
DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT

DRAFT DRAFT

DRAFT
AN14139
Optimizing Performance on MCX N-Series MCUs
Rev. 1.0 — 20 January 2024 Application note

Document information
Information Content

Keywords AN14139, MCX, performance, cache, MCXN54x, MCXN94x

Abstract This application note explains the features of MCX N-series devices that can affect system
performance.

https://www.nxp.com

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT

DRAFT DRAFT

DRAFT

NXP Semiconductors AN14139
Optimizing Performance on MCX N-Series MCUs

1 Introduction

In embedded systems, resources are often limited and getting the best possible performance out of those
resources can be critical. Although high performance and low power can seem contradictory, entering a low-
power mode after completing a task quickly can reduce system power consumption. Therefore, almost any
system can benefit from efforts to improve performance.

Increasing performance for an embedded system can be a complicated task. Often the nuances of the inner
workings of the architecture and features can impact the system. In addition, every system can have different
performance goals. For instance, one system can prioritize CPU performance, while another can prioritize
optimizing throughput for communication ports like Ethernet or USB.

This application note explains the features of MCX N-series devices that can affect system performance. The
document is not a step-by-step guide on optimizing an application as there are no hard rules that work for all
cases. By explaining key architectural and system and module features, this document allows you to make
informed decisions for your system hardware and software.

2 MCX N-series architecture overview

The system architecture is one of the biggest factors in the overall system performance. How the different
blocks fit together also has an impact on some of the module-level features. So, the first step to understanding
how to optimize system performance is understanding the architecture from a high level.

Figure 1 shows a simplified block diagram of the MCX N94x family device. This family is selected because it
shows the superset for the performance features that are discussed in further sections. The other MCX N-series
devices do not have the same features, but in general, the overall architecture is largely the same.

AN14139 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 20 January 2024
2 / 14

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT

DRAFT DRAFT

DRAFT

NXP Semiconductors AN14139
Optimizing Performance on MCX N-Series MCUs

LPCAC
16 KB

Arm Cortex-M33 core

Coprocessor interface
with math function

TZ DSP FPU

Multilayer
AHB matrix

M0 M1

C
od

e

Sy
st

em

NPU (N1-16)
with 2 KB cache

M11

D

Power
Quad

4× 4 KB
private RAM

2× 2 KB
PKC RAM

O D I C

Sy
st

em

CoolFlux
BSP32

M7 M8 M9 M10 M2 M3 M4 M5 M6 P0

P1

P16

P2

P3

P4

P5

P6

P7

P8

P9

P10

P12
P13

P14

P15
P11

M12 M13 M14

P

DMA
0

DMA
1 PKC ELS USB FS USB HS uSDHC

RAMH
32 KB

FMC

Clocks,
power control,
DC-DC converter,
LDOs,
system functions

PoR

PRINCE FMU
Flash memory

1 MB

Flash memory
1 MB

ENETMicr-CM33
coreSmart DMA

X Y

ROM

CACHE64
(16 KB)

IPED
W/GCM

FlexSPI

RAMX
96 KB

RAMA
32 KB

RAMB
32 KB

RAMD
64 KB

RAMC
64 KB

RAMF
64 KB

RAME
64 KB

RAMG
64 KB

SYSCON
(clock, reset, wake-up)

WWDT(0,1)

GPIO PINT

MRT

Peripheral input
muxes [2]

CTIMER 0

APB
bridge 0

APB
bridge 1

UTICK

CTIMER (1,2,3,4)

FREQME
CACHE64_POLSEL

FMU

TSI

PORT0

CMC

LPTMR 0,1

WUU

SPC

CMP (0,1)

RTC [3]

TDET

GPIO5

PORT5

VBAT

VBAT
domain

VSYS
domain

Notes:
[1] : Each LP_FLEXCOMM includes UART, SPI and I2C.
[2] : Peripheral input muxes of peripherals in the Wake domain must be put into the Wake domain.
[3] : RTC is partitioned to rtc_lp (VBAT domain) and rtc_hp (LV domain).

