
1 Introduction
The Over The Air Programming (OTAP) NXP’s custom Bluetooth LE service
provides the developers a solution to upgrade the software that the MCU
contains. It removes the need of cables between the device to be upgraded
(OTAP client) and the device that contains the new software (OTAP server).

The best way to take advantage of the OTAP service is to integrate it into the
Bluetooth LE application. In that way, you can reprogram the device as many
times as required.

This document is intended for developers who want to be familiar with the
OTAP software.

2 OTAP client software
OTAP memory management during the update process describes the actual
implementation of the OTAP client software included in the SDK package
for FRDM-KW38. Advantages of the OTAP service integration explains the
importance of integrating OTAP client software into your application, and the
expected results.

2.1 OTAP memory management during the update
process

1. The KW38 Flash is partitioned into:

• One 256 KB Program Flash array (P-Flash) divided into 2
KB sectors with a flash address range from 0x0000_0000 to
0x0003_FFFF.

• One 256 KB FlexNVM array divided in 2 KB sectors with address range from 0x1000_0000 to 0x1003_FFFF.

• Alias memory with address range from 0x0004_0000 to 0x0007_FFFF. Writing or reading at the Alias range address
modifies or returns the FlexNVM content respectively.

Contents

1 Introduction......................................1
2 OTAP client software.......................1
2.1 OTAP memory management

during the update process........... 1
2.2 Advantages of the OTAP service

integration.................................... 6
3 Prerequisites................................... 7
3.1 Downloading and installing the

software development kit............. 7
4 Customizing a based Bluetooth LE

demo to integrate the OTAP service
.. 10

4.1 Importing the OTAP Bluetooth LE
service and framework software
into the Temp Coll project..........10

4.2 Main modifications in the source
files...18

4.3 Modifications in project settings
and storage configurations........ 36

5 Testing the Temp Coll-OTAP demo
.. 36

5.1 Preparing the OTAP client SDK
software..................................... 37

5.2 Creating a Temp Coll - OTAP S -
record image to update the
software..................................... 41

5.3 Creating a Temp Coll S-Record
image to update the software.... 43

5.4 Testing the Temp Coll-OTAP
software..................................... 46

AN12980
KW38 - Integrating the OTAP Client Service into a Bluetooth LE
Central Device
Rev. 0 — 11/2020 Application Note

Figure 1. MCU on-chip memory

2. The OTAP application splits the flash into two independent parts, the OTAP bootloader and the OTAP client.

• The OTAP bootloader verifies if there is a new image available in the OTAP client to reprogram the device.

• The OTAP client software provides the Bluetooth LE custom service needed to communicate the OTAP client
device with the OTAP server that contains the new image file.

Therefore, the OTAP client device needs to be programmed twice, first with the OTAP bootloader, and then with the
Bluetooth LE application supporting OTAP client. The mechanism is created to have two different software coexisting in the
same device and store each one in different memory regions. This is implemented by the linker file. In the KW38 device,
the bootloader application has reserved an 8 KB slot of memory from 0x0000_0000 to 0x0000_1FFF, thus the rest of the
memory is reserved, among other things, by the OTAP client application.

NXP Semiconductors
OTAP client software

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 2 / 53

Figure 2. OTAP client software

3. When generating the new image file for the OTAP client device, the developer needs to specify that the code will be stored
with an offset of 8 KB since the first addresses must be reserved for the bootloader, making use of the linker script. The
new application should contain the Bootloader Flags at the corresponding address to work properly.

Figure 3. Software update

NXP Semiconductors
OTAP client software

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 3 / 53

4. At the connection state, the OTAP server sends the image packets (known as chunks) to the OTAP client via Bluetooth LE.
The OTAP client device can store these chunks, at the external SPI flash (only available on the FRDM-KW38 board) or the
On-Chip FlexNVM memory. The destination of the code is selectable in the OTAP client software.

Figure 4. Storage of the software update

5. When the transfer of the image has finished and all chunks were sent from the OTAP server to the OTAP client, the
OTAP client software writes information, such as the source of the image update, external flash or FlexNVM, in a portion
of memory known as Bootloader Flags, and then resets the MCU to execute the OTAP bootloader code. The OTAP
bootloader reads the Bootloader Flags to get the information needed to program the device and triggers a command to
reprogram the MCU with the new application. This is shown in the figure below.

NXP Semiconductors
OTAP client software

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 4 / 53

Figure 5. Simplified flow diagram of OTAP software

6. Because the new application was built with an offset of 8 KB, the OTAP bootloader programs the device starting from
the 0x0000_2000 address and the OTAP client application is overwritten by the new image. Then the OTAP bootloader
triggers a command to start the execution of the new image. If the new image does not contain the OTAP service
included, the device is not able to be programmed again due to the lack of OTAP functionality. For more description,
see Advantages of the OTAP service integration.

NXP Semiconductors
OTAP client software

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 5 / 53

Figure 6. Memory content at the end of the software update process

In practice, the boundary created between the OTAP client software and the software update addresses when the
internal storage is enabled is not placed exactly in the boundary of the P-Flash and FlexNVM memory regions.
These values might change with linker settings. You can inspect the effective memory addresses in your project.

 NOTE

2.2 Advantages of the OTAP service integration
As explained in OTAP memory management during the update process, the OTAP client software is a single-programming demo
application. Supposing that an OTAP client device is programmed with the OTAP client software, this device requests an update,
for example, a Temperature Collector (Temp Coll). The image that the OTAP server will send to the OTAP client must be the
Temp Coll. After the reprogramming process the device that was the OTAP client, now, has turned into a Temperature Collector.
The Temp Coll does not have the capabilities to communicate with the OTAP server and request for another update. But if the
Temp Coll image had included the OTAP client service as well, the device would have the possibility to request another software
update, for example, a modified Wireless UART example with OTAP Service. Due to the WU software already includes the OTAP
client, the device can request another software update from the OTAP server. That way, the developer can continue upgrading
the software many times as needed. In other words, to be able to upgrade the software on the OTAP client device in the future,
the application sent over the air should support OTAP service.

NXP Semiconductors
OTAP client software

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 6 / 53

Figure 7. OTAP integration functionality example

This application note is intended as guidance to add the OTAP service to a Bluetooth LE application.

3 Prerequisites
This document is provided together with a functional demo of the OTAP service integration. The example is based on the Temp
Coll project, available in the FRDM-KW38 SDK package and developed on the MCUXpresso IDE platform. The following are
required to complete the implementation of the Temp Coll - OTAP integration demo.

• MCUXpresso IDE v11.0.0 or later

• FRDM-KW38 SDK

• Temp Coll – OTAP demo package

• FRDM-KW38 board

• A smartphone with IoT Toolbox NXP app, available for Android and iOS.

3.1 Downloading and installing the software development kit
This chapter provides all the steps needed to download the SDK (Software Development Kit) for the FRDM-KW38 used as a
starting point.

