
AN14015
Implement Camera Preview with Framework Enabled on SDK
Rev. 2 — 1 February 2024 Application note

Document information
Information Content

Keywords Smart HMI, smart TLHMI, framework

Abstract This application note describes how to enable framework to implement camera video showing on
display panel on SLN-TLHMI-IOT board based on SDK.

https://www.nxp.com


NXP Semiconductors AN14015
Implement Camera Preview with Framework Enabled on SDK

1   Overview

NXP has launched a solution development kit named SLN-TLHMI-IOT, which focuses on smart HMI
applications. It enables smart HMI with ML vision, voice, and graphics UI implemented on one NXP i.MX
RT117H MCU. Its software framework supports flexible designs and customization of vision and voice functions.
To help the users to use the software platform better, some basic documents are provided, for example, the
software development user guide. The guide introduces the basic software design and architecture of the
applications covering all components of the solution, including a framework to help the developers more easily
and efficiently implement their applications using the SLN-TLHMI-IOT.

For more details about the solution and relevant documents, visit:

NXP EdgeReady Smart HMI Solution based on i.MX RT117H with ML Vision, Voice and Graphical UI | NXP
Semiconductors

However, it is still not so easy for the developers to implement their applications referring to these basic guides.
Based on the SDK, the solution software is constructed on a design called framework. That is, the framework is
the kernel of the software. Introducing a simple typical example with a framework is the best entry to help study
the development of the framework.

This application note describes how to enable a framework to implement camera video showing on the display
panel of the SLN-TLHMI-IOT board based on SDK. By implementing the simple camera preview example of the
MCUXpresso IDE, this document introduces how to:

• Create a C++ project with the SDK resources on MCUXpresso IDE.
• Build board hardware support for SLN-TLHMI-IOT board.
• Enable the framework on SDK.
• Implement an application on the framework.

This document helps the developers be able to:

• Understand the framework and the solution software more deeply.
• Develop their application from 0 to 1.
• Implement their application with more own features based on the example project.

For the software package of this application note, refer to https://mcuxpresso.nxp.com/appcodehub.

1.1  Framework overview
The solution software is primarily designed around the use of a "framework" architecture that is composed of
several different parts:

• Device managers – The core part
• Hardware Abstraction Layer (HAL) devices
• Messages/Events

The mechanism of the framework is as shown in Figure 1 and it is explained below.

Device managers are responsible for "managing" devices used by the system. Each device type (input,
output, and so on) has its own type-specific device manager. With a device manager starting after the devices
being registered to it, it waits and checks a message to transfer data to the devices and other managers after
initializing and starting the registered devices.

The HAL devices are written "on top of" lower-level driver code, helping to increase code understandability by
abstracting many of the underlying details.

AN14015 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 2 — 1 February 2024
2 / 14

https://www.nxp.com/design/designs/nxp-edgeready-smart-hmi-solution-based-on-i-mx-rt117h-with-ml-vision-voice-and-graphical-ui:SLN-TLHMI-IOT-RD
https://www.nxp.com/design/designs/nxp-edgeready-smart-hmi-solution-based-on-i-mx-rt117h-with-ml-vision-voice-and-graphical-ui:SLN-TLHMI-IOT-RD
https://mcuxpresso.nxp.com/appcodehub


NXP Semiconductors AN14015
Implement Camera Preview with Framework Enabled on SDK

Events are a means by which information is communicated between different devices via their managers. When
an event is triggered, the device that first received the event communicates that event to its manager. Then, in
turn, it notifies other managers designated to receive the event.

Camera Dev Driver 

Camera
Manager

MSG

Dev0

MSG

…

Display
Manager

Input
Manager

Output
Manager

HAL

UI Algorithm Callbacks Feature database Customer specific services 

Core

Application

Low Level Driver

Hardware

Software

Framework

IR Camera 

Algorithm
Manager

Display Dev Driver AlgoDev Driver Input Dev Driver Output Dev Driver

MSG

Dev0

MSG

…

MSG

Dev0

MSG

…

MSG

Dev0

MSG

…

MSG

Dev0

MSG

…

Low level driver
(MIPI CSI2)

Low level driver
(SPI)

Low level driver
(GPIO)

Low level driver
(USB)

Low level driver
(CSI)

3D Camera LCD GPIO ButtonRGB Camera UART

Figure 1. Smart HMI software architecture on framework

The architectural design of the framework is centered on the following three primary goals:

• Ease-of-use
• Flexibility/Portability
• Performance

The framework is designed with the goal of speeding up the time to market for vision and other machine-
learning applications. To ensure a speedy time to market, it is critical that the software itself is easy to
understand and modify. Keeping this goal in mind, the architecture of the framework is easy to modify without
being restrictive, and without coming at the cost of performance.

