performance.

This Application Note discusses performance limitations with high-bandwidth scenarios and how to overcome
these limitations.

2 SPI + DMA performance limitation

In a standard use of SPI + DMA, both the SPI Tx and Rx traffic are handled by the DMA to transfer data from/to
the memory to/from peripherals. In some scenarios, many peripherals can be connected to the SPI bus creating
high DMA traffic. In such cases, a bandwidth limitation can be reached, resulting in SPI data stalls. We noticed
that sometimes the SPI data can reach the RT500 SPI interface but would not end up in the SRAM, resulting in
missing bytes. It is explained by a DMA heavily loaded, conducting to an Rx FIFO overflow.

This test demonstrates this limitation, where Flexcomm 5 is used as SPI (SPI5) in mode 0 (CPOL=0,
CPHAL=0). SPI5 MISO and MOSI are interconnected. A GPIO ERROR is triggered when an Rx FIFO overflow
has occurred caused by the DMA not emptying the FIFO fast enough.

The DMA is configured to service two requests coming from SPI5 – the SPI Tx DMA channel (11) copies
test pattern bytes from 0x01 to 0x3F located in the SRAM to the SPI 5 FIFOWR register 28 times; the SPI5
Rx DMA channel (10) transfers data from the SPI5 FIFORD to the GPIOs D[3:0]. D[3:0] represents the
data copied by the DMA to GPIOs instead of the SRAM, it is defined by the macro TEST_DESTINATION =
DESTINATION_PORT. To reproduce the limitation, the macro TEST_TO_RUN must be defined to ISSUE.

AN14170 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 25 January 2024
2 / 19

NXP Semiconductors AN14170
SPI/DMA Implementations Using i.MX RT500

Figure 1. Capture of the full SPI transfers containing the error

Figure 2. Capture of SPIs transfers and the values transmitted

AN14170 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 25 January 2024
3 / 19

NXP Semiconductors AN14170
SPI/DMA Implementations Using i.MX RT500

Figure 3. Capture of the SPIs values transmitted and the missing value

Transition D[3] D[2] D[1] D[0] D[3.0]

1-2 0 0 0 0 0x10

2-3 0 0 0 1 0x11

3-4 0 0 1 0 0x12

4-5 0 0 1 1 0x13

5-6 0 1 0 0 0x14

6-7 0 1 0 1 0x15

7-8 0 1 1 1 0x17

8-9 1 0 0 0 0x18

9-10 1 0 0 1 0x19

10 1 0 1 0 0x1A

Table 1. Data received on the SPI bus

The data are received consecutively, until data 0x16 that is missing. However, the first capture shows that
the data byte 0x16 is correctly received by the SPI Rx. ERROR GPIO is triggered at the end of the SPI
communication.

Here is an example of a working communication:

AN14170 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 25 January 2024
4 / 19

NXP Semiconductors AN14170
SPI/DMA Implementations Using i.MX RT500

Figure 4. Capture of the full SPI transfers without errors

3 Workarounds

To overcome this limitation, different mechanisms can be developed. We will explore two possible SPI + DMA
configurations, with their pros and cons and how they work.

3.1 Implementation 1
The idea of this implementation is to get a "back to back" transfer pattern and use 100 % of the SPI bus with
minimal additional resources.

The first implementation is a fully hardware-based approach using the DMA trigger output mechanism to drive
additional DMA channels, called channel chaining. Channel chaining is a feature that allows completion of a
DMA transfer on channel x to trigger a DMA transfer on channel y.

Here one trigger and 2 DMA channels (Rx DMA and Tx DMA) are used, where the falling edge triggers both
channels.

The SPI5 Rx DMA channel (10) has peripheral requests enabled, uses the falling edge trigger and burst transfer
with burst size of 4 word to perform a single transfer from the SPI RxFIFO to the buffer array in SRAM. The first
transfer is triggered by software, then is hardware triggered for the remaining transfers. This DMA channel input
and output triggers are both routed to the DMAC0_TRIGOUT_A. SPI5 Rx DMA channel has a priority higher
than the SPI5 DMA Tx channel. SPI5 Rx DMA may uses two linked descriptors, in the case where the DMA
transfers length is m (1/2/3) + 4 x n, otherwise only one descriptor is necessary.