1. Navigate to the MCUXpresso website.

2. Click Select Development Board. Log in with your registered account.

3. In the Search by Name field, search for FRDM-KW38. Then click the suggested board and click Build MCUXpresso SDK.

NXP Semiconductors
Prerequisites

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 7 / 53

https://play.google.com/store/apps/details?id=com.freescale.kinetisbletoolbox&hl=en_US
https://apps.apple.com/us/app/iot-toolbox/id1362450908
https://mcuxpresso.nxp.com/en/welcome

Figure 8. Building the FRDM-KW38 SDK package

4. Select the IDE in the Toolchain/IDE combo box. Select the supported OS. Click the Select All button to download all
components and provide the name to identify the package in your MCUXpresso Dashboard.

NXP Semiconductors
Prerequisites

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 8 / 53

Figure 9. Customizing the installation settings

5. Click Download SDK and it will take a few minutes until the system gets the package into your account on the
MCUXpresso web page. Read and accept the license agreement. The SDK download starts automatically on your PC.

6. Open MCUXpresso IDE. Drag and drop the FRDM-KW38 SDK zip in the Installed SDK’s list.

Figure 10. Importing SDK package to MCUXpresso IDE

Now, you have downloaded and installed the SDK package for the FRDM-KW38 board.

NXP Semiconductors
Prerequisites

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 9 / 53

4 Customizing a based Bluetooth LE demo to integrate the OTAP service
The following steps describe the process of customizing a Bluetooth LE demo imported from the SDK to integrate the OTAP
service into it. This guide uses a Temp Coll project as a starting point, so some steps may differ for another Bluetooth LE
SDK example.

4.1 Importing the OTAP Bluetooth LE service and framework software into the Temp Coll
project

To integrate the OTAP client service in your application, you will need to import additional software that is not included in other
SDK examples by default. Hence, the first step consists in to make a comparison between your project and the OTAP client SDK
project to locate which files you will need to merge in your project to support this service in your application. A comparison between
the Temp Coll (left) and the OTAP client (right) is shown in Figure 11. Files and folders highlighted in red are part of the OTAP
client software, but not in the Temp Coll. Consequently, we need to incorporate these files in our Temp Coll example to add the
OTAP feature in this project. If you are interested in adding OTAP to other Bluetooth LE SDK projects or in your custom Bluetooth
LE project, you need to look for the missing files and incorporate them following the same methodology described in this example.

NXP Semiconductors
Customizing a based Bluetooth LE demo to integrate the OTAP service

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 10 / 53

Figure 11. Source tree comparison

NXP Semiconductors
Customizing a based Bluetooth LE demo to integrate the OTAP service

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 11 / 53

The folders and files, which are in OTAP but not in Temp Coll, must be imported in your Temp Coll project. For example, in Figure
11, the following are required to be imported:

• bluetooth -> profiles -> battery

• bluetooth -> profiles -> device_info

• bluetooth -> profiles -> otap

• framework -> Flash -> External

• framework ->OtaSupport

• framework -> SerialManager -> source -> SPI_Adapter

• source -> common -> otap_client

• linkscripts -> main_text_section.ldt

To include these folders and source files in your project, perform the following steps.

1. Expand the bluetooth and framework folders in your workspace. Select the folder needed for updates and click the right
mouse button. Select New -> Folder. The Folder window appears to provide the same name as the missing folder in the
source directory, as shown in Figure 12.

NXP Semiconductors
Customizing a based Bluetooth LE demo to integrate the OTAP service

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 12 / 53

Figure 12. Creating the Bluetooth and Framework folders

2. Repeat Step 1 for the left folders. The result must look similar as shown in Figure 13.

NXP Semiconductors
Customizing a based Bluetooth LE demo to integrate the OTAP service

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 13 / 53

Figure 13. Temp Coll directory updated

3. Copy the files inside all the recently created folders from the OTAP client and save it into your project. Ensure that all the
files are in the same folder from the Temp Coll side. For this example, these files are listed as below.

• battery_interface.h and battery_interface.c in the bluetooth -> profile -> battery folder.

NXP Semiconductors
Customizing a based Bluetooth LE demo to integrate the OTAP service

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 14 / 53

• device_info_interface.h and device_info_service.c in the bluetooth -> profile -> device_info folder.

• otap_interface.h and otap_service.c in the bluetooth -> profiles -> otap folder.

• Eeprom.h in the framework -> Flash -> External -> Interface folder.

• Eeprom source files in the framework -> Flash -> External -> Source folder.

• OtaSupport.h in the framework -> OtaSupport -> Interface folder.

• OtaSupport.c in the framework -> OtaSupport -> Source folder.

• SPI_Serial_Adapter.h and SPI_Serial_Adapter.c in the framework -> SerialManager -> source -> SPI_Adapter
folder.

• main_text_section.ldt in linkscripts folder.

• otap_client.h and otap_client.c in the source -> common -> otap_client folder.

Figure 14. OTAP files integrated into the Temp Coll project

4. Replace lib_ble_5-0_host_central_cm0p_gcc.a, included in your project in libs folder, with the
lib_ble_5-0_host_cm0p_gcc.a library located in <SDK_path>\middleware\wireless\bluetooth\host\lib.

NXP Semiconductors
Customizing a based Bluetooth LE demo to integrate the OTAP service

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 15 / 53

You can simply drag and drop the new library on the workspace and remove the original library file. To remove the old
library, right-click on the file and select Delete.

Figure 15. Updating the Bluetooth LE library

5. Navigate to Project -> Properties in MCUXpresso IDE. Go to C/C++ Build -> Settings -> Tool Settings -> MCU C Compiler
-> Includes. Click the icon next to the Include paths textbox, as shown in Figure 16. In the new window that appears, click
the Workspace button.

Figure 16. Include paths perspective

6. Deploy your directory tree in the folder selection window. Select the following folders:

• bluetooth -> profiles -> battery

• bluetooth -> profiles -> device_info

NXP Semiconductors
Customizing a based Bluetooth LE demo to integrate the OTAP service

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 16 / 53

• bluetooth -> profiles -> otap

• framework -> Flash -> External -> Interface

• framework -> OtaSupport -> Interface

• framework -> SerialManager -> source -> SPI_Adapter

• source -> common -> otap_client

Ensure that these paths were imported onto the Include paths view.

Figure 17. Including the OTAP folders in the project paths

7. Open the MCU Linker -> Libraries view. Remove the _ble_5-0_host_central_cm0p_gcc library and replace it with the
_ble_5-0_host_cm0p_gcc library, as shown in Figure 18. Then, click OK to save the changes.

NXP Semiconductors
Customizing a based Bluetooth LE demo to integrate the OTAP service

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 17 / 53

Figure 18. Updating the Bluetooth LE library path

Now, you have included the OTAP client Bluetooth and Framework services in the Temperature Collector project.

4.2 Main modifications in the source files
Once you have included the OTAP client folders and files in your custom project, inspect the differences between the source files
of the OTAP client and your Bluetooth LE application and add the code needed to integrate the service. The following sections
explain the main aspects that you should focus on.

