

AN1291/D
(Freescale Order Number)

9/96

™

Av
oi

di
ng

 6
04

 M
ul

tip
ro

ce
ss

in
g

Pa
ra

do
xe

s
A

pp
lic

at
io

n
N

ot
e

Application Note

Avoiding Multiprocessing Paradoxes
with the PowerPC 604

™

 Microprocessor

This application note is intended to be used in conjunction with

Addendum to PowerPC
604 RISC Microprocessor User’s Manual: PowerPC 604e™ Microprocessor Supplement
and User’s Manual Errata

(order number MPC604UMAD/AD). This document describes
the following infrequently occurring paradoxes that may occur in a multiprocessing
implementation:

• The

lwarx

/

stwcx.

instructions may allow a kill bus operation without modifying
the cache block

• An

lwarx

 reservation set bus operation may be broadcast without a valid cache
entry

• A write-with-kill bus operation may cause a loss of memory coherency

These paradoxes are described briefly in the 604 user’s manual addendum. This document
provides additional information on how these situations and paradoxes may occur and how
they can be avoided.

In this document, the term ‘604’ is used as an abbreviation for ‘PowerPC 604
microprocessor’. The PowerPC 604 microprocessors are available from Freescale as
MPC604.

To locate any published errata or updates for this document, refer to the website at
http://www.mot.com/powerpc/.

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

n
c

..
.

Freescale Semiconductor

© Freescale Semiconductor, Inc., 2004. All rights reserved.

2

Avoiding Multiprocessing Paradoxes with the PowerPC 604 Microprocessor

The situations and paradoxes discussed in this document follow:

The lwarx/stwcx. Instructions May Allow Kill without Modifying the Cache Block

If a Load Word and Reserve Indexed (

lwarx

) instruction is followed by a Store Word Conditional Indexed
(

stwcx.

) instruction to a different address, the 604 can broadcast a kill operation without marking the level 1
(L1) cache block as modified. This may affect some level 2 (L2) cache designs, primarily in multiprocessing
systems. This situation is not addressed in the

PowerPC 604 RISC Microprocessor User’s Manual

.

Typically, when the 604 issues a kill operation that is not retried (ARTRY asserted) snoop response, it
changes the associated L1 cache block from shared (S) to modified (M); for more information, refer to Table
3-2 in the

PowerPC 604 RISC Microprocessor User’s Manual

. However, the 604 may issue a kill without
modifying the L1 cache block.

This situation occurs when an

lwarx

 instruction is followed by an

stwcx.

instruction to a different address.
If the

stwcx.

hits on shared (S) data in the data cache while it still has the reservation, the 604 queues a kill
operation. However, a snoop operation such as a read-with-intent-to-modify (RWITM) that cancels the
reservation may occur without canceling the queued kill. The kill will eventually succeed on the bus but,
since the reservation has been lost, the

stwcx.

 cannot be performed. Therefore, a kill occurs but the L1 cache
block is not marked as modified (M).

Whether system-level problems may occur depends primarily upon the L2 cache design. For example, an
L2 cache controller that checks for cache paradoxes could be confused by seeing either multiple kill
operations or a kill operation followed by a RWITM to the same L1 cache block.

A less obvious problem can occur when the kill operation causes ownership of a modified cache block to
move from an L2 to the 604’s L1 without being stored back into memory. This can happen only when an L2
has a modified copy of a cache block and the 604 has a shared copy of the same cache block. If the L2 gives
up the cache block when the kill operation occurs, but the 604 fails to mark it as modified, then a snoop or
L1 cache block replacement can cause the modified data to be lost. The L2 has given up the cache block and
the 604 simply invalidates it since it expects that it has not modified the cache block.

Therefore, to avoid these situations, system designers should not assume that having the 604 issue a kill
results in its gaining modified ownership.

An lwarx Reservation Set Bus Operation May Be Broadcast without a Valid Cache
Entry

In certain situations, the 604 can broadcast an

 lwarx

 reservation set (address-only bus operation) although
the processor does not have a valid copy of the reservation address in its data cache. This is not described
in the

PowerPC 604 RISC Microprocessor User’s Manual

 which indicates that the processor does not
broadcast an

lwarx

reservation set transaction unless the data cache contains a valid copy of the

lwarx

 target
address.