The SPI5 Tx DMA channel (11) performs memory-to-memory transfers from the Tx buffer array in the SRAM to
the SPI5 TxFIFO. It has peripheral requests disabled, and uses the falling edge trigger and burst transfer with
burst size of 4 words to perform a single transfer. The input trigger of the channel comes from the SPI5 DMA Rx
channel trigger output, and uses two linked descriptors. The first descriptor performs several 8-bit transfers to
the TxFIFO, always a multiple of 4, and the second (the tail) performs no less than a single and no more than
4 32-bit write to the TxFIFO generating the last SPI exchange, depending on the transfer length. For instance,
if the total number of SPI bytes that must be sent is divisible by 4 then the tail descriptor sends 4 bytes + SPI
control content, otherwise this descriptor sends the number of bytes + control/words that equals the overall
number of bytes modulo 4.
AN14170 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 25 January 2024
5 / 19

NXP Semiconductors AN14170
SPI/DMA Implementations Using i.MX RT500

Having the parameter m of the transfer length other than 0 helps an artificial "misalignment" to be implemented
between the SPI Rx and Tx DMA channels in a way that when the Rx DMA channel has officially completed a
burst and is about to generate a new one, the FIFOWR still has entries in it ready to get into the SPI serial shift
register (written there by the matching Tx DMA burst); these residual entries in the FIFOWR help bridge the gap
that causes the SPI bus to be idle until the SPI Rx DMA channel generates a new trigger and causes the next
Tx DMA burst to write a new set of 4 data.

For instance, let us consider a SPI transfer of 16 bytes, and parameter m = 1.

For Tx: 16 / 4 = 0, so the Tx main descriptor transfers 12 bytes, and the tail descriptor transfers 4 bytes.

For Rx: (16 - 1) mod 4 = 3, so Rx main descriptor transfers 13 bytes, and the tail descriptor transfers 3 bytes.

The overall mechanism is as follows:

• SPI5 Rx DMA channel gets setup first so that SPI Rx stream can be handled. By using the SW trigger this
channel gets the initial trigger and awaits for a request to come from the peripheral.

• SPI5 Tx DMA channel is set next and as it is configured to perform memory-to-memory transfers, the moment
the SW trigger is set it performs a burst of 4 transfers into the TxFIFO. When completed, the SPI5 Tx DMA
channel trigger is cleared as bursts are used and is awaiting a new trigger.

• When the SPI5 receives bytes it generates DMA requests; as the DMA Rx channel is already triggered by
SW, the DMA Rx channel generates a burst of 4 transfers and copies received data from the SPI RxFIFO into
the Rx array in the SRAM. A DMA channel burst clears the trigger and this falling edge is routed via the output
trigger signal both to the DMA Rx channel input trigger and the DMA Tx channel input trigger.

• As both DMA Rx and Tx channels are configured to be trigger falling edge sensitive both get triggered again,
this time by the HW mechanism.

• This trigger causes the DMA Tx channel to send the second piece of data over the SPI5 while the same edge
primes the DMA Rx channel that is now ready to pick-up data the moment it becomes available in the SPI5
RxFIFO.

• This mechanism is repeated until the end of the transfer, where the second Tx descriptor is loaded and the
second Rx descriptor may be loaded depending on the transfer size. The Tx descriptor performs one to four
32-bits writes to the TxFIFO to complete the SPI transfers and deselect the SSEL line. The Rx descriptor, if
loaded, performs the necessary 8-bit reads to complete the SPI transfers.

3.1.1 Code implementation

Figure 5. Definition of the SPI channels used in DMA requests

The following code:

• The DMA channel dma_desc_spi_rx_main request is routed via the OTRIG_SEL[1] to the
DMAC0_TRIGOUT_A.

