
1 Introduction
The intent of this document is to provide the necessary information to
hardware, software, and system engineers to run the Xen hypervisor on NXP
Layerscape platforms. In this action, we consider basic scenarios, such as
basic domain management, dom0less, and device passthrough.

2 Hands-on
The Xen project hypervisor can be run directly on hardware or under QEMU. In this application note, we consider only the first
scenario. The following instructions provide you the location of the images and the steps that are required to boot the hypervisor
and one or more domains.

The below build instructions have been tested on a x86_64 machine running Ubuntu 18.04 as a non-root user with sudo privileges.

2.1 Build
We use the Yocto Project to build the Linux kernel and Xen images, including the hypervisor binary and Xen Project toolstack
and filesystems.

2.1.1 Requirements
Make sure that your build machine meets these requirements:

• 50 GB or more of free disk space

• Git version 1.8.3.1 or later

• tar version 1.27 or later

• Python version 3.4.0 or later

2.1.2 Dependencies
Install the following packages on the build host:

$ sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-multilib build-essential chrpath
socat cpio python python3 python3-pip python3-pexpect xz-utils debianutils iputils-ping libsqlite3-dev

Packages may differ depending on the build system.

 NOTE

2.1.3 Download and install the Yocto Project
1. Install repo tool:

$ mkdir ~/bin
$ curl http://commondatastorage.googleapis.com/git-repo-downloads/repo > ~/bin/repo

Contents

1 Introduction......................................1
2 Hands-on...1
3 Known limitations.......................... 10
4 Troubleshooting............................ 11
5 References....................................11
6 Revision history.............................11

AN13138
Xen Deployment on Layerscape Platforms
Rev. 0 — 03/2021 Application Note

http://commondatastorage.googleapis.com/git-repo-downloads/repo

$ chmod a+x ~/bin/repo
$ PATH=${PATH}:~/bin

2. Download Yocto metadata:

$ mkdir yocto-sdk
$ cd yocto-sdk
$ repo init -u https://source.codeaurora.org/external/qoriq/qoriq-components/yocto-sdk -b
<branch> #zeus and dunfell branches have been tested
$ repo sync --force-sync

3. Use the poky script to set the environment for the target platform:

$. ./setup-env -m <target_board>

4. Add the following lines to the conf/local.conf file:

IMAGE_FSTYPES_append = " ext2"
DISTRO_FEATURES_append = " xen"
IMAGE_INSTALL_append = " zlib-dev xen-base" #zeus branch
IMAGE_INSTALL_append = " zlib-dev xen-tools" #dunfell branch

5. Make sure that the following kernel options are enabled:

CONFIG_XEN_DOM0=y
CONFIG_XEN=y
CONFIG_XEN_BLKDEV_FRONTEND=y
CONFIG_XEN_NETDEV_FRONTEND=y
CONFIG_INPUT_XEN_KBDDEV_FRONTEND=y
CONFIG_HVC_XEN=y
CONFIG_HVC_XEN_FRONTEND=y
CONFIG_XEN_FBDEV_FRONTEND=y
CONFIG_XEN_BALLOON=y
CONFIG_XEN_SCRUB_PAGES_DEFAULT=y
CONFIG_XEN_DEV_EVTCHN=y
CONFIG_XEN_BACKEND=y
CONFIG_XENFS=y
CONFIG_XEN_COMPAT_XENFS=y
CONFIG_XEN_SYS_HYPERVISOR=y
CONFIG_XEN_XENBUS_FRONTEND=y
CONFIG_XEN_GNTDEV=y
CONFIG_XEN_GRANT_DEV_ALLOC=y
CONFIG_SWIOTLB_XEN=y
CONFIG_XEN_PRIVCMD=y
CONFIG_XEN_EFI=y
CONFIG_XEN_AUTO_XLATE=y

