
1 Introduction
Most Layerscape product families feature FlexTimers (FTMs) which
individually have 16-bit count capability. When longer counts are required,
it is possible to chain/cascade multiple FTMs to count with 32 bits or more. How
many FTMs can be chained into a longer count and which combinations are
possible depends on the SoC family as shown in the following table.

Table 1. FlexTimer Chaining Options

Layerscape
SoC Family

FlexTimers Cascade options

(least significant first)

Chain Control Register

LS1021A

8 5+1, 6+2, 7+3, 8+4 SCFG_FTM_CHAIN_C
ONFIGLS1043A

LS1046A

LS1028A 8 1-8 and subranges FTMCR

LS1088A
4 1-4 and subranges FTMCR

LS2088A

LX2160A 2 1-2 FTMCR

2 Documentation Inconsistencies
Before we describe how to properly cascade the FTMs, it should be noted that some Reference Manual releases have inconsistent
content which may be confusing with respect to chaining FTMs. NXP strives to correct this going forward, but you may find the
following issues in documentation currently available to you:

• The FTMCR documentation may incorrectly show more bits than you have FTMs on the device.

• The FTMCR or SCFG_FTM_CHAIN_CONFIG documentation may fail to mention that CH7 of an FTM with lesser
significance feeds PHA of the chained FTM with more significance as done early in the FlexTimer chapter only for
SCFG_FTM_CHAIN_CONFIG based devices.

• The QDCTRL register at offset 0x80 in the FTM memory map may not be documented, nor are bit 0, called QUADEN, or bit 3,
called QUADMODE documented then. You can find missing descriptions in, for example, the current LS1046ARM.

• Where quadrature decoding support is shown in the FlexTimer chapter, it may not be made clear that it would refer to
external pin access specifically. Internally, all FTMs that can be added to a chain have that support, even though it is then
not usable for anything but chaining.

• SCFG_FTM_RESET[FTMCHNx] bits may be incorrectly documented as chaining bits when
SCFG_FTM_CHAIN_CONFIG[FTM_CHNx] should have been referenced.

Contents

1 Introduction......................................1
2 Documentation Inconsistencies...... 1
3 What does the Chain Control

Register do for you?........................2
4 Configuring the FlexTimer output....2
5 Configuring the chained FlexTimer

input...2
6 Reading a chained counter............. 2
7 Chaining example with

SCFG_FTM_CHAIN_CONFIG........ 2
8 Chaining example with FTMCR.......3
9 Revision history...............................4
Legal information...................................... 5

AN13608
Chaining FlexTimers on Layerscape Devices
Rev. 0 — 24 March 2022 Application Note

• SCFG_FTM_CHAIN_CONFIG[FTM_CHNx] documentation does not state that the higher numbered FTM is the least significant
part and the lower numbered FTM the most significant part of a chained 32-bit counter.

Keep checking for the latest documentation to ensure that you will over time see necessary corrections.

3 What does the Chain Control Register do for you?
Whenever an FTM overflows, the overflow must be propagated as an appropriate counter signal to the FTM forming the next stage
of the chain. The control register enables the SoC logic that externally connects FTMs. What happens is that the output of FTM<x>
channel 7 is connected to the quadrature decoder logic of FTM<y>. The quadrature decoder then clocks the pre-scaler of that FTM.
SoCs with FTMCR as control register in general permit more flexibility in chaining FTMs.

So to make the chain work, we not only must set the control register, but we also must program FTM outputs and
inputs correspondingly.

4 Configuring the FlexTimer output
In a chain, every FTM but the last one needs a special output configuration. To configure channel 7 of an FTM for chaining, we might
think that we need a toggle whenever the timer overflows. The problem with that is however that the next timer would only count
with half the intended frequency as it only gets the right edge to count every second toggle. What we want is to generate a pulse
so that the next timer will count up every time the current one overflows.

One option to do that is to set C7SC[MSB] and C7SC[ELSB], which in combination select the mode of “Edge-Aligned PWM” and a
configuration of “High-true pulses (clear output on match-up)”. To complete the setup we also want to set C7V to 0xffff, so that our
pulse gets generated at the right time.