VDD_CORE_WAKE
domain

VDD_CORE_MAIN
domain Multiple layer AHB matrix 0

EMVSIM (0,1)

FlexIO

SAI (0,1)

SINC Filter

uSDHC

ADC (0,1)

12-bit DAC (0,1)

OPAMP (0,1,2)

VREF

ENET

MICFIL

USBHS

USB HS PHY
and DCD

CMP2

SCG

OSTIMER

14-bit DAC

PORT (1,2,3,4)

EIM

ERM

INTM

ELS

TRNG

AHBSC

GDET(0,1)

PKC

PUF

CoolFlux BSP32
PLU

SmartDMA

SM3 Accelerator

AIPS
bridge 0

AIPS
bridge 4

FlexSPI-CMX_PERF

LPCAC-CMX_PERF

MBC

FlexSPI

OTPC

CRC

NPX

PWM (0,1)

CAN (0,1)

ENC (0,1)

EVTG

USBFS

USB FS DCD

AIPS
bridge 3

USBFS RAM

Debug Mailbox

LP_FLEXCOMM (4-9)

CDOG0

CDOG1

Power Quad

NPU

MAILBOX IPC

LP_FLEXCOMM (2,3)

LP_FLEXCOMM (0,1)

SCTIMER / PWM

GPIO0

GPIO 1,2,3,4

PKC RAM

PKC RAM interface

eDMA 1

eDMA 1 CH0-15

SEMA42

AIPS
bridge 2

eDMA 0

eDMA 0 CH0-15

AIPS
bridge 1

MPU Debug
interface

LVD/HVD

FRO

PLL

EWM

I3C1

I3C0

[1]

[1]

Figure 1. Bus matrix block diagram

2.1 Core buses on MCX
The Arm Cortex M33 core uses a pseudo-Harvard architecture with several memory-mapped buses:

• Code - The code bus is used to access addresses 0x0000_0000-0x1FFF_FFFF. As the name implies, it is
used for instructions; however, data can also be accessed on this bus.

• System - The system bus is used for all accesses to addresses between 0x2000_0000-0xDFFF_FFFF and
0xE010_0000-0xFFFF_FFFF.

• Private peripheral bus - The private peripheral bus (PPB) is mapped to addresses
0xE004_0000-0xE00FFFFF.

The performance is the same for both the code and system bus. NXP recommends using the code bus for
instructions and the system bus for data. Using both the code and system bus allows the core to access
instructions and data in parallel.

2.2 MCX N-series memory map
To maximize code bus usage by applications, key memory regions have been included in the MCX system
memory map at addresses below 0x2000_0000. Whenever possible, code bus regions should be used for
storing instructions.

AN14139 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 20 January 2024
3 / 14

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT

DRAFT DRAFT

DRAFT

NXP Semiconductors AN14139
Optimizing Performance on MCX N-Series MCUs

Table 1 shows a simplified memory map with regions for the non-secure code bus on the MCX Nx4x devices.
These memory regions include an aliased region for the optional FlexSPI controller. Normally the FlexSPI
region is in the system bus portion of the memory map. The aliased region has been added so that the memory
is also available on the code bus. This allows for the most efficient performance when executing code from
external memory and enables the use of the LPCAC for the FlexSPI.

Start address End address Description Size

0x0000_0000 0x001F_FFFF Program Flash 2 MB

0x0300_0000 0x0303_FFFF ROM 256 KB

0x0400_0000 0x0401_7FFF RAMX 96 KB

0x0800_0000 0x0FFF_FFFF FlexSPI alias 128 MB

Table 1. Simplified MCX Nx4x code bus memory map

Note: The boot ROM does support booting from external flash on the FlexSPI. However, the ROM expects the
initial PC in the vector table for a FlexSPI boot image in the FlexSPI system bus address range. The check is
only done on the PC in the vector table. The image itself can be linked to run from the aliased FlexSPI code bus
region.

The on-chip flash memory is only accessible on the code bus. Typically, the flash is primarily used to store
instructions. If a large amount of data stored in a flash is accessed regularly, it can be beneficial to copy the data
to internal RAM.