6. Use the following command, if you need to enable certain kernel options:

$ bitbake -c menuconfig virtual/kernel

7. Launch build:

$ bitbake fsl-image-networking

8. Find the resulted images in the following directory:

NXP Semiconductors
Hands-on

Xen Deployment on Layerscape Platforms, Rev. 0, 03/2021
Application Note 2 / 13

/<workdir>/yocto-sdk/build_<target_board>/tmp/deploy/images/<target_board>

fsl-image-networking-<target_board>.rootfs.cpio.gz #used as dom0-rfs and domu-rfs
fsl-image-networking-<target_board>.rootfs.ext2 #used as domu-rfs in section 2.2.2
fsl-<target_board>.dtb #device tree blob used for Dom0
Image #used as dom0-image and domu-image
xen-<target_board>

9. Image represents the kernel image used for Dom0. It can be used for unprivileged domains as well. In case you need a
different kernel configuration, run the following commands to rebuild the kernel image with the desired options:

$ bitbake -c menuconfig virtual/kernel
$ bitbake -c compile -f virtual/kernel

In case you use a newer version of GCC, such as GCC 9, you will encounter a warning of type address-of-packed-
member, which leads to a build failure. Use this patch to fix it: https://patchwork.kernel.org/patch/11265041/. The
Xen sources are in the following directory: /<workdir>/yocto-sdk/build_<target_board>/tmp/work/
aarch64-fsl-linux/xen/<version>.

 NOTE

2.2 Deployment
Before performing the below steps, make sure that a TFTP server is up and running on the machine where images are built.

2.2.1 Run Xen and Dom0
Run the following instructions in U-Boot on the proper flash bank. In case you are not familiar with Layerscape platforms, see
https://lsdk.github.io/document.html to determine the proper bank. The addresses used in the below instructions must be chosen
so that they fit the memory layout of the platform.

1. Load the Xen image to $xen_addr address:

u-boot> tftp $xen_addr $path/xen-<target_board>

2. Load the Dom0 kernel image to $kernel_addr address:

u-boot> tftp $kernel_addr $path/Image

3. Load the Dom0 device tree blob to $fdt_addr address:

u-boot> tftp $fdt_addr $path/fsl-<target_board>.dtb

In this document, we provide instructions to use a RAM disk for Dom0 or use a filesystem stored on a mass storage device
(for example, SD card). However, it is possible to use other devices for storage.

4. If you choose to use a RAM disk, run the following command to load it to $rootfs_addr address:

u-boot> tftp $rootfs_addr $path/dom0-rfs

You may also write the rootfs to an SD card.

5. Add a boot module containing the dom0 kernel:

u-boot> fdt addr $fdt_addr
u-boot> fdt resize 1024
u-boot> fdt set /chosen \#address-cells <0x2>
u-boot> fdt set /chosen \#size-cells <0x2>
u-boot> fdt set /chosen xen,xen-bootargs "console=dtuart dtuart=serial0 dom0_mem=2G
dom0_max_vcpus=1 bootscrub=0 vwfi=native sched=null earlycon=xen loglvl=all guest_loglvl=all"

NXP Semiconductors
Hands-on

Xen Deployment on Layerscape Platforms, Rev. 0, 03/2021
Application Note 3 / 13

https://patchwork.kernel.org/patch/11265041/
https://lsdk.github.io/document.html

#Xen command line
u-boot> fdt mknod /chosen dom0
u-boot> fdt set /chosen/dom0 compatible "xen,linux-zimage" "xen,multiboot-module"
u-boot> fdt set /chosen/dom0 reg <0x0 <$kernel_addr> 0x0 <$kernel_size>>

6. Add a boot module containing the dom0 ramdisk, if needed:

u-boot> fdt set /chosen xen,dom0-bootargs "console=hvc0 earlycon=xen earlyprintk=xen
clk_ignore_unused root=/dev/ram0" #Dom0 command line
u-boot> fdt mknod /chosen dom0-ramdisk
u-boot> fdt set /chosen/dom0-ramdisk compatible "xen,linux-initrd" "xen,multiboot-module"
u-boot> fdt set /chosen/dom0-ramdisk reg <0x0 <$rootfs_addr> 0x0 <$rootfs_size>>

7. If the filesystem is stored on the SD card, use the following dom0 command line:

u-boot> fdt set /chosen xen,dom0-bootargs "console=hvc0 earlycon=xen earlyprintk=xen
clk_ignore_unused root=/dev/mmcblk0p1 rw rootwait"

This information can be directly added in the device tree source file.