5 Configuring the chained FlexTimer input
In a chain every FTM but the first one needs a special input configuration. On the FTM<y> that should count via its quadrature
decoder, we want to set it to decode count and direction by setting QDCTRL[QUADMODE] in addition to enabling it via
QDCTRL[QUADEN]. This allows us to count the pulses generated by the FTM<x> that feeds us via the PHA quadrature decoder input.

6 Reading a chained counter
As the multiple 16b CNT registers cannot be read atomically, a wrap from one value to the next can occur at any time, leading to
an inconsistent readout of the current value. The usual procedure to overcome it is the following:

• Read all 16b values of the chained CNT registers in the first set of variables starting with the most significant counter and
ending with the least significant counter

• Read all 16b values again in the same order into a second set of variables, excluding the least significant CNT register

• Compare the first set with the second set. If they differ, start again from the top.

• Use the first set of variables as the consistent chained counter value.

This sequence exploits the fact that reads are much faster than the least significant counter can ever overflow. The likelihood of
encountering an overflow during the read sequence is therefore low. If an overflow occurs it will be detected and the next attempt
would then succeed to read all values without any overflows in the chain. Unconditionally retrying on any difference is a necessity
though as, for example, interrupts could affect the timing and add unexpected delays.

7 Chaining example with SCFG_FTM_CHAIN_CONFIG
The following describes a simple example to chain FTMs 2 and 6 on an LS1046A into a 32-bit counter as an example for SoCs built
with SCFG_FTM_CHAIN_CONFIG. FTM6 is counting with a reduced RTC clock in this example to make the count easily observable
and the overflow will then clock FTM2 to form a 32-bit timer. The example can also be used on the LS1043A or LS1021A families,
provided the appropriate clocking for the hardware is selected.

NXP Semiconductors
What does the Chain Control Register do for you?

Chaining FlexTimers on Layerscape Devices , Rev. 0, 24 March 2022
Application Note 2 / 7

The example only shows the steps necessary for chaining timers and basic counter enablement. Other required initialization steps
or application necessities are omitted and must be applied as described in the SoC reference manual.

To permit reproducing the example easily, simple U-Boot commands are used to directly write the registers. Note that register
access in this example is Big Endian to match the memory map, that is, the 32-bit words written are byte swapped.

Table 2. Chaining of FTM2 and 6 on LS1046A

U-Boot command Description

=> mw.l 29e0054 05000000

=> mw.l 2a20054 05000000

=> mw.l 29e0008 ffff0000

=> mw.l 2a20008 ffff0000

Enable FTM mode on FTM2 (msb counter)

Enable FTM mode on FTM6 (lsb counter)

Set Modulo to max for a free running counter

Set Modulo to max for a free running counter

=> mw.l 1570154 00400000

=> mw.l 2a20044 28000000

=> mw.l 2a20048 ffff0000

=> mw.l 29e0080 09000000

Use SCFG_FTM_CHAIN_CONFIG to chain FTM2 and FTM6

Set FTM6 C7SC[MSB|ELSB] to generate a pulse

Set FTM6 C7V to 0xffff to generate a pulse at wrap time

Set FTM2 QDCTRL[QUADMODE|QUADEN]

=> mw.l 2a20000 12000000 Enable RTC clock / 4 for FTM2 as example reference clock

The choice of the reference clock is arbitrary. A slow clock was chosen so that when dumping the CNT registers it is easier to
observe the operation of the timer chain.

8 Chaining example with FTMCR
The following describes an example to chain FTMs 5 through 7 on an LS1028A into a 48-bit counter as example for SoCs built with
FTMCR. To permit reproducing it easily, simple U-Boot commands are used to directly write the registers.

The example only shows the steps necessary for chaining timers and basic counter enablement. Other required initialization steps
or application necessities are omitted and must be applied as described in the SoC reference manual.