On-chip RAMs are instantiated as multiple blocks where the RAMX block is mapped to the code bus, and
RAMA-RAMH are mapped to the system bus. RAMX is used for storing RAM code, and RAMA-RAMH are
intended for data storage.

Note: The number and size of the RAM blocks vary depending on the specific N-series device.

3 MCX memories and caches

The following sections discuss how the usage and configuration of memories and caches can impact
performance.

3.1 Flash
MCX N-series devices include up to 2 Mbytes of on-chip flash memory. The flash is the primary location for
code and non-volatile data.

3.1.1 Wait states

Usually, the flash access time requires adding wait states to the on-chip flash access. The FMU_FCTRL[RWSC]
value configures the wait states for the flash. Table 2 shows an example of minimum wait state values for
different voltage and frequency configurations. To see the wait state requirements of the flash for your MCX
device, refer to the chip-specific information section of the FMU chapter in the device reference manual.

By default, the flash wait states are configured with a value that supports the maximum frequency of the device.
For the device shown in Table 2, the flash is configured for three wait states by default. If a lower frequency
is used, the wait state value must be reconfigured to improve performance. For example, if the maximum
frequency for the system is 100 MHz, RWSC can be reconfigured for two wait states instead of the default
three.

AN14139 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 20 January 2024
4 / 14

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT

DRAFT DRAFT

DRAFT

NXP Semiconductors AN14139
Optimizing Performance on MCX N-Series MCUs

Voltage mode Overdrive (1.2 V) Normal voltage
(1.1 V)

Mid voltage (1.0 V) FMU_FCTRL[RWSC]

101 MHz to 150 MHz -- -- 0011 (three wait states)

65 MHz to 100 MHz 65 MHz to 100 MHz -- 0010 (two wait states)

37 MHz to 64 MHz 37 MHz to 64 MHz 25 MHz to 50 MHz 0001 (one wait state)
Frequency

<= 36 MHz <= 36 MHz <= 24 MHz 0000 (single cycle access)

Table 2. FMU_FCTRL[RWSC] minimum values based on frequency and mode

Note:

The flash memory controller includes features to minimize the exposure of the wait states when accessing
flash. These features are described in the following sections. However, the flash wait states must always be
configured to at least the minimum value based on the current voltage and frequency conditions.

The SDK clock drivers do not automatically change flash wait states. When changing the voltage or bus
frequency for the system, the application must ensure that the flash wait states are set to a valid and optimized
value.

3.1.2 Flash memory controller (FMC)

The FMC manages accesses performed by the bus managers of the system to the flash memory. The FMC
accelerates flash memory transfers to allow program code execution at a higher clock frequency than flash
memory.

The FMC provides two separate mechanisms for accelerating read operations to the flash memory:

• 128-bit prefetch buffer, which can prefetch the next 128-bit flash memory location.
• 64-byte cache is organized as a one set, four-way associative cache with 128-bit (or 16-byte) size entries.

Note: The flash memory module (FMU) directly manages erase and program cycles. Because these cycles
bypass the FMC, its cache and buffers have no visibility to flash, erase, and program operations. Software is
required to maintain memory coherence when any segment of the flash cache is programmed. For example, all
buffer data associated with the reprogrammed flash must be invalidated.

The speculation logic is tuned to work with the flash cache enabled. The speculation logic assumes that the
data is moved to the cache when any access hits the speculation buffer. The speculation buffer immediately
requests the next sequential flash phrase. If the flash cache is disabled, the speculation logic still moves to the
next sequential flash phrase. If additional data within the first flash phrase is accessed again, then it must be
read directly from the flash (cache is disabled and a speculation buffer has moved to the next phrase). For best
performance, enable the flash cache whenever the speculation logic is enabled.

3.1.2.1 Flash prefetch buffer

When speculative reads are enabled, the FMC immediately requests the next sequential address after a
read completes. The next 128-bit memory location is read. The speculative prefetch mechanism improves
performance by reducing or even eliminating wait states when accessing sequential code and/or data.