 NOTE

8. Boot:

u-boot> booti $xen_addr - $fdt_addr

9. Print Xen host information:

xl info
host : ls1046ardb
release : 4.19.46-g4ddb5d78dd74-dirty
version : #8 SMP PREEMPT Thu Jul 9 11:18:53 EEST 2020
machine : aarch64
nr_cpus : 4
max_cpu_id : 3
nr_nodes : 1
cores_per_socket : 1
threads_per_core : 1
cpu_mhz : 25.000
hw_caps : 00000000:00000000:00000000:00000000:00000000:00000000:00000000:00000000
virt_caps :
total_memory : 8126
free_memory : 186
sharing_freed_memory : 0
sharing_used_memory : 0
outstanding_claims : 0
free_cpus : 0
xen_major : 4
xen_minor : 12
xen_extra : .0
xen_version : 4.12.0
xen_caps : xen-3.0-aarch64 xen-3.0-armv7l
xen_scheduler : credit2
xen_pagesize : 4096
platform_params : virt_start=0x200000
xen_changeset :
xen_commandline : console=dtuart dtuart=serial0 dom0_mem=7500M loglvl=all
guest_loglvl=all sync_console
cc_compiler : aarch64-fsl-linux-gcc (GCC) 9.2.0
cc_compile_by : nxf41040

NXP Semiconductors
Hands-on

Xen Deployment on Layerscape Platforms, Rev. 0, 03/2021
Application Note 4 / 13

cc_compile_domain :
cc_compile_date : Thu Jul 9 08:49:59 UTC 2020
build_id : 6f101bbbf7a8f3f35404b08fe936718a0af2adda
xend_config_format : 4

10. Print the information about existent domains:

xl list
Name ID Mem VCPUs State Time(s)
Domain-0 0 2048 1 r----- 28.7

2.2.2 Run DomU
After Dom0 is booted, you can use the Xen management toolstack xl to create and access unprivileged domains.

1. Mount the guest filesystem:

losetup /dev/loop0 $path/domu-rfs

Where: domu-rfs is fsl-image-networking-<target_board>.rootfs.ext2

2. Create config file domu.cfg and add the following lines:

name = "domu"
vcpus = 1
memory = 1024
kernel = "$path/domu-image"
disk = ['phy:/dev/loop0,xvda,w']
extra = "root=/dev/xvda rw earlyprintk=xenboot console=hvc0"

For more details, see https://xenbits.xen.org/docs/unstable/man/xl.cfg.5.html.

You can use the same kernel for Dom0 and DomU, however it is not mandatory. If you want to use another kernel
configuration for the unprivileged domain, follow the instructions listed at the end of section Download and install
the Yocto Project to build a different kernel image.

 NOTE

3. Create domain:

xl create domu.cfg

4. Verify that the domain has been created:

$: xl list
Name ID Mem VCPUs State Time(s)
Domain-0 0 4096 4 r----- 28.7
domu 1 1024 1 r----- 2.7

5. Boot domain:

xl console domu

6. Login as root.

The following command is analogous to running xl create domu.cfg && xl console domu:

xl create -c domu.cfg

NXP Semiconductors
Hands-on

Xen Deployment on Layerscape Platforms, Rev. 0, 03/2021
Application Note 5 / 13

https://xenbits.xen.org/docs/unstable/man/xl.cfg.5.html

7. Detach from the domain console using <CTRL> ']'. Be aware that this escape character is also used by telnet. You
may connect to the board console using -E option to stop any character from being used as an escape character:

telnet -E <ip> <port>

8. Destroy domain:

xl destroy domu

Unprivileged domains cannot access the system hardware or device drivers. Pass through hardware to such
domains or use available paravirtualization device drivers if needed.

 NOTE

2.2.3 Dom0less
There is an alternative solution to deploy Xen domains, namely dom0less. It does not rely on the control domain, instead it allows
the user to create domains at boot time by passing required information to Xen via device tree modules.

