
1 Introduction
This document describes the usage of an Framework Serial Communication
Interface (FSCI) wrapper developed to control the FSCI Blackbox available on
the KW36 platform. The application example emulates the behavior of the
temperature sensor from the KW36 SDK using a K64F MCU and a KW36
running the FSCI Blackbox application. The application supports UART or SPI
for FSCI serial communication between the FRDM-KW36 and FRDM-K64F.
FRDM-K64F measures the temperature and sends it to the KW36 Blackbox
using FSCI protocol. FRDM-KW36 transmits temperature data over the air to
remote Bluetooth Low Energy (LE) temperature collector device.

2 Development environment
The K64F FSCI temperature sensor application consists of the following setup:

• Hardware

— 2 x FRDM-KW36 board (version B)

— 1 x FRDM-K64F board (version D)

— 3 x Micro USB cables

— Jumper wires to interface FRDM-KW36 and FRDM-K64F using SPI or UART

• Software

— SDK packages for KW36 (version 2.2.2) and K64F (version 2.7.0)

Get it from here.

— MCUXpresso IDE v11.0.1 or Higher

Get it from here.

— K64F FSCI temperature sensor application

— frdmkw36_wireless_examples_bluetooth_ble_fscibb_freertos application

— frdmkw36_wireless_examples_bluetooth_temp_coll_freertos application

 
• K64F FSCI temperature sensor application is not part of the FRDM-K64F SDK demo but the software package

is available with this application note.

• frdmkw36_wireless_examples_bluetooth_ble_fscibb_freertos application and
frdmkw36_wireless_examples_bluetooth_temp_coll_freertos application are part of demo examples available
in the FRDM-KW36 SDK.

• Initially, the user may keep low-power mode disabled in BLE collector device application. For further details
of low-power mode behavior, see Disconnection.

  NOTE  

Contents

1 Introduction............................................ 1

2 Development environment.....................1

3 Bluetooth LE API wrapper
architecture......................................... 2

4 Implementation of K64F FSCI
application........................................... 3

5 FRDM-KW36 DCDC mode
configuration......................................14

6 FRDM-KW36 FSCI Blackbox
application......................................... 15

7 Running the demonstration
application......................................... 16

8 Enumeration and structures.................27

9 Related documents..............................32

10 Revision history................................. 32

AN12896
FSCI Blackbox with MCU Host Bluetooth LE Temperature Sensor
Rev. 0 — June 2020 Application Note

https://mcuxpresso.nxp.com/en/builder
https://mcuxpresso.nxp.com/en/


3 Bluetooth LE API wrapper architecture
This section describes the wrapper implementation details. In the K64F temperature sensor application, the Bluetooth LE
Abstraction layer implements various Bluetooth LE APIs wrappers. When the application layer calls any Bluetooth LE host stack
API, that API specific wrapper function is being called which is defined at the Bluetooth LE Abstraction layer. The details of the
wrapper definition are as follows:

• Wrapper definition uses the msgBLEabsToFSCI_t structure to prepare data that is required by the FSCI layer to form FSCI
packet.

• msgBLEabsToFSCI_t has fields for opGroup and opCode, populated based on the API for which a wrapper is defined. For
API mapping with opGroup and opCode, see Bluetooth Low Energy Host Stack FSCI Reference Manual. Document is
available inside FRDM-KW36 SDK at location: SDK_2.2.2_FRDM-KW36\docs\wireless\Common.

• Length field must be defines based on the payload value, as it denotes payload length.

• Payload field must be defined based on the data provided by the application layer. Payload is provided to the Bluetooth LE
Abstraction layer by the application layer in the form of a wrapper argument.

• msgBLEabsToFSCI_t has union bleRequestType which consists of payload structures for all the defined API wrappers.

• If the user wants to implement a wrapper for any Bluetooth LE Host stack API, then the user must update
bleRequestType union and enumerations for request response opCode and opGroup. See Enumeration and structures
for details of enumerations and structures.