The FMC provides invalidation control for the prefetch buffer but the NVM_CTRL register of SYSCON is used
to enable and configure speculative prefetching. While the DIS_DATA_SPEC and DIS_FLASH_SPEC bits of
NVM_CTRL are cleared by default, the operation of these bits interacts with the DIS_MBECC_ERR_DATA and
DIS_MBECC_ERR_INST bits. DIS_MBECC_ERR_DATA is set by default, which disables the flash speculation
even though DIS_FLASH_SPEC is cleared. For best performance, the SYSCON->NVM_CTRL[DIS_MBECC_
ERR_DATA] bit must be cleared early in the startup code.

AN14139 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 20 January 2024
5 / 14

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT

DRAFT DRAFT

DRAFT

NXP Semiconductors AN14139
Optimizing Performance on MCX N-Series MCUs

3.1.2.2 Flash cache

Cache memory stores already-fetched data. This code is immediately available for repeated execution without
any wait states. The FMC provides controls for flash replacement algorithm, lock per way, and invalidation per
way. The ways are numbered from 0 to 3 and the sets are numbered from 0 to 3. The cache supports the least
recently used (LRU) replacement algorithm per set across all 4 ways. The NVM_CTRL register of SYSCON is
used to enable/disable the cache and set other configurations. The flash cache is enabled by default.

3.1.3 Internal flash data throughput

Figure 2 shows internal flash data throughput measurements for MCX Nx4x. The setup used for the
measurement:

• The system clock is 150 MHz.
• The measurements show the effect of FMC acceleration features, so the LPCAC is turned off for all testing.
• The flash wait states (FMU_FCTRL[RWSC]) is set to three.

Flash cache OFF
Flash prefetch buffer OFF

Not recommended

Flash cache ON
Flash prefetch buffer OFF

Not recommended

Flash cache ON
Flash prefetch buffer ON

Recommended

Flash cache OFF
Flash prefetch buffer ON

Not recommended

Figure 2. Internal flash data throughput measurements for MCX Nx4x

3.2 On-chip RAM
MCX N-series devices include multiple blocks of on-chip RAM. The number and size of the RAM blocks vary
depending on the specific part number and device configuration. Typically, RAMs are accessible with no wait
states, but ECC and auto clock gating can increase the RAM access time.

RAMX (up to 96 KB) is connected to the CM33 code buses. RAMX is the preferred RAM block to use for code
storage.

RAMA, which is always four 8 KB banks (32 kB total), is the preferred RAM block to use for data retention.
The RAMA banks can be retained in device low-power modes. It can optionally be powered from VBAT using
LDO_RAM. To optimize power consumption, RAMA is split into four banks, where the low-power mode and VBAT
retention for each bank is individually programmable. The VBAT module controls the low-power configurations
(LDO_RAM enable/disable and bank retention).

The other RAM blocks and partitions (other than RAMA) all have independent power switches that can be
turned on/off depending on the RAM needs of the application. CMC_SRAMDIS0 can be used to completely
power gate a RAM partition (applies for all power modes). CMC_SRAMRET0 can be used to turn off the periphery
of RAM partitions while retaining the contents of those RAMs during low-power modes.

AN14139 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 20 January 2024
6 / 14

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT

DRAFT DRAFT

DRAFT

NXP Semiconductors AN14139
Optimizing Performance on MCX N-Series MCUs

Note: Although the RAMA-RAMH blocks are contiguous in the system memory map, each block uses a
different physical AHB port. This means that misaligned or burst accesses across the boundary from one RAM
block to another are not allowed.

3.2.1 RAM ECC

RAMA supports software configurable ECC (enabled by default). Each 8 KB RAM bank supports 32+7 ECC,
which provides one-bit correction and two-bit detection capability.

ECC is also supported for the other RAM blocks. To determine which RAM blocks have ECC enabled by
default, refer to the device reference manual.

Note: For blocks other than RAMA, ECC is implemented by repurposing upper RAM blocks to provide ECC
data for lower blocks. Therefore, enabling ECC can also affect the overall number of RAM blocks that are
accessible on the device.