• The DMA channel dma_desc_spi_rx_main input trigger is routed via ITRIG_SEL[12] to the
DMAC0_TRIGOUT_A.

AN14170 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 25 January 2024
6 / 19

NXP Semiconductors AN14170
SPI/DMA Implementations Using i.MX RT500

The intent of this configuration is to trigger the DMA transfer of the channel based on a falling
edge on DMAC0_TRIGOUT_A, and for this DMA channel to trigger on a falling-edge DMA
channel dma_desc_spi_tx_main when the SPI5 Rx DMA request is gone.

Figure 6. SPI Rx DMA channel routing and trigger configuration

The following code:

• The DMA channel dma_desc_spi_tx_main request is routed via the OTRIG_SEL[1] to the
DMAC0_TRIGOUT_A.

• The DMA channel dma_desc_spi_tx_main input trigger is routed via ITRIG_SEL[12] to the
DMAC0_TRIGOUT_A.

Figure 7. SPI Tx DMA channel routing and trigger configuration

The following code configures the Rx tail transfer created depending on the transfer size. Perform a total of
rx_tail_len 8-bit transfers with the destination address incremented by 1 width of the transfer. The trigger is
cleared when this descriptor is exhausted.

rx_tail_len size depends on the transfer size and the 'm' parameters creating the Rx and Tx artificial
"misalignment".

dma_desc_spi_rx_add1 descriptor copies data from the SPI RxFIFO to the holding variable in the SRAM
"spi_rx_array_8bit".

Figure 8. Rx tail transfer configuration

The following code defines the dma_desc_spi_rx_main descriptor that copies data from the SPIS RxFIFO to
the holding variable in the SRAM spi_rx_array_8bit. Depending on the transfer size, reload the tail descriptor
dma_desc_spi_rx_add1.

AN14170 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 25 January 2024
7 / 19

NXP Semiconductors AN14170
SPI/DMA Implementations Using i.MX RT500

Figure 9. dma_desc_spi_rx_main descriptor definition

The following code configures the dma_desc_spi_rx_main DMA that is HW triggered on the falling edge, with
the burst transfer enabled of size 4.

It also configures the dma_desc_spi_rx_main transfer that performs a total of rx_body_len 8-bit transfers, with
the destination address incremented by 1 width of the transfer. The trigger is cleared when this descriptor is
exhausted.

Finally, the channel control structure is reloaded when the current descriptor is exhausted (from
dma_desc_spi_rx_main_xfercfg_temp).

Figure 10. dma_desc_spi_rx_main DMA and transfer configuration

The following code configures the Tx tail transfer. It performs a total of tx_tail_len 32-bit transfers with the
source address incremented by 1 width of the transfer. The trigger is cleared when this descriptor is exhausted.

rx_tail_len size depends on the transfer size.

It also defines the dma_desc_spi_tx_add1 descriptor that copies data from the buffer array in the SRAM
spi_tx_array_tail to the TxFIFO.

AN14170 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 25 January 2024
8 / 19

NXP Semiconductors AN14170
SPI/DMA Implementations Using i.MX RT500

Figure 11. Tx tail transfer configuration and dma_desc_spi_tx_add1 descriptor definition

The following code defines the dma_desc_spi_tx_main descriptor that copies data from the buffer array in the
SRAM spi_tx_array_8bit to the TxFIFO and reloads the tail descriptor dma_desc_spi_tx_add1.

It also defines the dma_desc_spi_tx_main DMA configuration that is HW-triggered on the falling edge with the
burst transfer enabled of size 4.

Finally, it defines the Tx transfer configuration with the channel's control structure reloaded when the current
descriptor is exhausted, performs a total of tx_body_len 8-bit transfers with the source address incremented by
1 width of the transfer. The trigger is cleared when this descriptor is exhausted.

Figure 12. dma_desc_spi_tx_main descriptor and DMA transfer configuration definition

The following code prepares spi_tx_array_tail written by dma_desc_spi_tx_add1 to the TxFIFO.
spi_tx_array_tail is the buffer array in the SRAM spi_tx_array_8bit combined with the SPI command
spi_fifowr_ctrl to deselect SSEL via the SPI FIFOWR register.