For more details about the framework, refer to MCU-SMHMI-SDUG.

2   Development environment

First, prepare and set up the hardware and software environment for implementing the camera preview example
of the framework.

• Hardware environment
The hardware environment is set up for verifying the example:
– The smart HMI development kit based on NXP i.MX RT117H (SLN-TLHMI-IOT kit)
– SEGGER J-Link with a 9-pin Cortex-M adapter and V7.84a or higher

• Software environment
The software environment is set up for developing the example:
– MCUXpresso IDE V11.7.0
– RT1170 SDK V2.13.0
– SLN-TLHMI-IOT software V1.1.1 – smart HMI source codes released on NXP GitHub repository

For details about the acquirement and setup of the software environment, refer to Getting Started with the SLN-
TLHMI-IOT | NXP Semiconductors.

AN14015 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 2 — 1 February 2024
3 / 14

https://www.nxp.com/doc/MCU-SMHMI-SDUG
https://www.nxp.com/document/guide/getting-started-with-the-sln-tlhmi-iot:GS-SLN-TLHMI-IOT
https://www.nxp.com/document/guide/getting-started-with-the-sln-tlhmi-iot:GS-SLN-TLHMI-IOT


NXP Semiconductors AN14015
Implement Camera Preview with Framework Enabled on SDK

3   Implement camera preview on framework

After the development environment is ready, begin the process of implementing the camera preview example
(the example for short later) with the framework on SLN-TLHMI-IOT board. It starts from creating a C++ project
on MCUXpresso IDE.

3.1  Create a C++ project with the SDK resources on MCUXpresso IDE
A C++ project is required because C++ design is used for some components in the solution, such as face
recognition algorithm. There is a wizard to do it in MCUXpresso. Follow it to create the C++ project with the
SDK software components for examples after the SDK V2.13.0 is installed in MCUXpresso IDE:

1. Choose to create a C/C++ project to enter the wizard.
2. Select MCU MIMXRT1170 and then the board evkmimxrt1170, as shown in Figure 2.

Figure 2. Select a device and board for creating a project
3. Click Next to go to the Configure the project page (see Figure 3).

• Specify a name for the project. It is sln_tlhmi_iot_camera_preview_cm7 for the example.
• Select the project type as C++ Project.
• Select the cores as cm7.

Figure 3. Configure the project
4. Select SDK software components for the project. According to the solution and the example, select or add

the below components:
• Selected FreeRTOS kernel for operating system.
• Add the drivers: cache, csi, i2c, i2c-freertos, lcdifv2, mipi_csi2rx, mipi_dsi, pit, pxp,
soc_src for the system, camera, LCD, and display drives.
Note:  There are already some default drivers in the wizard. Keep them.

AN14015 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 2 — 1 February 2024
4 / 14



NXP Semiconductors AN14015
Implement Camera Preview with Framework Enabled on SDK

• Select the components of the abstraction layer for the camera and display controls in the example. The
components are summarized in Figure 4.

Figure 4. Components for Abstraction Layer
• Add the board component, display-hx8394, for display panel initialization.
• Add the software component, display-mipi-dsi-cmd, for display panel interface control adapter.

5. Click Next to go to the last page – Advanced project settings. Use the default settings to check Redirect
printf/scanf to UART for log print later, though it is not required for this example.

6. Click Finish to create the basic C++ project with the SDK software components for the camera preview
example.

Note:  The SDK software components could still be added from the SDK package if some are missed during
creating the project.