4.2.1 pin_mux.h and pin_mux.c
pin_mux.c and pin_mux.h files contain the pin initialization routines, which are located at the board folder in your project. As the
OTAP client uses the SPI protocol to download the software update on the external flash, when the external storage method is
selected, the following code must be added, which is the initialization of the pins for this module:

• pin_mux.h

void BOARD_InitSPI(void);

• pin_mux.c

void BOARD_InitSPI(void)
{
 /* Port C Clock Gate Control: Clock enabled */
 CLOCK_EnableClock(kCLOCK_PortC);
 /* PORTC16 (pin 45) is configured as SPI0_SCK */
 PORT_SetPinMux(PORTC, 16U, kPORT_MuxAlt2);
 /* PORTC17 (pin 46) is configured as SPI0_SOUT */
 PORT_SetPinMux(PORTC, 17U, kPORT_MuxAlt2);
 /* PORTC18 (pin 47) is configured as SPI0_SIN */
 PORT_SetPinMux(PORTC, 18U, kPORT_MuxAlt2);
 /* PORTC19 (pin 48) is configured as SPI0_PCS0 */

NXP Semiconductors
Customizing a based Bluetooth LE demo to integrate the OTAP service

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 18 / 53

 PORT_SetPinMux(PORTC, 19U, kPORT_MuxAlt2);
}

4.2.2 app_preinclude.h
The app_preinclude.h file contains many preprocessor directives that configure some functionalities of the project, such as low
power enablement, DCDC configuration, Bluetooth LE security definitions, and the hardware configuration macros. The OTAP
client software requires some definitions that are not included for other Bluetooth LE SDK projects. The software update must
include the following definitions:

• gEepromType_d

• gEepromParams_WriteAlignment_c

• gOtapClientAtt_d

The OTAP Temp Coll demo, sets the following values:

1. gEepromType_d: It defines the storage method between the AT45DB041E external flash on the FRDM-KW38 board, the
default value, or the FlexNVM on-chip memory. You can also select from the list of EEPROM devices in the Eeprom.h
header file at framework/Flash/External/Interface, for custom boards.

/* Specifies the type of EEPROM available on the target board */
#define gEepromType_d gEepromDevice_AT45DB041E_c

2. gEepromParams_WriteAlignment: It defines the offset of the software update for programming. Do not modify the
default value.

/* Eeprom Write alignment for Bootloader flags. */
#define gEepromParams_WriteAlignment_c 8

3. gOtapClientAtt_d: It sets the ATT transference method for OTA updates. It must be set to 1 for own purpose.

#define gOtapClientAtt_d 1

4.2.3 app_config.c
The app_config.c source file contains some structures that configure the advertising and scanning parameters and data. It also
contains the access security requirements for each service in the device.

The advertising data announces the list of services that the Bluetooth LE advertiser device, Temp Coll – OTAP, contains. This
information is used by the Bluetooth LE scanner, to filter out the advertiser devices that do not contain the services required.
Hence, you must include the OTAP client service in the advertising data, to announce to the OTAP server the availability of
this service.

The following code must be included in this file to prepare the advertising data:

/* Default Advertising Parameters. Values can be changed at runtime
 to align with profile requirements */
#define gGapAdvertisingInterval_050ms_c 0x0050
#define gGapAdvertisingInterval_100ms_c 0x00A0
#define gGapAdvertisingInterval_125ms_c 0x00C8
#define gGapAdvertisingInterval_250ms_c 0x0190
#define gGapAdvertisingInterval_500ms_c 0x0320
{
 /* minInterval */ gGapAdvertisingInterval_050ms_c,
 /* maxInterval */ gGapAdvertisingInterval_100ms_c,
 /* advertisingType */ gAdvConnectableUndirected_c,
 /* addressType */ gBleAddrTypePublic_c,
 /* directedAddressType */ gBleAddrTypePublic_c,

NXP Semiconductors
Customizing a based Bluetooth LE demo to integrate the OTAP service

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 19 / 53

 /* directedAddress */ {0, 0, 0, 0, 0, 0},
 /* channelMap */ (gapAdvertisingChannelMapFlags_t) (gGapAdvertisingChannelMapDefault_c),
 /* filterPolicy */ gProcessAll_c
};
/* Scanning and Advertising Data */
static const uint8_t adData0[1] = { (gapAdTypeFlags_t)(gLeGeneralDiscoverableMode_c |
gBrEdrNotSupported_c) };
static const uint8_t adData1[] = { 0xE0, 0x1C, 0x4B, 0x5E, 0x1E, 0xEB, 0xA1, 0x5C, 0xEE, 0xF4, 0x5E,
0xBA, 0x50, 0x55, 0xFF, 0x01};
static const gapAdStructure_t advScanStruct[3] = {
 {
 .length = NumberOfElements(adData0) + 1,
 .adType = gAdFlags_c,
 .aData = (uint8_t *)adData0
 },
 {
 .length = NumberOfElements(adData1) + 1,
 .adType = gAdComplete128bitServiceList_c,
 .aData = (uint8_t *)adData1
 },
 {
 .length = 8 + 1,
 .adType = gAdShortenedLocalName_c,
 .aData = (uint8_t*)"NXP_OTAT"
 }
};
gapAdvertisingData_t gAppAdvertisingData =
{
 NumberOfElements(advScanStruct),
 (void *)advScanStruct
};
gapScanResponseData_t gAppScanRspData =
{
 0,
 NULL
};

Additionally, you need to add the access security requirements for the OTAP service, including the
gapServiceSecurityRequirements_t struct. You can customize these parameters for your purpose. The Temp Coll – OTAP
demo sets the following parameters:

static const gapServiceSecurityRequirements_t serviceSecurity[3] = {
 {
 .requirements = {
 .securityModeLevel = gSecurityMode_1_Level_3_c,
 .authorization = FALSE,
 .minimumEncryptionKeySize = gDefaultEncryptionKeySize_d
 },
 .serviceHandle = (uint16_t)service_otap
 },
 {
 .requirements = {
 .securityModeLevel = gSecurityMode_1_Level_3_c,
 .authorization = FALSE,
 .minimumEncryptionKeySize = gDefaultEncryptionKeySize_d
 },
 .serviceHandle = (uint16_t)service_battery
 },
 {

NXP Semiconductors
Customizing a based Bluetooth LE demo to integrate the OTAP service

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 20 / 53

 .requirements = {
 .securityModeLevel = gSecurityMode_1_Level_3_c,
 .authorization = FALSE,
 .minimumEncryptionKeySize = gDefaultEncryptionKeySize_d
 },
 .serviceHandle = (uint16_t)service_device_info
 }
};

Last modification is to register all services into the deviceSecurityRequirements struct. See the following portion of code:

gapDeviceSecurityRequirements_t deviceSecurityRequirements = {
 .pMasterSecurityRequirements = (void*)&masterSecurity,
 .cNumServices = 3,
 .aServiceSecurityRequirements = (void*)&serviceSecurity
};

4.2.4 gatt_db.h and gatt_uuid128.h
The gatt_db.h header file contains the list of attributes, which shapes the profile of the Temp Coll-OTAP device. The most
important step of this guide is to include the list of the OTAP client attributes into the device’s database. It is recommended to open
the OTAP client SDK example and your Bluetooth LE demo to compare both GATT databases, and include the list of attributes
missing in your project. Figure 19 shows the OTAP client portion of the database that must be included in the Temp Coll project.