1. After loading the Xen and Dom0 images, load DomU kernel and filesystem:

u-boot> tftp $domu_kernel_addr $path/domu-image
u-boot> tftp $domu_rootfs_addr $path/domu-rfs

These instructions assume that you are using the commands described in the section Download and install the
Yocto Project to obtain the kernel image and filesystem for the unprivileged domain.

 NOTE

2. Edit the device tree blob:

u-boot> fdt set /chosen/domU0 compatible "xen,domain"
u-boot> fdt set /chosen/domU0 \#address-cells <0x2>
u-boot> fdt set /chosen/domU0 \#size-cells <0x2>
u-boot> fdt set /chosen/domU0 memory <0x0 0x100000>
u-boot> fdt mknod /chosen domU0
u-boot> fdt set /chosen/domU0 cpus <0x1>
u-boot> fdt set /chosen/domU0 vpl011 <0x1>
u-boot> fdt mknod /chosen/domU0 module$domu_kernel_addr
u-boot> fdt set /chosen/domU0/module$domu_kernel_addr compatible "multiboot,kernel"
"multiboot,module"
u-boot> fdt set /chosen/domU0/module$domu_kernel_addr reg <0x0 $domu_kernel_addr 0x0
$domu_kernel_size>
u-boot> fdt set /chosen/domU0/module$domu_kernel_addr bootargs "console=ttyAMA0"
u-boot> fdt mknod /chosen/domU0 module$domu_rootfs_addr
u-boot> fdt set /chosen/domU0/module$domu_rootfs_addr compatible "multiboot,ramdisk"
"multiboot,module"
u-boot> fdt set /chosen/domU0/module$domu_roootfs_addr reg <0x0 $domu_rootfs_addr 0x0
$domu_rootfs_size>

This information can be directly added in the device tree source file.

 NOTE

For more details, see https://xenbits.xenproject.org/docs/unstable/features/dom0less.html.

2.2.4 ImageBuilder
You can also use ImageBuilder, a collection of scripts used for build automation, to deploy Xen on Layerscape platforms.

NXP Semiconductors
Hands-on

Xen Deployment on Layerscape Platforms, Rev. 0, 03/2021
Application Note 6 / 13

https://xenbits.xenproject.org/docs/unstable/features/dom0less.html
https://gitlab.com/ViryaOS/imagebuilder

The following config file has been tested on LS2088ARDB:

MEMORY_START="0x80000000"
MEMORY_END="0xFBE00000"

DEVICE_TREE="$path/fsl-ls2088a-rdb.dtb"
XEN="$path/xen-ls2088ardb"
DOM0_KERNEL="$path/dom0-img"
DOM0_RAMDISK="$path/dom0-rfs"

NUM_DOMUS=1
DOMU_KERNEL[0]="$path/domu-img"
DOMU_RAMDISK[0]="$path/domu-rfs"

UBOOT_SOURCE="boot.source"
UBOOT_SCRIPT="boot.scr"

Use the bdinfo U-Boot command to get the memory start address and size.

1. Invoke uboot-script-gen:

$ bash ./scripts/uboot-script-gen -c config -d . – tftp
Generated uboot script boot.scr, to be loaded at address 0x80200000:
tftpb 0x80200000 boot.scr; source 0x80200000

The $path is relative to the directory passed as an argument to the -d option.

 NOTE

2. Load and source the script in U-Boot using the instructions printed by ImageBuilder.

There are some default options in ImageBuilder, such as dom0-bootargs. If needed, use the following instructions to
perform changes:

a. Edit boot.source

b. Regenerate boot.scr

$ mkimage -A arm64 -T script -C none -a 0x80200000 -d boot.source boot.scr

2.2.5 Enable SMMU support
In the Xen arm-smmu driver, the start level of the page table walk is hardcoded to 1, which causes errors in scenarios where the
level has a different value, as is the case with Layerscape platforms.