Because the ECC is implemented as 32+7, ECC implements a read-modify-write mechanism to support 16-
bit and 8-bit writes. 16-bit and 8-bit writes to an ECC-enabled RAM take two additional clocks. Reads have no
penalty because the ECC code only changes on a write. For best performance, variables in ECC memory must
be 32-bit. If 16-bit or 8-bit data types are necessary, then consider storing them in a RAM where ECC is not
going to be used.

3.2.2 RAM auto clock gating

To reduce power consumption, the RAM blocks support an auto clock gating feature. When auto clock gating is
enabled, the clock to the RAM block is automatically gated off if the block is not accessed for 16 bus clocks. If
the clock is off, there is a one-bus cycle delay for the next access to the RAM block.

The auto clock gating feature is configurable on a per RAM block basis. The AUTOCLKGATEOVERRIDE and
AUTOCLKGATEOVERRIDEC registers of the SYSCON configure the auto clock gating function. To determine
which, if any, RAM blocks have auto clock gating enabled by default, refer to the device reference manual. The
auto clock gating feature should be disabled for RAM blocks that are used for code/data sections that require
time-critical or deterministic execution.

3.3 LPCAC
The 16 KB low-power cache controller (LPCAC) is connected to the code bus of the primary M33 core
(CPU0). The content of this cache is only visible to CPU0. The LPCAC can be used to cache M33 access
to the program flash (0x0000_0000-0x001F_FFFF and 0x1000_0000-0x101F_FFFF) and FlexSPI
(0x0800_0000-0x0FFF_FFFF and 0x1800_0000-0x1FFF_FFFF) code bus memory regions.

The LPCAC chapter in the device reference manual provides the functional description of the cache, but the
LPCAC Control (LPCAC_CTRL) register of the SYSCON is used to control the operation of the cache. Because
the LPCAC is on CPU0’s code bus, it is mostly intended for caching instructions. It can be used for data but only
supports a single cacheable, write-through mode that is used for all memory regions when enabled (no address
regions with different cache policies and no write-back/copy-back mode).

The LPCAC is disabled by default. For best performance, NXP recommends enabling it by clearing SYSCON-
>LPCAC_CTRL[DIS_LPCAC].

3.4 FlexSPI subsystem
Some MCX N-series devices include a FlexSPI subsystem supporting Octal and Quad SPI memory devices.
The FlexSPI is primarily intended for execute-in-place code execution from off-chip SPI NOR flash memory. The
FlexSPI also supports external serial RAM expansion.

AN14139 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 20 January 2024
7 / 14

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT

DRAFT DRAFT

DRAFT

NXP Semiconductors AN14139
Optimizing Performance on MCX N-Series MCUs

The FlexSPI subsystem also includes a 16 KB cache with a CACHE64 AHB-cache controller.

3.4.1 CACHE64

The 16 KB cache controller (CACHE64) of FlexSPI is interfaced directly with the FlexSPI memory controller.
As the CACHE64 is integrated into the controller, access to the FlexSPI from any manager can be cached,
provided the corresponding address is configured as cacheable.

The CACHE64 policy select module (CACHE64_POLSEL) is used to define the cache policy (non-cacheable,
write-thru cacheable, or write-back cacheable) for up to three regions in the FlexSPI. On a FlexSPI access
CACHE64_POLSEL determines the cache policy to use for that address, and then passes the information to
CACHE64_CTRL.

There are multiple FlexSPI regions in the system memory map. But these regions are remapped to create a
single contiguous 512 Mbyte region (0x8000_0000-0x9FFF_FFFF), where accesses to some system regions
are aliased into a single region for the cache. Table 3 shows how the FlexSPI system regions are mapped to the
CACHE64_CTRL and CACHE64_POLSEL.