Figure 13. spi_tx_array_tail preparation

AN14170 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 25 January 2024
9 / 19

NXP Semiconductors AN14170
SPI/DMA Implementations Using i.MX RT500

The following code configures the dma_desc_spi_rx_main transfer, which is the same as previously configured,
but with the software trigger enabled. Finally, it enables the DMA channel 10.

It configures the dma_desc_spi_tx_main transfer that is software-triggered with the channel's control structure
reloaded when the current descriptor is exhausted, performs a total of tx_body_len 8-bit transfers with the
source address incremented by 1 width of the transfer. The trigger is cleared when this descriptor is exhausted.
Finally, it enables DMA channel 11.

Figure 14. dma_desc_spi_rx_main and dma_desc_spi_tx_main transfers configuration

Here is an example of the implementation with different SPI frequencies.

Figure 15. Capture of the workaround 1 tested with different SPI frequencies

Figure 16. Capture of SPI transfers for a frequency

This implementation requires only 1 DMA output trigger as an additional resource. This workaround gives the
best SPI bus performance with 100% of utilization by leveraging the back-to-back transfer pattern. Regarding
the performance, there is no regression compared to the initial implementation. Therefore, the drawback of this
implementation is in terms of resources, where 1 DMA output trigger is required.

AN14170 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 25 January 2024
10 / 19

NXP Semiconductors AN14170
SPI/DMA Implementations Using i.MX RT500

3.2 Implementation 2
The idea is for the SPI TxFIFO empty to generate an interrupt and knowing the current level at the RxFIFO to
write as many entries as possible/available to the TxFIFO. Only one DMA channel is used to transfer data from
the RxFIFO to the SRAM. The SPI5 interrupt service routine is used to fill the SPI TxFIFO, when the TxFIFO is
empty. This DMA channel input and output triggers are both routed to the DMAC0_TRIGOUT_A, as same as
the SPI5 DMA Rx channel.

Here is an example showing the SPI Tx traffic handled by the SPI interrupts and the Rx traffic by the DMA.

Figure 17. Capture of the workaround 2 implementation

3.2.1 Code implementation

The overall mechanism is as follows:

• SPI5 sends data directly by software writing to the SPI5 TxFIFO.
• DMA for SPI5 Rx (channel 10, that is dma_desc_spi_rx_main) is configured. When SPI5 Rx receives the

data, it generates a DMA Rx request and dma_desc_fc5_rx_main copies this data from SPI5 RxFIFO into
the buffer array in SRAM. The dma_desc_fc5_rx_main descriptor is programmed to perform several transfers
corresponding to the number of free space in the RxFIFO. Therefore, it must increment the destination
address of 1 width of the transfer. The dma_desc_spi_rx_main descriptor is SW-triggered.

• SPI5 is configured to trigger an interrupt when the SPI5 TxFIFO is empty. Each time the interrupt is triggered,
the RxFIFO is checked to retrieve the remaining free space. If the RxFIFO is not full, there must be as many
as possible entries written in the TxFIFO.

Figure 18. SPI configured to trigger an interrupt when the SPI TxFIFO is empty

AN14170 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 25 January 2024
11 / 19

NXP Semiconductors AN14170
SPI/DMA Implementations Using i.MX RT500

Figure 19. SPI FIFO configuration

The first two bytes are received (specifying the length/transfer count) and this information is collected with the
SPI in the polling mode.

Figure 20. Control bytes sent to SPI FIFO

The following code copies the SPI Rx DMA data from the SPI Rx FIFO and links itself to the next descriptor
located in the descriptors array with the same properties.

Figure 21. Data copied from the SPI Rx FIFO

AN14170 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 25 January 2024
12 / 19

NXP Semiconductors AN14170
SPI/DMA Implementations Using i.MX RT500

Figure 22. DMA configuration and descriptors definitions

The following code stores the SPI Rx DMA data into the buffer array in the SRAM pnt_rx_array. The DMA
transfer configuration enables the channel 's control structure to reload when the current descriptor is
exhausted.