If you want to run the Xen hypervisor on Layerscape platforms with SMMU enabled:

1. Apply the following patch which was sent upstream:

From xen-devel Fri Oct 02 10:33:44 2020
From: laurentiu.tudor () nxp ! com
Date: Fri, 02 Oct 2020 10:33:44 +0000
To: xen-devel
Subject: [PATCH v3] arm,smmu: match start level of page table walk with P2M
Message-Id: <20201002103344.13015-1-laurentiu.tudor () nxp ! com>
X-MARC-Message: https://marc.info/?l=xen-devel&m=160163484031524

From: Laurentiu Tudor <laurentiu.tudor@nxp.com>

Don't hardcode the lookup start level of the page table walk to 1
and instead match the one used in P2M. This should fix scenarios

NXP Semiconductors
Hands-on

Xen Deployment on Layerscape Platforms, Rev. 0, 03/2021
Application Note 7 / 13

involving SMMU where the start level is different than 1.
In order for the SMMU driver to also compile on arm32 move the
P2M_ROOT_LEVEL in the p2m header file (while at it, for
consistency also P2M_ROOT_ORDER) and use the macro in the smmu
driver.

Signed-off-by: Laurentiu Tudor <laurentiu.tudor@nxp.com>

Changes in v3:
 - also export 'p2m_root_order'
 - moved variables in their rightful #ifdef block

Changes in v2:
 - made smmu driver compile on arm32

 xen/arch/arm/p2m.c | 9 ++-------
 xen/drivers/passthrough/arm/smmu.c | 2 +-
 xen/include/asm-arm/p2m.h | 11 +++++++++++
 3 files changed, 14 insertions(+), 8 deletions(-)

diff --git a/xen/arch/arm/p2m.c b/xen/arch/arm/p2m.c
index ce59f2b503..4eeb867ca1 100644
--- a/xen/arch/arm/p2m.c
+++ b/xen/arch/arm/p2m.c
@@ -17,17 +17,12 @@
 #define INVALID_VMID 0 /* VMID 0 is reserved */

 #ifdef CONFIG_ARM_64
-static unsigned int __read_mostly p2m_root_order;
-static unsigned int __read_mostly p2m_root_level;
-#define P2M_ROOT_ORDER p2m_root_order
-#define P2M_ROOT_LEVEL p2m_root_level
+unsigned int __read_mostly p2m_root_order;
+unsigned int __read_mostly p2m_root_level;
 static unsigned int __read_mostly max_vmid = MAX_VMID_8_BIT;
 /* VMID is by default 8 bit width on AArch64 */
 #define MAX_VMID max_vmid
 #else
-/* First level P2M is always 2 consecutive pages */
-#define P2M_ROOT_LEVEL 1
-#define P2M_ROOT_ORDER 1
 /* VMID is always 8 bit width on AArch32 */
 #define MAX_VMID MAX_VMID_8_BIT
 #endif
diff --git a/xen/drivers/passthrough/arm/smmu.c b/xen/drivers/passthrough/arm/smmu.c
index 94662a8501..4ba6d3ab94 100644
--- a/xen/drivers/passthrough/arm/smmu.c
+++ b/xen/drivers/passthrough/arm/smmu.c
@@ -1152,7 +1152,7 @@ static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain)
 (TTBCR_RGN_WBWA << TTBCR_IRGN0_SHIFT);

 if (!stage1)
- reg |= (TTBCR_SL0_LVL_1 << TTBCR_SL0_SHIFT);
+ reg |= (2 - P2M_ROOT_LEVEL) << TTBCR_SL0_SHIFT;

 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);

diff --git a/xen/include/asm-arm/p2m.h b/xen/include/asm-arm/p2m.h
index 5fdb6e8183..28ca9a838e 100644
--- a/xen/include/asm-arm/p2m.h

NXP Semiconductors
Hands-on

Xen Deployment on Layerscape Platforms, Rev. 0, 03/2021
Application Note 8 / 13

+++ b/xen/include/asm-arm/p2m.h
@@ -13,6 +13,17 @@
 /* Holds the bit size of IPAs in p2m tables. */
 extern unsigned int p2m_ipa_bits;

+#ifdef CONFIG_ARM_64
+extern unsigned int p2m_root_order;
+extern unsigned int p2m_root_level;
+#define P2M_ROOT_ORDER p2m_root_order
+#define P2M_ROOT_LEVEL p2m_root_level
+#else
+/* First level P2M is always 2 consecutive pages */
+#define P2M_ROOT_ORDER 1
+#define P2M_ROOT_LEVEL 1
+#endif
+
 struct domain;

 extern void memory_type_changed(struct domain *);
--
2.17.1

For more details regarding the two-level table access, see https://developer.arm.com/
documentation/100940/0101.