System start
address

System end
address

Size CACHE64 start
address

CACHE64 end
address

Access

0x0800_0000 0x0FFF_FFFF 128 MB 0x8000_0000 0x87FF_FFFF Non-secure

0x1800_0000 0x1FFF_FFFF 128 MB 0x8000_0000 0x87FF_FFFF Secure

0x8000_0000 0x8FFF_FFFF 256 MB 0x8000_0000 0x8FFF_FFFF Non-secure

0x9000_0000 0x9FFF_FFFF 256 MB 0x8000_0000 0x8FFF_FFFF Secure

0xA000_0000 0xAFFF_FFFF 256 MB 0x9000_0000 0x9FFF_FFFF Non-secure

0xB000_0000 0xBFFF_FFFF 256 MB 0x9000_0000 0x9FFF_FFFF Secure

Table 3. FlexSPI memory map region mapping to CACHE64_CTRL and CACHE64_POLSEL

The CACHE64_CTRL defaults to disabled. If external memory on FlexSPI is being used, then NXP recommends
enabling CACHE64:

1. Configure the three CACHE64 regions as needed using the CACHE64_POLSEL registers.
2. Write 0x8500_0003 to the CACHE64_CTRL0->CCR. This value requests a full invalidation of the cache and

enables the cache and write buffer in a single operation.

3.4.2 FlexSPI controller prefetch buffer

In addition to CACHE64, the FlexSPI controller has a prefetch buffer within it that can also help to increase
system performance. When the external FlexSPI memory is accessed, the FlexSPI fetches a prefetch buffer
worth of data sequentially from the requested address. When the next access is sequential or close to the
original address, the data is likely to be stored in the prefetch buffer. Therefore, the FlexSPI controller can
retrieve the data without initiating a new access to the external memory. On MCX, the FlexSPI has a total of 1
KB memory for prefetch. The 1 KB buffer can be divided into 8 individual prefetch buffers with configurable sizes
where each buffer is assigned to a specific bus manager.

The FlexSPI controller on MCX has a new feature called prefetch buffer enhancement. This feature can be
useful for increasing performance if a given manager frequently accesses memory at multiple FlexSPI address
areas. To illustrate, suppose that the CPU is carrying out task A at a particular address. After that, it switches
to task B at a different address. A new prefetch operation begins at the address pertaining to task B. When the
CPU switches back to task A, the prefetch buffer is flushed again as the buffer now holds task B addresses.
This results in task A addresses missing in the prefetch buffer. The buffer then starts prefetching at the task
A address again. If task A and task B switch frequently, FLEXSPI can re-read previously stored items in the
prefetch buffer due to frequent buffer flushing.
AN14139 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 20 January 2024
8 / 14

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT

DRAFT DRAFT

DRAFT

NXP Semiconductors AN14139
Optimizing Performance on MCX N-Series MCUs

The prefetch buffer enhancement feature helps with task switching, by allowing multiple prefetch buffers to be
assigned to a single manager/manager ID. When prefetch buffer enhancement is enabled, an address range
is added to differentiate between multiple prefetch buffers assigned to the same manager ID. In this example,
you can assign two buffers to the main CPU, with one mapped to task A address range, and another mapped to
task B. This way both tasks can be stored in the prefetch buffer and decrease the number of times the external
memory is accessed.

4 System bus access and arbitration

The multilayer AHB matrix is the primary bus interconnector for the microcontroller. It manages connections
between bus managers, subordinate ports, and arbitrates access conflicts.

4.1 AHB accesses
Simultaneous accesses from different managers is allowed if they access different subordinate ports. Careful
planning of the memory usage by managers in a system can yield a significant increase in the overall system
performance.

For example, here is a possible system memory configuration:

• Main M33 core (CPU0) - Instructions in flash and core-only data and stack in RAMA-RAMC
• Secondary Micr-M33 core (CPU1) – Instructions in SRAMX and core-only data and stack in RAMD
• USB - Data buffers in RAME

This memory configuration allows all three of the managers to run the bus cycles they need with little
interference from other managers. Occasionally, one of the cores may need to access the USB buffers.
However, outside these accesses, the managers can run in parallel.