3.2  Build board hardware support for SLN-TLHMI-IOT board
When the project is created, only the basic system hardware, such as clock, and debug UART pins are built in
the project. Besides it, as introduced above, the demo board evkmimxrt1170 is chosen as the board support
when creating the project. However, the SLN-TLHMI-IOT board is used for this example and smart HMI
solution. There are some different devices and pins used for both boards. Therefore, it is required to add and
update some board hardware support for the example.

The related hardware devices on the SLN-TLHMI-IOT board are:

• Camera sensor - GC2145 with MIPI CSI-2 interface
• Display panel - RK055MHD091 (hx8394) with MIPI-DSI interface
• SDRAM - W9825G6KH
• Flash - W25Q256JV

Add board hardware support for the SLN-TLHMI-IOT board as follows:

1. The board level of drivers is implemented under the board folder involved with camera, display, SDRM, and
Flash as below:
• Add the board_define.h file used in the smart HMI solution in the board folder for enabling and configuring

HAL devices:
a. Clone the file board_define.h under \coffee_machine\cm4\board\ to the board folder of the project.

Using the file under cm4 instead of cm7 is because the camera and display devices are enabled on
the M4 core.

b. Comment the below component definitions in the file since they are not used:

#define ENABLE_DISPLAY_DEV_LVGLCoffeeMachine
#define ENABLE_OUTPUT_DEV_RgbLed
#define ENABLE_INPUT_DEV_PushButtons

AN14015 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 2 — 1 February 2024
5 / 14



NXP Semiconductors AN14015
Implement Camera Preview with Framework Enabled on SDK

#define ENABLE_INPUT_DEV_ShellUsb
#define ENABLE_OUTPUT_DEV_UiCoffeeMachine
#define ENABLE_LPM_DEV_Standby

c. Add #define ENABLE_DISPLAY_DEV_Lcdifv2Rk055mh to enable display panel.
d. Change #define WIFI_ENABLED 1 to 0 to disable the Wi-Fi support.

• Modify pin_mux.c under the board folder for pin settings of the camera and display:
– Include board_define.h and board.h files.
– To initialize the camera and display panel pins, copy the BOARD_InitMipiCameraPins() and
BOARD_InitMipiPanelPins() functions from \coffee_machine\cm4\board\pin_mux.c to the
pin_mux.c of the project.

– Add the calls of BOARD_InitMipiCameraPins() and BOARD_InitMipiPanelPins() in the
BOARD_InitBootPins() function and modify BOARD_InitPins() to support LPUART12 on the
SLN-TLHMI-IOT board instead of LPUART1 on the evkmimxrt1170 board.

• Modify pin_mux.h to declare the BOARD_InitMipiCameraPins() and
BOARD_InitMipiPanelPins() APIs.

• Modify board.c to add camera device control including enabling FreeRTOS I2C support and
update MPU configurations for the SDRAM and flash memory. There is already a macro definition,
SDK_I2C_BASED_COMPONENT_USED, in the generated board.c file for I2C enablement. Referring to smart
HMI solution software, another macro definition, SDK_I2C_FREERTOS, is used for I2C enablement on
FreeRTOS:
Note:  Below codes for the camera control including the FreeRTOS I2C support are copied from the
board.c in the smart HMI solution.
– To enable the FreeRTOS I2C support for camera, add the settings
SDK_I2C_BASED_COMPONENT_USED=1 and SDK_I2C_FREERTOS=1 on Project > Properties > C/C+
+ Build > settings > Tool Settings > MCU C compiler > Preprocessor.

– Include the header file, fsl_lpi2c_freertos.h with the SDK_I2C_FREERTOS definition.
– Add the variables related to FreeRTOS I2C:

s_lpi2cIrqs[] and s_masterRTOSHandle[sizeof(s_lpi2cIrqs) /
 sizeof(s_lpi2cIrqs[0])]

– Modify the functions BOARD_LPI2C_Init(), BOARD_LPI2C_Send(), and
BOARD_LPI2C_Receive() to enable FreeRTOS I2C support.

– Add the implementations of the functions related to MIPI camera device control:
BOARD_MIPICameraI2CInit(), BOARD_MIPICameraI2CReceive(),
BOARD_MIPICameraI2CSend(), BOARD_MIPICameraPullResetPin(),
BOARD_MIPICameraPullPowerDownPin().