Figure 19. OTAP client service

The gatt_uuid128.h header file contains all the custom UUID definitions and its assignation. OTAP service and its characteristics
need to be specified by the developer as a 128 – UUID in this file. Figure 20 shows how to implement the 128 – UUID assignation
for the OTAP service.

NXP Semiconductors
Customizing a based Bluetooth LE demo to integrate the OTAP service

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 21 / 53

Figure 20. Temp Coll – OTAP 128 – UUID definitions

4.2.5 temperature_collector.h and temperature_collector.c
The temperature_collector.c file is the main source file at the application level. Here are managed all the procedures that the device
performs, before, during and after to create a connection. The following steps are the main changes to integrate the OTAP service.

1. Merge the missing #include preprocessor directives to reference the OTAP files on your project in temperature_collector.c
file, except the #include statement for the otap_client_att.h file. Figure 21 shows the comparison between Temp Coll
(left) and OTAP client (right) application files. This step depends on your software as it might share different files than this
example. The results are similar as depicted in Figure 22, before (Temp Coll left) and after (Temp Coll – OTAP right).

Figure 21. Comparison between Temp Coll (left) and OTAP (right) include directives

NXP Semiconductors
Customizing a based Bluetooth LE demo to integrate the OTAP service

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 22 / 53

Figure 22. Merging the OTAP directives into the project, before (Temp Coll left), after (Temp Coll OTAP)

2. Add the function prototypes and global variables that are used by the OTAP client software. Figure 23 and Figure 24 show
the comparison between Temp Coll (left) and OTAP (right). As mentioned in Step 1, this might depend on your application.
For this example, you can skip merging the appTimerId variable in your Temperature Collector project, as this is used in
the OTAP client to create an instance of a timer that will not implement in this example. Also, it is required to create another
variable: static gapRole_t mGapRole. This variable will be used to switch between central and peripheral GAP roles as
the OTAP Client device needs to be the Bluetooth LE peripheral to advertise this service and communicate with the OTAP
Server. In other words, your KW38 device will be the Bluetooth LE Central device while it is the Temp Coll and will be the
Bluetooth LE Peripheral device while it is the OTAP Client. The results are similar as depicted in Figure 25 and Figure 26.

NXP Semiconductors
Customizing a based Bluetooth LE demo to integrate the OTAP service

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 23 / 53

Figure 23. Comparison between Temp Coll (left) and OTAP (right) prototypes (1)

NXP Semiconductors
Customizing a based Bluetooth LE demo to integrate the OTAP service

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 24 / 53

Figure 24. Comparison between Temp Coll (left) and OTAP (right) prototypes (2)

NXP Semiconductors
Customizing a based Bluetooth LE demo to integrate the OTAP service

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 25 / 53

Figure 25. Merging the variables into the project: before (Temp Coll left) and after (Temp Coll - OTAP) (1)

NXP Semiconductors
Customizing a based Bluetooth LE demo to integrate the OTAP service

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 26 / 53

Figure 26. Merging the variables into the project: before (Temp Coll left) and after (Temp Coll - OTAP) (2)

3. Locate the BleApp_Init function. You can add in this function, driver initialization API's for the application. The Temp Coll
does not support the Battery Service while the OTAP Client does, so you must call the BOARD_InitAdc function. See the
following portion of code:

void BleApp_Init(void)
{
 /* Initialize application support for drivers */
 BOARD_InitAdc();
#if (defined(KW37A4_SERIES) || defined(KW37Z4_SERIES) || defined(KW38A4_SERIES) ||
defined(KW38Z4_SERIES) || defined(KW39A4_SERIES))
 /* Get the serial interface in use */
 gAppSerMgrIf = BOARD_GetSerialManagerInterface();
#else
 SerialManager_Init();

NXP Semiconductors
Customizing a based Bluetooth LE demo to integrate the OTAP service

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 27 / 53

 Serial_InitInterface(&gAppSerMgrIf, APP_SERIAL_INTERFACE_TYPE,
APP_SERIAL_INTERFACE_INSTANCE);
 Serial_SetBaudRate(gAppSerMgrIf, APP_SERIAL_INTERFACE_SPEED);
#endif
#if defined(MULTICORE_APPLICATION_CORE) && (MULTICORE_APPLICATION_CORE)
 /* Init eRPC host */
 init_erpc_host();
#endif
}

4. Locate the BleApp_Start function. This function is used to start the scanning. Modify it as follows to start scanning or
advertising depending on the gapRole variable and change the BleApp_Start prototype at temperature_collector.h by
void BleApp_Start (gapRole_t gapRole) file, to match with the new function.

void BleApp_Start(gapRole_t gapRole)
{
 switch (gapRole)
 {
 case gGapCentral_c:
 {
 if (!mScanningOn)
 {
 gPairingParameters.localIoCapabilities = gIoKeyboardDisplay_c;
 /* Stop advertising, Start scanning */
 if (mAdvState.advOn)
 {
 (void)Gap_StopAdvertising();
 }
 (void)App_StartScanning(&gScanParams, BleApp_ScanningCallback,
gGapDuplicateFilteringEnable_c, gGapScanContinuously_d, gGapScanPeriodicDisabled_d);
 }
 }
 break;
 case gGapPeripheral_c:
 {
 if (mPeerInformation.deviceId == gInvalidDeviceId_c)
 {
 /* Device is not connected and not advertising*/
 if (!mAdvState.advOn)
 {
#if gAppUseBonding_d
 if (gcBondedDevices > 0)
 {
 mAdvState.advType = whiteListAdvState_c;
 }
 else
 {
#endif
 mAdvState.advType = advState_c;
#if gAppUseBonding_d
 }
#endif
 gPairingParameters.localIoCapabilities = gIoDisplayOnly_c;
 /* Stop scanning, Start advertising */
 if(mScanningOn)
 {
 (void)Gap_StopScanning();
 }
 BleApp_Advertise();

NXP Semiconductors
Customizing a based Bluetooth LE demo to integrate the OTAP service

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 28 / 53

 }
 }
 }
 break;
 default:
 {
 /* No action required */
 }
 break;
 }
}

5. Locate the BleApp_HandleKeys function. This is executed each time that you press a switch on the FRDM-KW38 board. It
must be modified to change the GAP role of the device when the user presses a switch button, allowing to move from Temp
Coll to OTAP Client and return to Tempe Coll if it is desired.

void BleApp_HandleKeys(key_event_t events)
{
 switch (events)
 {
 /* Start on button press if low-power is disabled */
 case gKBD_EventPressPB1_c:
 {
 BleApp_Start(mGapRole);
 break;
 }
 /* Disconnect on long button press */
 case gKBD_EventLongPB1_c:
 {
 if (mPeerInformation.deviceId != gInvalidDeviceId_c)
 {
 (void)Gap_Disconnect(mPeerInformation.deviceId);
 }
 break;
 }
 /* Toggle Gap Role */
 case gKBD_EventPressPB2_c: /* Fall-through */
 case gKBD_EventLongPB2_c: /* Fall-through */
 {
 if(mGapRole == gGapCentral_c)
 {
 mGapRole = gGapPeripheral_c;
 }
 else
 {
 mGapRole = gGapCentral_c;
 }
 break;
 }
 default:
 {
 ; /* No action required */
 break;
 }
 }
}