Table 3. Chaining of FTMs 5 through 7 on an LS1028A

U-Boot command Description

=> mw.l 2860054 00000005

=> mw.l 2850054 00000005

=> mw.l 2840054 00000005

=> mw.l 2860008 0000ffff

=> mw.l 2850008 0000ffff

=> mw.l 2840008 0000ffff

Enable FTM mode on FTM7 (msb counter)

Enable FTM mode on FTM6

Enable FTM mode on FTM5 (lsb counter)

Set Modulo to max for a free running counter

Set Modulo to max for a free running counter

Set Modulo to max for a free running counter

=> mw.l 1e00960 00000030

=> mw.l 2840044 00000028

=> mw.l 2840048 0000ffff

=> mw.l 2850080 00000009

=> mw.l 2850044 00000028

Use FTMCR to chain FTM5-7

Set FTM5 C7SC[MSB|ELSB] to generate a pulse

Set FTM5 C7V to 0xffff to generate a pulse at wrap time

Set FTM6 QDCTRL[QUADMODE|QUADEN]

Set FTM6 C7SC[MSB|ELSB] to generate a pulse

Table continues on the next page...

NXP Semiconductors
Chaining example with FTMCR

Chaining FlexTimers on Layerscape Devices , Rev. 0, 24 March 2022
Application Note 3 / 7

Table 3. Chaining of FTMs 5 through 7 on an LS1028A (continued)

U-Boot command Description

=> mw.l 2850048 0000ffff

=> mw.l 2860080 00000009

Set FTM6 C7V to 0xffff to generate a pulse at wrap time

Set FTM7 QDCTRL[QUADMODE|QUADEN]

=> mw.l 2840000 0000000f Enable System Clock / 128 for FTM5 as example reference clock

The choice of the reference clock is arbitrary. A somewhat slow clock was chosen so that when dumping the CNT registers it is
easier to observe the operation of the timer chain.

The general method to chain multiple FTMs should be clearly visible here. As other devices with FTMCR like LS1088A, LS2088A,
or LX2160A have fewer timers, this example needs to be properly adjusted to write the right timer registers and chain only up to
the maximum amount available.

The necessary changes to run this example of an LX2160A would be, for example, to only write the registers of FTM1 at 0x2800000
and FTM2 at 0x2810000 instead of FTM5 and FTM7, and set FTMCR to 0x01 to only connect those two FTMs. The same modification
for the example works for an LS1088A or LS2088A.

Table 4. Chaining FTM1 and 2 on LX2160A

U-Boot command Description

=> mw.l 2810054 00000005

=> mw.l 2800054 00000005

=> mw.l 2810008 0000ffff

=> mw.l 2800008 0000ffff

Enable FTM mode on FTM2 (msb counter)

Enable FTM mode on FTM1 (lsb counter)

Set Modulo to max for a free running counter

Set Modulo to max for a free running counter

=> mw.l 1e00960 00000001

=> mw.l 2800044 00000028

=> mw.l 2800048 0000ffff

=> mw.l 2810080 00000009

Use FTMCR to chain FTM1-2

Set FTM1 C7SC[MSB|ELSB] to generate a pulse

Set FTM1 C7V to 0xffff to generate a pulse at wrap time

Set FTM2 QDCTRL[QUADMODE|QUADEN]

=> mw.l 2800000 0000000f Enable System Clock / 128 for FTM1 as example reference clock

9 Revision history
Table 5. Revision history

Revision Number Date Substantive Changes

0 24 March 2022 Initial release

NXP Semiconductors
Revision history

Chaining FlexTimers on Layerscape Devices , Rev. 0, 24 March 2022
Application Note 4 / 7

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such damages
are based on tort (including negligence), warranty, breach of contract or any
other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance with
the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without limitation
specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the
publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical
or safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental damage.
NXP Semiconductors and its suppliers accept no liability for inclusion and/or
use of NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of customer’s
third party customer(s). Customers should provide appropriate design and
operating safeguards to minimize the risks associated with their applications
and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary testing
for the customer’s applications and products using NXP Semiconductors
products in order to avoid a default of the applications and the products or of the
application or use by customer’s third party customer(s). NXP does not accept
any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products
are sold subject to the general terms and conditions of commercial sale,
as published at http://www.nxp.com/profile/terms, unless otherwise agreed
in a valid written individual agreement. In case an individual agreement
is concluded only the terms and conditions of the respective agreement
shall apply. NXP Semiconductors hereby expressly objects to applying the
customer’s general terms and conditions with regard to the purchase of NXP
Semiconductors products by customer.