4.2 AHB arbitration
If multiple managers attempt access to the same subordinate port at the same time, then arbitration is required.
The AHBMATPRIO register of the SYSCON is where the programmable priorities for each of the manager ports
can be configured. Managers are assigned a priority value between zero and three with three being the highest
priority. If two ports have the same priority, then the lowest port number is given priority.

The SYSCON_AHBMATPRIO should be configured according to the requirements of the system. For example, if
the DMA is being used to read a SPI receive buffer, it might make sense to give the DMA higher priority than the
primary core. This can help to avoid SPI receive buffer overflows in a heavily loaded system.

There are some manager ports that are shared between two managers. Where the port is shared, only one of
the managers can have an active access at a time. The priority between two managers sharing a port uses a
fixed arbitration scheme. To determine which ports can be shared and the priority used for those ports, refer to
the Memory chapter in your device reference manual.

Note: Arbitration only happens when there is more than one pending request to access a subordinate port.

If a low-priority manager makes a request to an idle subordinate port, then the low-priority manager gets to start
its bus cycle. If a higher-priority manager requests access to the bus while a low-priority manager is already
using it, the low-priority manager must finish its bus cycle before the high-priority manager gains access to the
bus. For fixed-length bursts, the transfer boundary is at the end of the bus cycle.

5 Multi-core considerations

Some MCX N-series devices are dual-core devices with two Arm Cortex-M33 cores. The primary core (CPU0)
includes TrustZone-M, floating point unit (FPU), DSP, and memory protection unit (MPU). The secondary core

AN14139 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 20 January 2024
9 / 14

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT

DRAFT DRAFT

DRAFT

NXP Semiconductors AN14139
Optimizing Performance on MCX N-Series MCUs

(CPU1) is a micro-CM33, which does not include the TrustZone-M, FPU, or DSP. The functionality available for
each core must be considered when deciding what tasks can be offloaded to the secondary core.

The device always boots using the primary core. To configure CPU1 and release it from reset for dual-core
functionality, perform the following steps:

1. Optionally, copy the CPU1 application to the target memory address.
2. Write SYSCON->CPBOOT with the CPU1 VTOR address.
3. Clear the SYSCON->CPUCTRL[CPU1RSTEN] bit to release CPU1 from reset. Make sure to keep the

CPU_CLKEN set when writing the CPUCTRL register.

The system memory usage must be considered when using CPU1. CPU1 does not include an LPCAC like
CPU0. CPU1 can still benefit from the acceleration features within the FMC, but CPU1 does not reach its
maximum performance when executing from internal flash. If CPU1 is mostly offloading CPU0, the maximum
performance for CPU1 might not be required for the system. If CPU0 is executing from its LPCAC, then CPU1
can access the flash without conflict. So, it is possible to have both cores using internal flash code addresses
entirely or largely without creating bus arbitration delays.

If maximum performance for CPU1 is needed, then RAMX is the recommended memory to use for CPU1 code.
This does assume that CPU0 is not using RAMX, in which case another location can be used. For devices that
include FlexSPI, external flash is another option for the CPU1 code location. CPU1 can use CACHE64 included
in the FlexSPI subsystem and have mostly zero wait state execution.

6 Summary

• Identify the system priorities. Some optimizations help increase overall performance, but many optimization
options create a trade-off where performance is gained in one area and lost in another. Clear optimization
goals are a must.

• Plan data movements and code locations in advance. Not all memory addresses are created equal. Be aware
of the bus ports that are used for each access.

• When available, consider offloading some tasks to CPU1.
• Take advantage of the flash acceleration features built into the flash memory controller (FMC). Clear the
SYSCON->NVM_CTRL[DIS_MBECC_ERR_DATA] bit to enable the flash speculation buffer fully.