– Modify the function BOARD_ConfigMPU() under the __CORTEX_M == 7 definition of Flash and
SDRAM memory MPU configurations:
– Change the size of SDRAM MPU from ARM_MPU_REGION_SIZE_64MB to

ARM_MPU_REGION_SIZE_32MB.
– Change the size of Flash MPU from ARM_MPU_REGION_SIZE_16MB to

ARM_MPU_REGION_SIZE_64MB.
– To enable SDRAM MPU support, set USE_SDRAM in Project > Properties > C/C++ Build > settings

> Tool Settings > MCU C compiler > Preprocessor.
• Modify board.h for the definitions and configurations related to hardware devices of the SLN-TLHMI-IOT

board.
– Include the file board_define.h.
– Redefine the board name to yours. Here, the name is SLN-TLHMI-IOT and the value of
DEBUG_CONSOLE_UART_INDEX to 12 as LPUART12 is used on the SLN-TLHMI-IOT board.

– Set BOARD_FLASH_SIZE to 0x4000000 (64 MB).

AN14015 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 2 — 1 February 2024
6 / 14



NXP Semiconductors AN14015
Implement Camera Preview with Framework Enabled on SDK

– Add MIPI Camera configurations about I2C, reset pin, and power down pin used in the board.h of smart
HMI solution software, for example:

#define BOARD_MIPI_CAMERA_I2C_BASE  LPI2C6

– Modify the settings of MIPI display panel pins and back light pins referring to the board.h of smart HMI
solution software, for example:

#define BOARD_MIPI_PANEL_RST_PIN 22

• Modify the file dcd.c to set up SDRAM. Replace the array dcd_data[ ] with the one in dcd.c of smart HMI
software.

• About the display panel control at the board level, it is implemented in the display_support.c and
display_support.h files of SDK. To support it in the example project,
– copy both files from boards\evkmimxrt1170\display_examples\fbdev_freertos\cm7 of the SDK package

to the board folder.
– Since the display panel RK055MHD091 is enabled in display_support.h, update nothing but enable the

back light of the display panel by setting 0 to the back light pin in the function:
GPIO_PinWrite (BOARD_MIPI_PANEL_BL_GPIO, BOARD_MIPI_PANEL_BL_PIN, 0);

2. Add the initialization and settings of the camera sensor – GC2145 that is supported in smart HMI solution:
• Copy sln_gc2145.c and sln_gc2145.h from coffee_machine\cm4\video in the smart HMI solution to the

video folder.
• Add the macro definitions related to the settings of the camera sensor, such as
kCAMERA_DeviceMonoMode, in the enum _camera_device_cmd in fsl_camera_device.h. Copy them
from the same location of the smart HMI solution.

3. Modify the initialization and settings of the Flash in the structure qspiflash_config in xip
\evkmimxrt1170_flexspi_nor_config.c:
• Set the member sflashA1Size to BOARD_FLASH_SIZE (redefined in board.h). Therefore, add
#include "board.h" for using the definition.

• Replace the content of the member lookup table with the one of the smart HMI solutions.
• Change the value of the member blockSize from 64 u * 1024 u to 256 u * 1024 u.

3.3  Enable framework on SDK
The current software consists of SDK software components. The framework can be added smoothly to it as an
SDK software component.

Generally, it is required to implement the related HAL device drivers to enable the framework for an application.
Benefiting from the standard design of the HAL drivers and the plenty of different types of HAL device resources
supported in the framework, the development of a new HAL driver is not difficult. This is one of the significant
performances of the framework.