NXP Semiconductors
Customizing a based Bluetooth LE demo to integrate the OTAP service

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 29 / 53

6. Locate the BleApp_GenericCallback function. Include the handling of gAdvertisingParametersSetupComplete_,
gAdvertisingDataSetupComplete_c, and gAdvertisingSetupFailed_c events.

void BleApp_GenericCallback (gapGenericEvent_t* pGenericEvent)
{
 /* Call BLE Conn Manager */
 BleConnManager_GenericEvent(pGenericEvent);
 switch (pGenericEvent->eventType)
 {
 case gInitializationComplete_c:
 {
 BleApp_Config();
 }
 break;
 case gAdvertisingParametersSetupComplete_c:
 {
 (void)Gap_SetAdvertisingData(&gAppAdvertisingData, &gAppScanRspData);
 }
 break;
 case gAdvertisingDataSetupComplete_c:
 {
 (void)App_StartAdvertising(BleApp_AdvertisingCallback, BleApp_ConnectionCallback);
 }
 break;
 case gAdvertisingSetupFailed_c:
 {
 panic(0,0,0,0);
 }
 break;
#if defined(gAppPrintLePhyEvent_c) && (gAppPrintLePhyEvent_c)
 case gLePhyEvent_c:
 {
 if(pGenericEvent->eventData.phyEvent.phyEventType == gPhyUpdateComplete_c)
 {
 AppPrintLePhyEvent(&pGenericEvent->eventData.phyEvent);
 }
 }
 break;
#endif
 default:
 {
 ; /* No action required */
 }
 break;
 }
}

7. Locate the BleApp_Config function. The BleApp_Config function configures the initial GAP role of the device, with the
default value that Temp Coll – OTAP is GAP Central, registers the notifiable attributes, prepares the services built on the
database, and allocates some application timers. Register the BleApp_GattServerCallback defines an initial GAP role for
the device, including the OtapClient_Config and Dis_Start functions to initialize these services and allocate a timer for
the battery measurements. The result should look as the following example.

static void BleApp_Config(void)
{
 /* Configure as GAP Central */
 BleConnManager_GapCommonConfig();
 /* Register for callbacks*/
 (void)App_RegisterGattServerCallback(BleApp_GattServerCallback);

NXP Semiconductors
Customizing a based Bluetooth LE demo to integrate the OTAP service

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 30 / 53

 (void)App_RegisterGattClientProcedureCallback(BleApp_GattClientCallback);
 (void)App_RegisterGattClientNotificationCallback(BleApp_GattNotificationCallback);
 BleServDisc_RegisterCallback(BleApp_ServiceDiscoveryCallback);
 /* By default, always start node as GAP central */
 mGapRole = gGapCentral_c;
 /* Initialize private variables */
 mPeerInformation.appState = mAppIdle_c;
 mPeerInformation.deviceId = gInvalidDeviceId_c;
 mScanningOn = FALSE;
 mAdvState.advOn = FALSE;
 mFoundDeviceToConnect = FALSE;
 /* Start services */
 basServiceConfig.batteryLevel = BOARD_GetBatteryLevel();
 (void)Bas_Start(&basServiceConfig);
 (void)Dis_Start(&disServiceConfig);
 if (OtapClient_Config() == FALSE)
 {
 /* An error occurred in configuring the OTAP Client */
 panic(0,0,0,0);
 }
 /* Allocate scan timeout timer */
 mAppTimerId = TMR_AllocateTimer();
 mBatteryMeasurementTimerId = TMR_AllocateTimer();
 AppPrintString("\r\nPress SW2 to change the role. Press SW3 to connect either to a
Temperature Sensor or OTAP Server\r\n");
}

8. Include after BleApp_Config, the BleApp_Advertise function:

static void BleApp_Advertise(void)
{
 switch (mAdvState.advType)
 {
#if gAppUseBonding_d
 case whiteListAdvState_c:
 {
 gAdvParams.filterPolicy = gProcessWhiteListOnly_c;
 }
 break;
#endif
 case advState_c:
 {
 gAdvParams.filterPolicy = gProcessAll_c;
 }
 break;
 default:
 ; /* For MISRA compliance */
 break;
 }
 /* Set advertising parameters*/
 (void)Gap_SetAdvertisingParameters(&gAdvParams);
}

9. Include after BleApp_ScanningCallback, the BleApp_AdvertisingCallback function:

static void BleApp_AdvertisingCallback (gapAdvertisingEvent_t* pAdvertisingEvent)
{
 switch (pAdvertisingEvent->eventType)
 {

NXP Semiconductors
Customizing a based Bluetooth LE demo to integrate the OTAP service

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 31 / 53

 case gAdvertisingStateChanged_c:
 {
 mAdvState.advOn = !mAdvState.advOn;
 if(mAdvState.advOn)
 {
 AppPrintString("\r\nAdvertising...\r\n");
 LED_StopFlashingAllLeds();
 Led2Flashing();
 }
 }
 break;
 case gAdvertisingCommandFailed_c:
 {
 Led2On();
 panic(0,0,0,0);
 }
 break;
 default:
 ; /* For MISRA compliance */
 break;
 }
}

10. Locate the BleApp_ConnectionCallback function. The connection callback is triggered whenever a connection event
happens, such as a connection or disconnection. Modify this callback to handle the OTAP service as follows:

static void BleApp_ConnectionCallback (deviceId_t peerDeviceId, gapConnectionEvent_t*
pConnectionEvent)
{
 if(mGapRole == gGapCentral_c)
 {
 /* Connection Manager to handle Host Stack interactions */
 BleConnManager_GapCentralEvent(peerDeviceId, pConnectionEvent);
 }
 else
 {
 /* Connection Manager to handle Host Stack interactions */
 BleConnManager_GapPeripheralEvent(peerDeviceId, pConnectionEvent);;
 }
 switch (pConnectionEvent->eventType)
 {
 case gConnEvtConnected_c:
 {
 mAdvState.advOn = FALSE;
 /* Subscribe client */
 (void)Bas_Subscribe(&basServiceConfig, peerDeviceId);
 (void)OtapCS_Subscribe(peerDeviceId);
 /* Update UI */
 LED_StopFlashingAllLeds();
 Led3On();
 AppPrintString("\r\nConnected!\r\n");
 mPeerInformation.deviceId = peerDeviceId;
 mPeerInformation.isBonded = FALSE;
 /* Set low power mode */
#if defined(cPWR_UsePowerDownMode) && (cPWR_UsePowerDownMode)
 /* Device does not need to sleep until some information is exchanged with the peer. */
 PWR_DisallowDeviceToSleep();
#endif
 if(!TMR_IsTimerActive(mBatteryMeasurementTimerId))

NXP Semiconductors
Customizing a based Bluetooth LE demo to integrate the OTAP service