 NOTE

The Xen arm-smmu driver uses the legacy device tree bindings, therefore additional changes to the device tree used by
Dom0 are required. For instance, the mmu-masters property is deprecated, therefore it is not included in the native device
tree source.

2. Add the mmu-masters property to the smmu node and specify the StreamID for each master:

smmu: iommu@9000000 {
 /* Other properties */
 mmu-masters = <&eshdc 0xc04>, <&sata 0xc05> …
};

3. Add #stream-id-cells to each node listed in mmu-masters:

esdhc: esdhc@1560000 {
 /* Other properties */
 #stream-id-cells = <1>;
};

sata: sata@3200000 {
 /* Other properties */
 #stream-id-cells = <1>;
};

In case of misconfiguration, a global fault is triggered and the peripheral will not work. For instance, in the following example, the
StreamID 0x420 was received by SMMU, but could not be identified.

(XEN) smmu: /soc/iommu@5000000: Unexpected global fault, this could be serious
(XEN) smmu: /soc/iommu@5000000: GFSR 0x80000002, GFSYNR0 0x00000000, GFSYNR1 0x00000420, GFSYNR2
0x00000000

NXP Semiconductors
Hands-on

Xen Deployment on Layerscape Platforms, Rev. 0, 03/2021
Application Note 9 / 13

https://developer.arm.com/documentation/100940/0101
https://developer.arm.com/documentation/100940/0101

2.2.6 Device passthrough
You can assign resources to unprivileged guests via device passthrough. The following instructions provide guidance on
how to passthrough a USB device. Same steps can be performed to passthrough a PCIe controller. For more details, see
https://xenbits.xen.org/docs/4.9-testing/misc/arm/passthrough.txt.

USB passthrough

1. Create a device tree blob for DomU:

/dts-v1/;

/ {
 #address-cells = <2>;
 #size-cells = <2>;

 passthrough {
 compatible = "simple-bus";
 ranges;
 #address-cells = <2>;
 #size-cells = <2>;
 usb0: usb3@3100000 {
 status = "okay";
 #stream-id-cells = <0x1>;
 compatible = "snps,dwc3";
 reg = <0x0 0x3100000 0x0 0x10000>;
 interrupts = <0 80 0x4>;
 dr_mode = "host";
 snps,quirk-frame-length-adjustment = <0x20>;
 snps,dis_rxdet_inp3_quirk;
 snps,incr-burst-type-adjustment = <1>, <4>, <8>, <16>;
 snps,host-vbus-glitches;
 };
 };
};

2. Run the following command in U-Boot to mark the device, so that Xen is aware that it will be used for passthrough:

u-boot> fdt set /soc/usb3@3100000 "xen,passthrough"

3. Add the following lines to the DomU domu.cfg config file:

device_tree = "$path/domu.dtb"
irqs = [112]
iomem = ["0x03100,0x10"]

PCIe controller passthrough (LS1046ARDB)

This scenario is like the previous one, except it requires the passthrough of MSI controllers as well since they are used by
the controller.

On this platform, the MSI controller is NXP custom and it is seen by Xen as a regular device, being assigned by
default to Dom0. Dom0 receives regular interrupts, which are converted to MSIs by the device driver. Hence, it is
possible to use PCIe with MSIs, even though MSI support is missing in Xen.

 NOTE

3 Known limitations
DPAA2 features are not supported because management complex bus and drivers support is missing in Xen.

NXP Semiconductors
Known limitations

Xen Deployment on Layerscape Platforms, Rev. 0, 03/2021
Application Note 10 / 13

https://xenbits.xen.org/docs/4.9-testing/misc/arm/passthrough.txt

Device passthrough of devices which require a clocksource is not supported.

MSI support is missing in Xen.