1. Add the framework component:
• Copy the framework folder in the smart HMI to the root directory of the example folder

sln_tlhmi_iot_camera_preview_cm7.
• To add the new folder framework for building in the project, check out Exclude resource from build in

C/C++ Build > Settings after opening the Properties for the framework folder on MCUXpresso.
• Add the below include paths about framework for the camera preview example in Project > Properties

> C/C++ Build > settings > Tool Settings > MCU C compiler > Includes and MCU C++ compiler >
Includes:

"${workspace_loc:/${ProjName}/framework/inc}"
"${workspace_loc:/${ProjName}/framework/hal_api}"

AN14015 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 2 — 1 February 2024
7 / 14



NXP Semiconductors AN14015
Implement Camera Preview with Framework Enabled on SDK

"${workspace_loc:/${ProjName}/framework/hal}"                        

• No source codes of the framework core are provided in the smart HMI software V1.1.1 from GitHub.
Therefore, no core folder can be seen in the framework group but the library - libframework_cm7.a is
present under \coffee_machine\cm7\libs\framework_cm7\Release\.
Add the library as below:
– Copy the library to \libs\framework_cm7\Release\ in the example after creating the folders on the path.
– To build the new libs folder in the project, check out Exclude resource from build in C/C++ Build >

Settings after opening the Properties for the libs group on MCUXpresso.
– Add the library and library search path in Project > Properties > C/C++ Build > settings > Tool

Settings > MCU C++ Linker > Libraries, as shown in Figure 5.

Figure 5. Settings for the framework core library
Note:  If there are source codes of the framework core, this step to add a library is not required.

2. In the example, the HAL drivers for the camera and display are required to drive the camera video
displaying on the display panel. The HAL driver of the camera GC2145 has been supported in the
hal_camera_mipi_gc2145.c file under the hal\camera\ of the current framework. However, there is no
HAL driver for the display panel RK055MHD091 but for RK055AHD091. Actually, the HAL driver for
RK055MHD091 is same to RK055AHD091. So, the development is easy:
• Clone the hal_display_lcdifv2_rk055ahd091.c file for the HAL driver of RK055AHD091 and rename it to

hal_display_lcdifv2_rk055mhd091.c under framework\hal\display\.
• Replace all strings 055ah strings with 055mh in the new file.
• Change DISPLAY_DEV_Lcdifv2Rk055mh_LEFT to DISPLAY_DEV_Lcdifv2Rk055mh_START_X

and DISPLAY_DEV_Lcdifv2Rk055mh_TOP to DISPLAY_DEV_Lcdifv2Rk055mh_START_Y in
DISPLAY_InitDisplay(). function. The macro definitions are used for defining the start coordinate of a
camera preview on the display panel.

• Define the related configurations of the display panel used in DISPLAY_InitDisplay() function and
s_DisplayDev_Lcdif structure into the board_define.h file referring to the definitions of ENABLE_
DISPLAY_DEV_LVGLCoffeeMachine in the file.

Note:
There is a small extra job about the framework for this example application. That is, move #include
"fwk_platform.h" outside the definition #ifdef LOG_ENABLE in fwk_log.h and add #include
"fwk_log.h" in fwk_common.h.
The reason is: The header file fwk_paltform.h under the #ifdef LOG_ENABLE is not included because the
log is not enabled in the example application. It causes the building error without including the header file.
However, there is no problem for the smart HMI solution since the log is enabled in it.

3.4  Implement an application on framework
With the framework enabled, the example application can be implemented on it. Besides, the example
application (also the smart HMI solution application) works on FreeRTOS and the FreeRTOS is combined with
the framework. Therefore, to implement the example application, it is also required to do some modifications
about FreeRTOS at the application level.

AN14015 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 2 — 1 February 2024
8 / 14



NXP Semiconductors AN14015
Implement Camera Preview with Framework Enabled on SDK

1. Modify the main file, source\sln_tlhmi_iot_camera_preview_cm7.cpp, for implementing the example
application on framework:
• Under the comment /* TODO: insert other include files here. */, include the header files related to

framework and hardware, for example:

#include "fwk_display_manager.h"

• Under the comment /* TODO: insert other definitions and declarations here. */, add
the device declarations of the camera, display, and pxp (used for display), for example,
HAL_CAMERA_DEV_DECLARE(MipiGc2145) and the definitions of the task priorities of the camera and
display, for example:

#define CAMERA_MANAGER_TASK_PRIORITY 2, with C++ format.

• Add the implementation of the functions APP_InitFramework() for the initialization of camera and
display managers, APP_RegisterHalDevices() for camera, display, and pxp devices registration and
APP_StartFramework() for starting the camera and display managers.