The DMA software is triggered and is configured to perform a total of spi_rx_descriptor_count_loc transfers with
the destination address incremented by 1 width of the transfer.

Figure 23. DMA transfer configuration definition

The following code updates the last DMA transfer configuration to clear the trigger when the descriptor is
exhausted, disable the reload of the descriptor and disable the Interrupt flag A. Finally, it starts SPI Tx and the
DMA Rx.

AN14170 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 25 January 2024
13 / 19

NXP Semiconductors AN14170
SPI/DMA Implementations Using i.MX RT500

Figure 24. SPI Rx DMA transfer configuration update

The following code defines the SPI TxFIFO empty interrupt. It checks RxFIFO to retrieve the remaining free
space. If the RxFIFO is not full, there must be as many as possible entries written in the TxFIFO.

AN14170 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 25 January 2024
14 / 19

NXP Semiconductors AN14170
SPI/DMA Implementations Using i.MX RT500

Figure 25. SPI TxFIFO empty interrupt handler definition

This implementation avoids the RxFIFO overflow and data to be stalled without additional DMA resources
required. It instead leverages the SPI TxFIFO interrupt to send new data. However, the Tx traffic is impacted
with a performance reduction, transfers are 28 % slower.

3.3 Performance comparison

One pattern transfer (in
us)

Time between transfer (in us) Total transfer (pattern x 28) (in
ms)

Issue 63.88 232 8.8

Workaround 1 64 187 7.63

Workaround 2 199 206 11.26

Table 2. Performance comparison of the SPI DMA limitation and proposed workarounds

AN14170 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 25 January 2024
15 / 19

NXP Semiconductors AN14170
SPI/DMA Implementations Using i.MX RT500

4 Conclusion

This application note demonstrated 2 different approaches to avoid the SPI + DMA bandwidth limitation with
their own advantages and constraints. However, these approaches reduce SPI’s capabilities in terms of
performance or available resources.

Major modifications are shown in this application note. For further information, refer directly to the available
code.

5 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

6 Revision history

Document ID Release date Description

AN14170 v.1 25 January 2024 Initial version

Table 3. Revision history

AN14170 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 25 January 2024
16 / 19

NXP Semiconductors AN14170
SPI/DMA Implementations Using i.MX RT500

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

AN14170 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 25 January 2024
17 / 19

mailto:PSIRT@nxp.com

NXP Semiconductors AN14170
SPI/DMA Implementations Using i.MX RT500

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

Cadence — the Cadence logo, and the other Cadence marks found at www.
cadence.com/go/trademarks are trademarks or registered trademarks of
Cadence Design Systems, Inc. All rights reserved worldwide.
i.MX — is a trademark of NXP B.V.
Microsoft, Azure, and ThreadX — are trademarks of the Microsoft group of
companies.

AN14170 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 25 January 2024
18 / 19

https://www.cadence.com/go/trademarks
https://www.cadence.com/go/trademarks

NXP Semiconductors AN14170
SPI/DMA Implementations Using i.MX RT500

Contents
1 RT500 introduction .. 2
2 SPI + DMA performance limitation2
3 Workarounds ..5
3.1 Implementation 1 ... 5
3.1.1 Code implementation ...6
3.2 Implementation 2 ... 11
3.2.1 Code implementation11
3.3 Performance comparison15
4 Conclusion ... 16
5 Note about the source code in the

document ..16
6 Revision history ...16

Legal information ...17

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com

Date of release: 25 January 2024
Document identifier: AN14170

	1 RT500 introduction
	2 SPI + DMA performance limitation
	3 Workarounds
	3.1 Implementation 1
	3.1.1 Code implementation

	3.2 Implementation 2
	3.2.1 Code implementation

	3.3 Performance comparison

	4 Conclusion
	5 Note about the source code in the document
	6 Revision history
	Legal information
	Contents