This condition, as described in the following scenario, can affect systems that check for

lwarx

 paradoxes
and rely on the processor having a valid copy of the

lwarx

 target address when the processor broadcasts an

lwarx

 reservation set bus operation.

Scenario

:

Assume that the first processor in a two processor system executes an

lwarx

 instruction. If the second
processor broadcasts a flush (resulting from a

dcbf

) to the same address as the

lwarx

 instruction, the first
processor may broadcast an

lwarx

 reservation set (TT[0–4] = 0b00001) address-only tenure without having
a valid copy of the reservation address in its data cache. The flush transaction invalidates the first processor’s
cache block without canceling the reservation.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Avoiding Multiprocessing Paradoxes with the PowerPC 604 Microprocessor

3

This

 lwarx

 reservation set broadcast can occur when a snoop-flush to the processor occurs between the time
the processor accesses and hits in the data cache for the

lwarx

instruction and the time at which the

lwarx

reservation set transaction gains bus mastership. After a data cache hit for an

lwarx

 instruction, the only
condition that will cancel the corresponding

lwarx

 operation is another snoop clearing the reservation (that
is, another processor writes to the reservation address) before the transaction gains mastership of the address
bus.

Note that if an in-line L2 cache relies on only the

lwarx

 reservation set broadcast to begin snoop filtering
for the reservation address, there is a window between the snoop-flush operation to the processor and the

lwarx

 reservation set broadcast when the L2 could improperly filter out a snoop to the reservation address
on the system bus if it does not look at the state of the reservation (RSRV) signal. This is because the
reservation address would not be in the L1 and the reservation address is not yet known to the L2. The only
way the L2 can know that the processor has a reservation is the RSRV signal.

If the processor detects that a snoop-flush operation to the reservation address has invalidated the cache for
the reservation address between the time at which the

lwarx

 hit the cache and the time the

lwarx

 reservation
set is broadcast to the address bus, the processor will always retry the

lwarx

 at the cache even though it still
performs the

lwarx

 reservation set address tenure. In this case, the retried

lwarx

 misses in the cache and
causes a read-atomic transaction on the bus. Externally this would be seen as the following sequence of
operations:

snoop: flush (address A)

processor:

lwarx

 reservation set (address A)

processor: read-atomic (address A)

To avoid this situation,

lwarx

 paradox checking logic must allow an

lwarx

 reservation set operation to be
broadcast when the processor can have a valid reservation without a valid copy of the

lwarx

 target in its data
cache.

A Write-with-Kill Bus Operation May Cause a Loss of Memory Coherency

In some situations, a global write-with-kill operation on the 604 bus can cause a loss of memory coherency.
It can appear that a program is not executed serially, which affects the use of global write-with-kill bus
operations (direct-memory accesses). Circumstances under which this condition may occur are described as
follows:

Scenario 1:

Assume data X is stored at address A and a subsequent store to address A writes data Y into the L1 cache.
At this point, the 604 can assert ARTRY and retry a snooped write-with-kill operation to an address in the
same cache block as address A and simultaneously invalidate the L1 cache block for address A. If the 604
then tries to load data from address A, it will miss in the L1 cache and the 604 will arbitrate for the bus. If
the 604 gains mastership over the write-with-kill operation that was snooped and for which ARTRY was
asserted, the load operation will retrieve data X before the data for the write-with-kill is written to memory.
Since older data X is returned by the load instead of data Y, it appears that the program is not executed
sequentially.

Scenario 2:

When data X is in the 604’s copy-back buffer and data Y is in the L1 cache, a write-with-kill operation, in
which ARTRY is asserted, causes the data in the copy-back buffer to be pushed to memory and the data in
the cache to be killed. The subsequent load retrieves from memory the data that had been in the copy-back
buffer.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

4

Avoiding Multiprocessing Paradoxes with the PowerPC 604 Microprocessor

The probability of encountering either scenario is increased by performing a

dcbst

 to address A before
storing data Y. To address this potential situation, software must not attempt to read from a location that may
still be in the L1 cache and is the target address for a write-with-kill access (for example, direct-memory
access (DMA)). This may be accomplished by flushing the cache block from the cache before the DMA is
initiated or by using a software lock to indicate when the DMA is complete and the location is safe for
reading.

This occurrence can also be avoided by using write-with-flush instead of write-with-kill bus operations.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

rxzb30
hibbertleft

rxzb30
hibbertleft

rxzb30
disclaimer

rxzb30
freescalecolorjpeg