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 32 / 53

 {
 /* Start battery measurements */
 (void)TMR_StartLowPowerTimer(mBatteryMeasurementTimerId,
gTmrLowPowerIntervalMillisTimer_c,
 TmrSeconds(mBatteryLevelReportInterval_c),
BatteryMeasurementTimerCallback, NULL);
 }
 if(mGapRole == gGapCentral_c)
 {
#if defined(gAppUseBonding_d) && (gAppUseBonding_d)
 (void)Gap_CheckIfBonded(peerDeviceId, &mPeerInformation.isBonded, NULL);
 if ((mPeerInformation.isBonded) &&
 (gBleSuccess_c == Gap_LoadCustomPeerInformation(peerDeviceId,
 (void*) &mPeerInformation.customInfo, 0, sizeof (appCustomInfo_t))))
 {
 mRestoringBondedLink = TRUE;
 /* Restored custom connection information. Encrypt link */
 (void)Gap_EncryptLink(peerDeviceId);
 }
#endif
 BleApp_StateMachineHandler(mPeerInformation.deviceId, mAppEvt_PeerConnected_c);
 }
 if(mGapRole == gGapPeripheral_c)
 {
 /* Handle OTAP connection event */
 OtapClient_HandleConnectionEvent (peerDeviceId);
 }
 }
 break;
 case gConnEvtDisconnected_c:
 {
 /* Unsubscribe client */
 (void)Bas_Unsubscribe(&basServiceConfig, peerDeviceId);
 (void)OtapCS_Unsubscribe();
 mPeerInformation.deviceId = gInvalidDeviceId_c;
 mPeerInformation.appState = mAppIdle_c;
 TMR_StopTimer(mBatteryMeasurementTimerId);
 if(mGapRole == gGapPeripheral_c)
 {
 /* Handle OTAP disconnection event */
 OtapClient_HandleDisconnectionEvent(peerDeviceId);
 }
 /* Reset Service Discovery to be sure*/
 BleServDisc_Stop(peerDeviceId);
 /* Update UI */
 AppPrintString("\r\nDisconnected!\r\n");
 LED_TurnOffAllLeds();
 LED_StartFlash(LED_ALL);
 }
 break;
#if gAppUsePairing_d
 case gConnEvtPairingComplete_c:
 {
 /* Notify state machine handler on pairing complete */
 if (pConnectionEvent->eventData.pairingCompleteEvent.pairingSuccessful)
 {
 BleApp_StateMachineHandler(mPeerInformation.deviceId, mAppEvt_PairingComplete_c);
 }
 }
 break;

NXP Semiconductors
Customizing a based Bluetooth LE demo to integrate the OTAP service

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 33 / 53

#if defined(gAppUseBonding_d) && (gAppUseBonding_d)
 case gConnEvtEncryptionChanged_c:
 {
 if(pConnectionEvent->eventData.encryptionChangedEvent.newEncryptionState)
 {
 if(mRestoringBondedLink)
 {
 /* Try to enable temperature notifications, disconnect on failure */
 if(gBleSuccess_c != BleApp_ConfigureNotifications())
 {
 (void)Gap_Disconnect(peerDeviceId);
 }
 else
 {
 mRestoringBondedLink = FALSE;
 }
 }
 }
 }
 break;
 case gConnEvtAuthenticationRejected_c:
 {
 /* Start Pairing Procedure */
 (void)Gap_Pair(peerDeviceId, &gPairingParameters);
 }
 break;
#endif /* gAppUseBonding_d */
#endif /* gAppUsePairing_d */
 default:
 ; /* No action required */
 break;
 }
}

11. Develop the BleApp_GattServerCallback function. It manages all the incoming communications from the client devices.
Add the GATT server events that need to be handled by the OTAP client software. See the following example.

static void BleApp_GattServerCallback (deviceId_t deviceId, gattServerEvent_t* pServerEvent)
{
 switch (pServerEvent->eventType)
 {
 case gEvtMtuChanged_c:
 {
 OtapClient_AttMtuChanged (deviceId,
 pServerEvent->eventData.mtuChangedEvent.newMtu);
 }
 break;
 case gEvtCharacteristicCccdWritten_c:
 {
 OtapClient_CccdWritten (deviceId,
 pServerEvent->eventData.charCccdWrittenEvent.handle,
 pServerEvent->eventData.charCccdWrittenEvent.newCccd);
 }
 break;
 case gEvtAttributeWritten_c:
 {
 OtapClient_AttributeWritten (deviceId,
 pServerEvent->eventData.attributeWrittenEvent.handle,
 pServerEvent->eventData.attributeWrittenEvent.cValueLength,

NXP Semiconductors
Customizing a based Bluetooth LE demo to integrate the OTAP service

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 34 / 53

 pServerEvent->eventData.attributeWrittenEvent.aValue);
 }
 break;
 case gEvtAttributeWrittenWithoutResponse_c:
 {
 OtapClient_AttributeWrittenWithoutResponse (deviceId,
 pServerEvent->eventData.attributeWrittenEvent.handle,
 pServerEvent->eventData.attributeWrittenEvent.cValueLength,
 pServerEvent->eventData.attributeWrittenEvent.aValue);
 }
 break;
 case gEvtHandleValueConfirmation_c:
 {
 OtapClient_HandleValueConfirmation (deviceId);
 }
 break;
 case gEvtError_c:
 {
 attErrorCode_t attError = (attErrorCode_t) (pServerEvent-
>eventData.procedureError.error & 0xFF);
 if (attError == gAttErrCodeInsufficientEncryption_c ||
 attError == gAttErrCodeInsufficientAuthorization_c ||
 attError == gAttErrCodeInsufficientAuthentication_c)
 {
#if gAppUsePairing_d
#if gAppUseBonding_d
 bool_t isBonded = FALSE;
 /* Check if the devices are bonded and if this is true than the bond may have
 * been lost on the peer device or the security properties may not be sufficient.
 * In this case try to restart pairing and bonding. */
 if (gBleSuccess_c == Gap_CheckIfBonded(deviceId, &isBonded, NULL) &&
 TRUE == isBonded)
#endif /* gAppUseBonding_d */
 {
 (void)Gap_SendSlaveSecurityRequest(deviceId, &gPairingParameters);
 }
#endif /* gAppUsePairing_d */
 }
 }
 break;
 default:
 ; /* For MISRA compliance */
 break;
 }
}

12. Include the timer callback for the battery service:

static void BatteryMeasurementTimerCallback(void * pParam)
{
 basServiceConfig.batteryLevel = BOARD_GetBatteryLevel();
 (void)Bas_RecordBatteryMeasurement(&basServiceConfig);
}

Now, you have integrated the OTAP Client code into the Temp Coll.

NXP Semiconductors
Customizing a based Bluetooth LE demo to integrate the OTAP service

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 35 / 53

The example provided with this application note removes all references related to low power
support in the temperature_collector.c, except the PWR_DisallowDeviceToSleep function at
BleApp_ConnectionCallback. The DisconnectTimerCallback and its associated timer instance and
it changes the state machine of the RGB LED. These changes are not listed in the steps above since they are not
relevant for this application note.