4 Troubleshooting

4.1 Shared interrupts
On Layerscape platforms, serial devices share the same interrupt as it can be noticed in the below device tree fragment:

duart0: serial@21c0500 {
 compatible = "fsl,ns16550", "ns16550a";
 reg = <0x00 0x21c0500 0x0 0x100>;
 interrupts = <GIC_SPI 54 IRQ_TYPE_LEVEL_HIGH>;
 clocks = <&clockgen 4 1>;
};

duart1: serial@21c0600 {
 compatible = "fsl,ns16550", "ns16550a";
 reg = <0x00 0x21c0600 0x0 0x100>;
 interrupts = <GIC_SPI 54 IRQ_TYPE_LEVEL_HIGH>;
 clocks = <&clockgen 4 1>;
};

Xen does not allow shared interrupts between it and the other domains. In a basic scenario, running Xen and Dom0, one UART
is used by the hypervisor and the second is assigned to the domain when it is created. One workaround is to remove the duart1
node from the Dom0 device tree.

4.2 SPIs assignment
Because Xen is assigning only SPIs to its domains, devices that use other types of interrupts must be removed from the dts (for
example, on LS1028ARDB the PMU uses a PPI type interrupt). Otherwise, domain 0 cannot be properly set up and a panic event
is triggered.

4.3 LS1028ARDB boot issues
On LS1028ARDB platforms, the GPU node has the entire low memory bank reserved. This triggers a panic event in Xen scenarios.
One possible workaround is to remove the gpu node from the dts or reserve the second memory bank instead of the first one.

4.4 Duplicate stream IDs
In the current SMMU driver implementation, the scenario in which multiple master devices share the same stream ID is not
supported. To overcome this issue, it is enough to list only one of the master devices in mmu-masters.

5 References
• https://wiki.xenproject.org

• https://xenbits.xen.org/docs/

6 Revision history
Table 1 summarizes the changes made to this document since the initial release.

NXP Semiconductors
Troubleshooting

Xen Deployment on Layerscape Platforms, Rev. 0, 03/2021
Application Note 11 / 13

https://wiki.xenproject.org
https://xenbits.xen.org/docs/

Table 1. Revision history

Revision number Date Substantive changes

0 03/2021 Initial release

NXP Semiconductors
Revision history

Xen Deployment on Layerscape Platforms, Rev. 0, 03/2021
Application Note 12 / 13

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP
products. There are no express or implied copyright licenses granted hereunder to design or fabricate any
integrated circuits based on the information in this document. NXP reserves the right to make changes without
further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular
purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in NXP data sheets and/or specifications can and do vary in different
applications, and actual performance may vary over time. All operating parameters, including “typicals,” must
be validated for each customer application by customer's technical experts. NXP does not convey any license
under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of
sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Security — Customer understands that all NXP products may be subject to unidentified or documented
vulnerabilities. Customer is responsible for the design and operation of its applications and products throughout
their lifecycles to reduce the effect of these vulnerabilities on customer’s applications and products. Customer’s
responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in
customer’s applications. NXP accepts no liability for any vulnerability. Customer should regularly check security
updates from NXP and follow up appropriately. Customer shall select products with security features that best
meet rules, regulations, and standards of the intended application and make the ultimate design decisions
regarding its products and is solely responsible for compliance with all legal, regulatory, and security related
requirements concerning its products, regardless of any information or support that may be provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages
the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE,
GREENCHIP, HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE
PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK,
SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo,
AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package,
QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V.
All other product or service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI,
Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil,
Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,
ULINK-ME, ULINK-PLUS, ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited
(or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of
patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks
of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org
logos and related marks are trademarks and service marks licensed by Power.org.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 03/2021
Document identifier: AN13138

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Hands-on
	2.1 Build
	2.1.1 Requirements
	2.1.2 Dependencies
	2.1.3 Download and install the Yocto Project

	2.2 Deployment
	2.2.1 Run Xen and Dom0
	2.2.2 Run DomU
	2.2.3 Dom0less
	2.2.4 ImageBuilder
	2.2.5 Enable SMMU support
	2.2.6 Device passthrough

	3 Known limitations
	4 Troubleshooting
	4.1 Shared interrupts
	4.2 SPIs assignment
	4.3 LS1028ARDB boot issues
	4.4 Duplicate stream IDs

	5 References
	6 Revision history