• Add the implementation of the function APP_BoardInit() for the initialization of board hardware:
– Move the board initialization calls from main() to the function.
– Add the SRC_AssertSliceSoftwareReset() function to reset the display and Time_Init(1) to

initialize the timer for supporting FreeRTOS and framework run-time counter. To enable it:
– Include the header file, sln_time.h, in sln_tlhmi_iot_camera_preview_cm7.cpp.
– Copy sln_time.c and sln_time.h from \coffee_machine\cm7\utilities\ of smart HMI solution to the

utilities folder of the example software.
• Modify the function main() of which the handling is a standard process – call APP_BoardInit(),
APP_InitFramework(), APP_RegisterHalDevices(), and APP_StartFramework() in sequence.
Finally, start the task scheduler by calling the API vTaskStartScheduler() of FreeRTOS.

2. To configure the FreeRTOS for following the framework and the solution application:
• Update the below definitions in FreeRTOSConfig.h under source\ referring to the one in [smart HMI]\

coffee_machine\cm7\config_file\ (and cm4\source\):
– Change configMAX_PRIORITIES from 5 to 8.
– Set configUSE_TIME_SLICING to 1.
– Add #define configFRTOS_MEMORY_SCHEME 4.
– Set configSUPPORT_STATIC_ALLOCATION to 1.
– Increase configTOTAL_HEAP_SIZE to ((size_t)(1024 * 1024 * 2)).
– Set configCHECK_FOR_STACK_OVERFLOW to 1.
– Set configUSE_MALLOC_FAILED_HOOK to 1.
– Set configGENERATE_RUN_TIME_STATS to 1.
– Set configUSE_STATS_FORMATTING_FUNCTIONS to 1.
– Increase configTIMER_TASK_STACK_DEPTH to (1024).
– Set INCLUDE_uxTaskGetStackHighWaterMark to 1.

• With some features related to memory and time enabled in FreeRTOSConfig.h, add the corresponding
APIs support:
– With configGENERATE_RUN_TIME_STATS enabled, enable the FreeRTOS APIs of portCONFIGURE_
TIMER_FOR_RUN_TIME_STATS() and portGET_RUN_TIME_COUNTER_VALUE() with the related
functions in sln_time.c in FreeRTOSConfig.h for supporting runtime statistic.

– Copy os_hooks.c from [smart HMI]\coffee_machine\cm7\source\ to the source folder of the example
software for some enabled memory features and FreeRTOS hook functions support.

AN14015 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 2 — 1 February 2024
9 / 14



NXP Semiconductors AN14015
Implement Camera Preview with Framework Enabled on SDK

Note:  Remark: Remove the pvPortCalloc() function in os_hooks.c as it has been implemented in the
v10.5.0 of FreeRTOS kernel used in the example software while not in v10.4.3 for the smart HMI v1.1.1.

3. Configure the example project of the memory assignment and memory section settings for the application
based on the board hardware.
• Update the memory assignment on Project > Properties > C/C++ Build > MCU settings, as shown in

Figure 6.

Figure 6. Memory assignment for the camera preview example
• Configure the extra linker script input sections as some memory sections are assigned for the

specific codes and data in the application. May refer to the coffee machine app in the smart HMI. The
configurations in Project > Properties > C/C++ Build > Settings > Tool Settings > MCU C++ Linker >
Managed Linker Script for the example project is as shown in Figure 7.

Figure 7. Memory sections settings for the camera preview example

Therefore, the camera preview example can run on the SLN-TLHMI-IOT board after building and programming.
The basic mechanism of the camera preview on framework is:

After getting the event from the camera low driver of SDK with receiving camera frame, the camera HAL sends
a message to inform the camera manager to get the frame data from the camera HAL. The display manager
requests camera frames by sending a message to the camera manager, and transfers the frame data to the
display HAL. The display HAL calls the display driver of SDK to display the camera frame on the LCD panel.

Note:  For more details about the modifications introduced above, check the example software at https://
mcuxpresso.nxp.com/appcodehub.