• When the data is defined in the msgBLEabsToFSCI_t structure, the wrapper function inserts the data into the queue and
raises the gFSCIEvtMsgFromAbs_c event.

• Wrapper function waits for the result that must be provided to the application layer as a return value of the API using
xTaskNotifyWait() FreeRTOS API. When the FSCI layer gets a response from the KW36 FSCI Blackbox application, it
forwards the status using xTaskNotify() FreeRTOS API.

NXP Semiconductors
Bluetooth LE API wrapper architecture

FSCI Blackbox with MCU Host Bluetooth LE Temperature Sensor, Rev. 0, June 2020
Application Note 2 / 33



Figure 1. Wrapper architecture

4 Implementation of K64F FSCI application
This section describes how to use the Bluetooth LE stack APIs wrapper to implement Bluetooth LE peripheral functionality.

4.1 Application initialization
K64F FSCI temperature sensor application is divided into three different layers. The following figure shows the layered
architecture used in the K64F Application.

1. Application layer

2. Bluetooth LE Abstraction layer

3. FSCI layer

NXP Semiconductors
Implementation of K64F FSCI application

FSCI Blackbox with MCU Host Bluetooth LE Temperature Sensor, Rev. 0, June 2020
Application Note 3 / 33



Figure 2. System overview

Application initialization includes FRDM-K64F initialization and Bluetooth LE specific initialization. Bluetooth LE specific
initialization messages are sent to the FRDM-KW36 FSCI Blackbox application over the serial interface. The application initializes
a Bluetooth LE custom profile and adds different services and characteristics to GATT-DB maintained by the FRDM-KW36 device.
K64F application creates various tasks and queues which are used to send and receive FSCI messages. This section describes
the details of the initialization process.

• Three queues are created:

— tx_msg_queue: Handle communication from Bluetooth LE Abstraction layer to FSCI layer.

— rx_msg_queue: Handle communication from FSCI layer to Bluetooth LE Abstraction layer.

— rsp_msg_queue: Handle communication from Bluetooth LE Abstraction layer to Application layer.

• Creation of custom profiles, adding services, and characteristics in GATT-DB. The application adds GATT, GAP,
temperature, battery and device information services, and characteristics for these services. The GATT-DB is created on
FRDM-KW36.

The APIs used for adding services, characteristics, and CCCD are:

— GattDb_AddPrimaryService()

— GattDb_AddCharacteristicDeclarationAndValue()

— GattDb_AddCharacteristicDescriptor()

— GattDb_AddCccd()

• Application callback registration: GAP generic callback and GATT server callback are registered using using the following
API:

— App_RegisterGenericCallback(gapGenericCallback_t)

— App_RegisterGattServerCallback(gattServerCallback_t)

NXP Semiconductors
Implementation of K64F FSCI application

FSCI Blackbox with MCU Host Bluetooth LE Temperature Sensor, Rev. 0, June 2020
Application Note 4 / 33



Details of the callbacks are described in Application callbacks.

All the above mentioned APIs in this section are defined at the Bluetooth LE Abstraction layer.

4.2 FSCI packet formation
This section describes the FSCI frame formation process and the FSCI frame structure.

• FSCI_transmitPayload() API is implemented to prepare FSCI messages for all the commands using the information
provided by the Bluetooth LE Abstraction layer. Bluetooth LE Abstraction layer passes opGroup, opCode, Length, and
payload.

• API has four arguments: opGroup, opCode, length, and payload. The API prototype is as follows:

void FSCI_transmitPayload(uint8_t opGroup, uint8_t opCode, uint8_t *payload, uint16_t Length);

• The above mentioned API prepares the FSCI frame header. The header field includes startMarker, opGroup, opCode, and
length. Computes checksum for the header and payload field.

The following figure shows the FSCI frame format. For more details on this, see Connectivity Framework Reference Manual
section Framework Serial Communication Interface. Document is available inside FRDM-KW36 SDK at location:
SDK_2.2.2_FRDM-KW36\docs\wireless\Common.