• Use the LPCAC cache. The cache hits are as fast as storing code/data in the on-chip SRAMs.
• Use the SRAMX block for storing critical code. Use other RAM blocks for data and stack.
• Avoid 16-bit and 8-bit writes to ECC-enabled RAMs. The read-modify-write operation required to maintain the

correct ECC value adds clocks to the access.
• Enable auto clock gating to all RAM blocks for the best power consumption. Disable auto-clock gating to

RAMs storing critical code/data or if determinism is required.
• If external memory on the FlexSPI is used for code, use the aliased memory regions on the code bus for

accessing instructions.
• If using external memory on the FlexSPI, then use the CACHE64 controller. The cache hits are as fast as

storing code/data in the on-chip SRAMs.
• Use code optimizations wisely. Compilers usually offer a choice of optimizing for speed or size. Optimizing for

speed is often the best option for performance, but that is not always the case. If optimizing for size allows to
fit functions more easily in the cache, then performance might be best using size optimizations. Experiment
with the switches that are available to find the optimal compiler settings.

• Parallelism is the best way to increase overall system performance. Take advantage of the multilayer AHB
matrix and its ability to have concurrent, non-blocking transfers.

• When moving large blocks of data, use the DMA. The DMA can transfer data more efficiently than the cores
often. Using the DMA also frees up the cores to perform other tasks (more parallelism).

• Do not forget to look at the multilayer AHB matrix arbitration settings. Some experimentation can be needed to
find the best configuration.

AN14139 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 20 January 2024
10 / 14

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT

DRAFT DRAFT

DRAFT

NXP Semiconductors AN14139
Optimizing Performance on MCX N-Series MCUs

7 Revision history

Table 4 summarizes the revisions done to this document.

Document ID Revision date Description

AN14139 v.1.0 20 January 2024 Initial public release

Revision history

AN14139 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 20 January 2024
11 / 14

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT

DRAFT DRAFT

DRAFT

NXP Semiconductors AN14139
Optimizing Performance on MCX N-Series MCUs

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

AN14139 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 20 January 2024
12 / 14

mailto:PSIRT@nxp.com

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT

DRAFT DRAFT

DRAFT

NXP Semiconductors AN14139
Optimizing Performance on MCX N-Series MCUs

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

MCX — is a trademark of NXP B.V.

AN14139 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 20 January 2024
13 / 14

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT DRAFT

DRAFT DRAFT DRAFT

DRAFT DRAFT

DRAFT

NXP Semiconductors AN14139
Optimizing Performance on MCX N-Series MCUs

Contents
1 Introduction .. 2
2 MCX N-series architecture overview2
2.1 Core buses on MCX ..3
2.2 MCX N-series memory map 3
3 MCX memories and caches 4
3.1 Flash .. 4
3.1.1 Wait states ...4
3.1.2 Flash memory controller (FMC)5
3.1.2.1 Flash prefetch buffer ..5
3.1.2.2 Flash cache ... 6
3.1.3 Internal flash data throughput6
3.2 On-chip RAM ... 6
3.2.1 RAM ECC ..7
3.2.2 RAM auto clock gating 7
3.3 LPCAC ...7
3.4 FlexSPI subsystem ..7
3.4.1 CACHE64 .. 8
3.4.2 FlexSPI controller prefetch buffer 8
4 System bus access and arbitration 9
4.1 AHB accesses ... 9
4.2 AHB arbitration .. 9
5 Multi-core considerations 9
6 Summary ...10
7 Revision history ...11

Legal information ...12

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com

Date of release: 20 January 2024
Document identifier: AN14139

	1 Introduction
	2 MCX N-series architecture overview
	2.1 Core buses on MCX
	2.2 MCX N-series memory map

	3 MCX memories and caches
	3.1 Flash
	3.1.1 Wait states
	3.1.2 Flash memory controller (FMC)
	3.1.2.1 Flash prefetch buffer
	3.1.2.2 Flash cache

	3.1.3 Internal flash data throughput

	3.2 On-chip RAM
	3.2.1 RAM ECC
	3.2.2 RAM auto clock gating

	3.3 LPCAC
	3.4 FlexSPI subsystem
	3.4.1 CACHE64
	3.4.2 FlexSPI controller prefetch buffer

	4 System bus access and arbitration
	4.1 AHB accesses
	4.2 AHB arbitration

	5 Multi-core considerations
	6 Summary
	7 Revision history
	Legal information
	Contents