Export control — This document as well as the item(s) described herein may be
subject to export control regulations. Export might require a prior authorization
from competent authorities.

Suitability for use in non-automotive qualified products — Unless this
data sheet expressly states that this specific NXP Semiconductors product
is automotive qualified, the product is not suitable for automotive use.
It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.

In the event that customer uses the product for design-in and use in automotive
applications to automotive specifications and standards, customer (a) shall use
the product without NXP Semiconductors’ warranty of the product for such
automotive applications, use and specifications, and (b) whenever customer
uses the product for automotive applications beyond NXP Semiconductors’
specifications such use shall be solely at customer’s own risk, and (c) customer
fully indemnifies NXP Semiconductors for any liability, damages or failed
product claims resulting from customer design and use of the product for
automotive applications beyond NXP Semiconductors’ standard warranty and
NXP Semiconductors’ product specifications.

NXP Semiconductors
Legal information

Chaining FlexTimers on Layerscape Devices , Rev. 0, 24 March 2022
Application Note 5 / 7

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.

Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio,
CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,
Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, μVision,
Versatile — are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be
protected by any or all of patents, copyrights, designs and trade secrets. All
rights reserved.

Airfast — is a trademark of NXP B.V.

Bluetooth — the Bluetooth wordmark and logos are registered trademarks
owned by Bluetooth SIG, Inc. and any use of such marks by NXP
Semiconductors is under license.

Cadence — the Cadence logo, and the other Cadence marks found at
www.cadence.com/go/trademarks are trademarks or registered trademarks of
Cadence Design Systems, Inc. All rights reserved worldwide.

CodeWarrior — is a trademark of NXP B.V.

ColdFire — is a trademark of NXP B.V.

ColdFire+ — is a trademark of NXP B.V.

EdgeLock — is a trademark of NXP B.V.

EdgeScale — is a trademark of NXP B.V.

EdgeVerse — is a trademark of NXP B.V.

elQ — is a trademark of NXP B.V.

FeliCa — is a trademark of Sony Corporation.

Freescale — is a trademark of NXP B.V.

HITAG — is a trademark of NXP B.V.

ICODE and I-CODE — are trademarks of NXP B.V.

Immersiv3D — is a trademark of NXP B.V.

I2C-bus — logo is a trademark of NXP B.V.

Kinetis — is a trademark of NXP B.V.

Layerscape — is a trademark of NXP B.V.

Mantis — is a trademark of NXP B.V.

MIFARE — is a trademark of NXP B.V.

MOBILEGT — is a trademark of NXP B.V.

NTAG — is a trademark of NXP B.V.

Processor Expert — is a trademark of NXP B.V.

QorIQ — is a trademark of NXP B.V.

SafeAssure — is a trademark of NXP B.V.

SafeAssure — logo is a trademark of NXP B.V.

StarCore — is a trademark of NXP B.V.

Synopsys — Portions Copyright © 2021 Synopsys, Inc. Used with permission.
All rights reserved.

Tower — is a trademark of NXP B.V.

UCODE — is a trademark of NXP B.V.

VortiQa — is a trademark of NXP B.V.

NXP Semiconductors
Legal information

Chaining FlexTimers on Layerscape Devices , Rev. 0, 24 March 2022
Application Note 6 / 7

mailto:PSIRT@nxp.com
http://www.cadence.com/go/trademarks

Please be aware that important notices concerning this document and the product(s) described
herein, have been included in section 'Legal information'.

© NXP B.V. 2022. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 24 March 2022
Document identifier: AN13608

	Contents
	1 Introduction
	2 Documentation Inconsistencies
	3 What does the Chain Control Register do for you?
	4 Configuring the FlexTimer output
	5 Configuring the chained FlexTimer input
	6 Reading a chained counter
	7 Chaining example with SCFG_FTM_CHAIN_CONFIG
	8 Chaining example with FTMCR
	9 Revision history
	Legal information