 NOTE

4.3 Modifications in project settings and storage configurations
The OTAP client software included in the SDK package contains some linker configurations to generate the application offset
needed for the OTAP Bootloader software and split the flash memory in accord of the storage method desired. Such configurations
are not part of the Temp Coll demo, so it should be included to integrate the OTAP on the application. Follow the next steps to set
the project settings and the storage configurations.

1. Open the app_preinclude.h file located in the source folder of the project.

• To configure the software for external flash storage method, set the gEepromType defination to
gEepromDevice_AT45DB041E_c.

• To use the internal flash storage method, set the gEepromType defination to gEepromDevice_InternalFlash_c.

For more details about storage methods, see OTAP memory management during the update process.

Figure 27. Configuring the storage method at the preinclude file

2. Navigate to Project -> Properties in MCUXpresso IDE. Go to C/C++ Build -> MCU settings.

a. To select external flash storage method, as shown in Figure 28, configure the fields in the Memory details pane. This
is the default storage method for the Tempertaure Collector - OTAP software.

Figure 28. Configuring external storage method

b. To select internal flash storage method, as shown in Figure 29, configure the fields in the Memory details pane.

Figure 29. Configuring internal storage method

3. Clean and build the project.

Now, you have finally integrated the OTAP service on the Bluetooth LE based application.

5 Testing the Temp Coll-OTAP demo
The test case example, designed to demonstrate the OTAP integration in Testing the Temp Coll-OTAP software, makes use of
the following software:

• OTAP Client SDK software, programmed in the FRDM-KW38 board.

• An SREC software update of the Temp Coll-OTAP example.

NXP Semiconductors
Testing the Temp Coll-OTAP demo

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 36 / 53

• An SREC software update of the Temp Coll SDK example.

The following sections explain how to build the software required for the testing case proposed by this document. However, users
can decide which software or steps are not relevant to their application.

5.1 Preparing the OTAP client SDK software
1. Attach your FRDM-KW38 board on the PC.

2. Open MCUXpresso IDE.

In the Quickstart Panel view, click Import SDK example(s).

Figure 30. Quickstart panel perspective

3. Click twice on the frdmkw38 icon.

NXP Semiconductors
Testing the Temp Coll-OTAP demo

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 37 / 53

Figure 31. Device selection perspective

4. In the Examples text field, type bootloader_otap and click wireless_examples -> framework -> bootloader_otap -> bm.
Click Finish.

5. Flash the bootloader_otap project (OTAP Bootloader project) in your FRDM-KW38 board.

NXP Semiconductors
Testing the Temp Coll-OTAP demo

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 38 / 53

Figure 32. Importing the OTAP Bootloader project on the workspace

6. Repeat 2 to 4 to import the otac_att project. It is located in wireless_examples -> bluetooth -> otac_att -> freertos.

NXP Semiconductors
Testing the Temp Coll-OTAP demo

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 39 / 53

Figure 33. Importing the OTAP client project on the workspace

7. Set the storage configurations for the otac_att project, OTAP client project.

a. Open the app_preinclude.h file located in the source folder of the project:

• To select the software for external flash storage method, set the gEepromType definition to
gEepromDevice_AT45DB041E_c.

• To select the internal flash storage method, On-chip FlexNVM memory, set gEepromType definition
to gEepromDevice_InternalFlash_c.

Figure 34. Configuring the storage method at the preinclude file

For more details about storage methods, see OTAP memory management during the update process.

b. Navigate to Project -> Properties in MCUXpresso IDE. Go to C/C++ Build -> MCU settings -> Memory
details perspective.

NXP Semiconductors
Testing the Temp Coll-OTAP demo

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 40 / 53

• To select external flash storage method, as shown in Figure 35, configure the fields in the Memory details pane.

Figure 35. Configuring external storage method

• To select internal flash storage method, as shown in Figure 36, configure the fields in the Memory details pane.

Figure 36. Configuring internal storage method

8. Clean and build the project. Flash the project on the FRDM-KW38 board.

Now, you have programmed and configured the OTAP client software on your board. You can communicate to a server and
request for a software update.

5.2 Creating a Temp Coll - OTAP S - record image to update the software
1. Install the Temp Coll-OTAP demo provided with this document in your MCUXpresso IDE. You can drag and drop the project

from your installation path to the MCUXpresso workspace. A warning message appears, as shown in Figure 37. click the
Copy button to clone the original example.

Figure 37. Importing the Temp Coll-OTAP demo on the MCUXpresso workspace

2. Open the end_text.ldt linker script located at the linkscripts folder in the workspace. Locate the section placement and
remove the FILL and BYTE statements, as shown in Figure 38. This step is needed only to build the SREC image file to
reprogram the device.

NXP Semiconductors
Testing the Temp Coll-OTAP demo

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 41 / 53

Figure 38. Preparing the linker file

3. Clean and build the project.

4. Deploy the Binaries icon in the workspace. Right-click the .axf file and select Binary Utilities -> Create S-Record. The
S-Record file will be saved at the Debug folder in the workspace with the .s19 extension.

NXP Semiconductors
Testing the Temp Coll-OTAP demo

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 42 / 53

Figure 39. Creating the SREC file

5. Save this file in a known location on your smartphone.

5.3 Creating a Temp Coll S-Record image to update the software
1. Open MCUXpresso IDE. In the Quickstart Panel view, click the Import SDK example(s), and the device selection

perspective will appear. Click twice on the frdmkw38 icon.

2. In the Examples text box, type temp_coll and select wireless_examples -> bluetooth -> temp_coll ->freertos. Click Finish.

NXP Semiconductors
Testing the Temp Coll-OTAP demo

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 43 / 53

Figure 40. Importing the Temp Coll project on the workspace

3. Open the app_preinclude.h file under the source folder at the MCUXpresso workspace. Locate the
cPWR_UsePowerDownMode macro and change its value to zero. This step is not mandatory, but it is useful at running
time to confirm whenever the software update has been successfully programmed by the OTAP bootloader.

/* Enable/Disable PowerDown functionality in PwrLib */
#define cPWR_UsePowerDownMode 0

4. Define gEepromType_d as internal flash storage in the Board Configuration section of the app_preinclude.h file. This is a
dummy definition needed to place the Bootloader Flags in the proper address, so this will not affect the storage method
chosen when you programmed previously the OTAP Client software in the MCU.

/* Specifies the type of EEPROM available on the target board */
#define gEepromType_d gEepromDevice_InternalFlash_c

5. Navigate to Project -> Properties -> C/C++ Build -> MCU settings. Configure PROGRAM_FLASH, NVM_region, and
FREESCALE_PROD_DATA fields and save the changes.

NXP Semiconductors
Testing the Temp Coll-OTAP demo

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 44 / 53

Figure 41. Configuring the memory layout

6. Navigate to the workspace. Locate the linkscripts folder and include into it the main_text_section.ldt linker script. You
can copy and paste from the OTAP client SDK example.

Figure 42. Importing linker scripts

7. Open the end_text.ldt linker script located at the linkscripts folder in the workspace. Locate the section placement and
remove the FILL and BYTE statements, as shown in Figure 43.

Figure 43. Preparing the linker file

8. Include the OtaSupport folder and its files in the framework folder. Include the External folder and its files in the
framework->Flash folder. This step can be done in the same way as explained in Importing the OTAP Bluetooth LE
service and framework software into the Temp Coll project.