Figure 3. FSCI packet structure

Figure 4. FSCI packet for add primary service command

The following table describes the details of FSCI packet fields.

Table 1. FSCI packet field description

Field name Length (byte) Description

Sync/STX 1 Used for synchronization over the serial interface. The value is
always 0x02.

opGroup 1 Distinguishes between different Bluetooth LE host stack layer
that is GATT, GATT-DB, and GAP.

Message Type/opCode 1 Specifies the exact message opCode that is contained in the
packet.

Length 1 The length of the packet payload, excluding the header and
FCS. The length field content must be provided in little‑endian
format.

Table continues on the next page...

NXP Semiconductors
Implementation of K64F FSCI application

FSCI Blackbox with MCU Host Bluetooth LE Temperature Sensor, Rev. 0, June 2020
Application Note 5 / 33



Table 1. FSCI packet field description (continued)

Field name Length (byte) Description

Payload Variable Payload of the actual message.

Checksum 1 Checksum field used to check the data integrity of the packet.

4.3 Sending FSCI message from K64F to KW36 FSCI Blackbox
When an API from the Bluetooth LE Abstraction layer is called from the application layer, the following process takes place.

• Bluetooth LE Abstraction layer processes the data provided by the application layer, append opCode, opGroup, and
calculates the length of the payload based on the size of the payload which application layer provides.

• Bluetooth LE Abstraction layer uses msgBLEabsToFSCI_t structure to form messages for various APIs and passes the
created messages to the FSCI layer.

• msgBLEabsToFSCI_t structure contains the following parameters:

— opGroup: This field value can be assigned from bleOpGroupType_t enumeration.

— opCode: This field value can be assigned from bleGATTDBOpCodeType_t, bleGATTOpCodeType_t, or
bleGAPOpCodeType_t enumerations.

— Length: This field shows the size of the payload, which is populated in the bleRequestType union.

— bleRequestType: This is a union, that contains various request payload structures. This parameter is defines based
on API called by the application layer, opGroup, opCode, bleRequestType, and length.

Any command which does not have a payload, for that length field is set to 0 and no need to define the bleRequestType
field.

• When the message is formed, the Bluetooth LE Abstraction layer inserts the message in tx_msg_queue message queue,
sets the gFSCIEvtMsgFromAbs_c event, and wait for the response of the same request.

• At the Bluetooth LE Abstraction layer, every command waits for the response. This response waiting mechanism is
developed by FreeRTOS task notification with a timeout. FSCI layer receives the response from the KW36 FSCI Blackbox
application over SPI/UART interface and passes to the Bluetooth LE Abstraction layer.

• FSCI layer uses the FreeRTOS FSCI_SendPacketTask task to receive data from the Bluetooth LE Abstraction layer via a
message queue, when the data is available in the queue, FSCI layer implements a mechanism to form the FSCI packets
as described in FSCI packet formation.

• When the message is formed as per the FSCI frame format, the FSCI layer uses UART/SPI data transfer API to send the
FSCI messages over UART/SPI to KW36 FSCI Blackbox device.

NXP Semiconductors
Implementation of K64F FSCI application

FSCI Blackbox with MCU Host Bluetooth LE Temperature Sensor, Rev. 0, June 2020
Application Note 6 / 33



Figure 5. FSCI message send flow diagram

4.4 Receiving an FSCI message from KW36 FSCI Blackbox to K64F
This section describes how the response received from the FRDM-KW36 FSCI Blackbox device is processed by the FSCI layer
and forward to the application layer through the Bluetooth LE Abstraction layer.

• Data received over UART/SPI interface is provided to Prepare_FSCI_Response() API. This API inserts the received data
in the message queue which is established between the FSCI layer and Bluetooth LE Abstraction layer.