3.5  Summary
To understand the development quicker and better, below is a brief summary about the key points:

1. Create a C++ project
It is easy following the wizard. The main job is to select the SDK software components including:
• operating system

AN14015 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 2 — 1 February 2024
10 / 14

https://mcuxpresso.nxp.com/appcodehub
https://mcuxpresso.nxp.com/appcodehub


NXP Semiconductors AN14015
Implement Camera Preview with Framework Enabled on SDK

• drivers
• abstraction layer
• board components
• software components

2. Build board hardware
This is the biggest workload in the development as it is involved with multiple larger devices: camera,
display panel, SDRAM, and Flash. However, the workload is not so much with the plenty of resources from
SDK.
The files to be updated are:
• Mainly under board\:

– pin_mux.c/.h – for the pin settings of camera and display
– board.c/.h – for the configurations of camera interface and MPU
– dcd.c – for the initialization of SDRAM
– display_support.c/.h - cloned from SDK software package almost without any modification for the

configuration of display panel interface
– board_define.h - cloned from smart HMI and do some configurations for the HAL device related to

camera and display
• Under xip\:

– evkmimxrt1170_flexspi_nor_config.c – for XIP flash configurations
• Under video\:

– sln_gc2145.c/.h – cloned from smart HMI without any modification for camera sensor control.
3. Enable framework

This is the key job in the development since the application is built on it. Generally, to enable the framework
on SDK, it includes:
• Add framework to SDK as an SDK software component.
• Implement the related HAL device drivers by cloning and do some modifications under the standard

configuration and APIs.
In the example app, the display HAL driver is implemented by:

• Cloning the hal_display_lcdifv2_rk055ahd091.c.
• Changing the string rk055ahd to rk055mhd.
• Configuring the related parameters to the display HAL device.

4. Implement the example application
To implement the example application on the framework, the files to be updated are under source\:
• sln_tlhmi_iot_camera_preview_cm7.cpp – modify it to implement

– APP_InitFramework()
– APP_RegisterHalDevices()
– APP_StartFramework()
After they are implemented, update the HAL devices and device managers in them when more or different
devices are required with the new application requirements.

• FreeRTOSConfig.h
• os_hook.c (cloned from the smart HMI)

AN14015 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 2 — 1 February 2024
11 / 14



NXP Semiconductors AN14015
Implement Camera Preview with Framework Enabled on SDK

4   Verifications with the example project

Visit https://mcuxpresso.nxp.com/appcodehub and get the example software package for this application note.

Open the example project on MCUXpresso IDE. Build and program the .axf file to the address 0x30000000.
The real-time video streams captured by the camera are shown on the display panel on the SLN-TLHMI-IOT
board. The camera preview example works successfully.

5   Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

6   Revision history

Table 1 summarizes the revisions to this document.

Revision number Release date Description

2 1 February 2024 Updated Section 4.

1 14 September 2023 Initial public release

Table 1. Revision history

AN14015 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 2 — 1 February 2024
12 / 14

https://mcuxpresso.nxp.com/appcodehub


NXP Semiconductors AN14015
Implement Camera Preview with Framework Enabled on SDK

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

AN14015 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 2 — 1 February 2024
13 / 14

mailto:PSIRT@nxp.com


NXP Semiconductors AN14015
Implement Camera Preview with Framework Enabled on SDK

Contents
1 Overview ...........................................................2
1.1 Framework overview ..........................................2
2 Development environment ..............................3
3 Implement camera preview on

framework .........................................................4
3.1 Create a C++ project with the SDK

resources on MCUXpresso IDE ........................ 4
3.2 Build board hardware support for SLN-

TLHMI-IOT board .............................................. 5
3.3 Enable framework on SDK ................................ 7
3.4 Implement an application on framework ............ 8
3.5 Summary ..........................................................10
4 Verifications with the example project .........12
5 Note about the source code in the

document ........................................................12
6 Revision history .............................................12

Legal information ...........................................13

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com

Date of release: 1 February 2024
Document identifier: AN14015


	1  Overview
	1.1  Framework overview

	2  Development environment
	3  Implement camera preview on framework
	3.1  Create a C++ project with the SDK resources on MCUXpresso IDE
	3.2  Build board hardware support for SLN-TLHMI-IOT board
	3.3  Enable framework on SDK
	3.4  Implement an application on framework
	3.5  Summary

	4  Verifications with the example project
	5  Note about the source code in the document
	6  Revision history
	Legal information
	Contents