9. Clean and build the project.

10. Deploy the Binaries icon in the workspace. Right-click the .axf file and select Binary Utilities -> Create S-Record. The
S-Record file will be saved at the Debug folder in the workspace with the .s19 extension.

11. Save this file in a known location on your smartphone.

NXP Semiconductors
Testing the Temp Coll-OTAP demo

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 45 / 53

5.4 Testing the Temp Coll-OTAP software
Figure 44 exemplifies the testing case of this section. The FRDM-KW38 contains the OTAP client software. The OTAP client will
request a software update from the OTAP server, the smartphone. This software image is the Temp Coll-OTAP demo. At this point,
the FRDM-KW38 has been updated and can handle all the incoming communication from a Temperature Sensor Example or the
OTAP server.

To demonstrate that you can continue updating the software of the KW38 device, you can connect the Temp Coll-OTAP to an
OTAP server and request a software update that only contains the Temp Coll example. From this point, you cannot continue
updating the software since the OTAP service was not included in the last software upgrade, demonstrating the importance of
including OTAP in the software update sent over the air.

This example was designed to understand the key points of the OTAP integration. However, the main purpose of this application
note is to create software updates that include the OTAP service and continue upgrading and improving the KW38 device.

Figure 44. Proposed test

1. Open the IoT Toolbox App and select the OTAP demo. Click the SCAN to start scanning for a suitable advertiser.

NXP Semiconductors
Testing the Temp Coll-OTAP demo

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 46 / 53

Figure 45. IoT Toolbox interface

NXP Semiconductors
Testing the Temp Coll-OTAP demo

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 47 / 53

2. Press the ADV button, SW2, on the FRDM-KW38 board to start advertising.

3. Create a connection with the NXP_OTAA device. Then, the OTAP interface will be displayed on your smartphone.

Figure 46. Connecting the OTAP client and the OTAP server

4. Click the Open button and search for the Temp Coll-OTAP SREC file.

5. Click the Upload button to start the transfer. Wait for the transfer to be completed until the confirmation message
is displayed.

NXP Semiconductors
Testing the Temp Coll-OTAP demo

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 48 / 53

Figure 47. Updating the OTAP client to Temp Coll-OTAP

NXP Semiconductors
Testing the Temp Coll-OTAP demo

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 49 / 53

6. Connect your FRDM-KW38 with any serial terminal software. Wait for few seconds until the OTAP bootloader has finished
programming the new image. The Temp Coll-OTAP application will start automatically, when the RGB LED will blink, and
a welcome message will be displayed on the serial terminal.

Figure 48. Welcome message Temp Coll-OTAP software

7. At this point, the KW38 is programmed with the Temperature Collector, OTAP software. It can establish a connection and
interact with either an OTAP Server, acting as a peripheral device (the smartphone running IoT Toolbox) or a Temperature
Sensor, as the central device. The SW2 button on the FRDM KW38 board changes the GAP role of the device, while SW3
is used to start scanning or advertising depending on the GAP role selected. To connect with a Temperature Sensor, select
the GAP Central role with SW2 and start scanning with SW3, the RGB will blink blue when it is scanning.

You can program the Temperature Sensor SDK example on another FRDM-KW38 board, configuring the preinclude file
to disable low power cPWR_UsePowerDownMode = 0, and disabling gAppUseBonding_d = 0 and gAppUsePairing_d = 0.
This example is located at wireless_examples -> bluetooth -> temp_sens.

To connect with OTAP Server, IoT Toolbox app, select the GAP Peripheral role using the SW2 button and start advertising
with SW3, the RGB will blink in red when it is advertising. While the device is advertising, it will be named as NXP_OTAT.

NXP Semiconductors
Testing the Temp Coll-OTAP demo

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 50 / 53

Figure 49. Temp Coll-OTAP device detected by both applications

8. Connect the Temp Coll-OTAP device with the OTAP smartphone application, when the RGB will be ON in green.
Update the software using the Temp Coll SREC file using the OTAP service.

9. Press the SCAN button, SW2, on the FRDM-KW38 board to start scanning. Connect the device with a temperature sensor
and verify that it works as expected. Now, you can’t continue updating the software, as OTAP service was not added to the
software update. This demonstrates the importance of integrating OTAP in the software update.

NXP Semiconductors
Testing the Temp Coll-OTAP demo

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 51 / 53

Figure 50. Temp Coll device connected

NXP Semiconductors
Testing the Temp Coll-OTAP demo

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 11/2020
Application Note 52 / 53

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder
to design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products
for any particular purpose, nor does NXP assume any liability arising out of the application
or use of any product or circuit, and specifically disclaims any and all liability, including
without limitation consequential or incidental damages. “Typical” parameters that may be
provided in NXP data sheets and/or specifications can and do vary in different applications,
and actual performance may vary over time. All operating parameters, including “typicals,”
must be validated for each customer application by customer's technical experts. NXP does
not convey any license under its patent rights nor the rights of others. NXP sells products
pursuant to standard terms and conditions of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.

Security — Customer understands that all NXP products may be subject to unidentified
or documented vulnerabilities. Customer is responsible for the design and operation of its
applications and products throughout their lifecycles to reduce the effect of these vulnerabilities
on customer’s applications and products. Customer’s responsibility also extends to other open
and/or proprietary technologies supported by NXP products for use in customer’s applications.
NXP accepts no liability for any vulnerability. Customer should regularly check security updates
from NXP and follow up appropriately. Customer shall select products with security features
that best meet rules, regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible for compliance with
all legal, regulatory, and security related requirements concerning its products, regardless of
any information or support that may be provided by NXP. NXP has a Product Security Incident
Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation,
reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, Freescale,
the Freescale logo, CodeWarrior, Kinetis, Layerscape, and QorIQ are trademarks of NXP B.V.
All other product or service names are the property of their respective owners. AMBA, Arm,
Arm7, Arm9, Arm11, Artisan, Cortex, are trademarks or registered trademarks of Arm Limited
(or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by
any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and
Java are registered trademarks of Oracle and/or its affiliates.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 11/2020
Document identifier: AN12980

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 OTAP client software
	2.1 OTAP memory management during the update process
	2.2 Advantages of the OTAP service integration

	3 Prerequisites
	3.1 Downloading and installing the software development kit

	4 Customizing a based Bluetooth LE demo to integrate the OTAP service
	4.1 Importing the OTAP Bluetooth LE service and framework software into the Temp Coll project
	4.2 Main modifications in the source files
	4.2.1 pin_mux.h and pin_mux.c
	4.2.2 app_preinclude.h
	4.2.3 app_config.c
	4.2.4 gatt_db.h and gatt_uuid128.h
	4.2.5 temperature_collector.h and temperature_collector.c

	4.3 Modifications in project settings and storage configurations

	5 Testing the Temp Coll-OTAP demo
	5.1 Preparing the OTAP client SDK software
	5.2 Creating a Temp Coll - OTAP S - record image to update the software
	5.3 Creating a Temp Coll S-Record image to update the software
	5.4 Testing the Temp Coll-OTAP software