• Bluetooth LE Abstraction layer has the receive task (FSCI_ReceivePacketTask), which receives data from the receive
queue. When the data is received from the queue, the Bluetooth LE Abstraction layer process the data using the following
API.

void FSCI_HandleResponse(FSCIResponseMsg_t *pMsg, uint8_t *payload, uint8_t crc);

• The above mentioned API process the received data and decodes it in FSCIResponseMsg_t structure. Following is the list
of structure members:

— sync: This field indicates the start of a frame. The value of the field is always set to 0x02.

— opGroup: This field contains opGroup of the received response.

— opCode: This field contains opCode of the received response.

— length: Length of the payload inside the response.

— ResponseType: This is a union, which has various structures for different response payloads.

— crc: Checksum of the response.

• After decoding the data, the Bluetooth LE Abstraction layer takes the action based on the response received, that is
triggering callback, notifying the status of a request, and so on.

NXP Semiconductors
Implementation of K64F FSCI application

FSCI Blackbox with MCU Host Bluetooth LE Temperature Sensor, Rev. 0, June 2020
Application Note 7 / 33



• Callback functions running in context of FSCI_ReceivePacketTask() uses rsp_msg_queue message queue and
gAppEvtMsgFromAbs_c event for communication between the two tasks FSCI_ReceivePacketTask() and App_thread().
In this way the App_thread() receives events.

See Application callbacks for more details regarding application callback functionality.

NXP Semiconductors
Implementation of K64F FSCI application

FSCI Blackbox with MCU Host Bluetooth LE Temperature Sensor, Rev. 0, June 2020
Application Note 8 / 33



Figure 6. FSCI receive message flow diagram

NXP Semiconductors
Implementation of K64F FSCI application

FSCI Blackbox with MCU Host Bluetooth LE Temperature Sensor, Rev. 0, June 2020
Application Note 9 / 33



4.5 Application callbacks
When the initialization is performed at the application layer, the application registers various callbacks as follows:

App_GenericCallback: This callback is registered at application initialization and executed when gapAdvParamSetupComp and
gapAdvSetupFailed events are received from the KW36 FSCI Blackbox application.

App_GattServerCallback: This callback is registered at application initialization and executed on receiving the
gattCharCccdWritten event from the KW36 FSCI Blackbox application.

APP_AdvertisingCallback: This callback is registered at advertisement starting and executed on receiving
gAppGapAdvertisementMsg_c event from the KW36 FSCI Blackbox application.

App_ConnectionCallback: This callback is registered at advertisement starting and executed on receiving
gAppGapConnectionMsg_c and gAppGapDisConnectionMsg_c events from the KW36 FSCI Blackbox.

• App_Thread() task receive messages from the above callbacks via FreeRTOS message queue rsp_msg_queue.
App_Thread() task further passes these messages to App_HandleFSCIMessageInput() API.

• App_HandleFSCIMessageInput() API action based on the receiving events. For example, on receiving a connection
event, start an LED indication, and stop advertisement timer.

4.6 Developing with application note

4.6.1 Bluetooth LE abstraction code
Folder location: <Project_Directory>\source\BLE_Abstraction

Table 2. Bluetooth LE abstraction

File name Description

BLE_Abstraction_main.c/.h1 Receive and handle all FSCI responses.

ble_FSCI.h Defined GAP, GATT, GATTDB opcodes, and FSCI response structure.

ble_general.h Defined Bluetooth LE status, error codes, and event types.

ble_sig_defines.h1 Defined Bluetooth LE SIG UUID constants.

EmbeddedTypes.h1 Defined type constants.

gap_interface.c/.h Defined Bluetooth LE Abstraction layer APIs for GAP commands.

gap_types.h Defined GAP layer-specific procedure constants.

gatt_database.h1 Defined GATTDB constants.

gatt_server.c/.h Defined Bluetooth LE Abstraction layer API for GATT server commands.

gatt_types.h Defined structures for GATT services, characteristics, and attribute constants.

gatt_uuid128.h Defined temperature service UUID.

gattdb_interface.c/.h Defined Bluetooth LE Abstraction layer APIs for GATTDB commands.

1. Do not modify the header file.

NXP Semiconductors
Implementation of K64F FSCI application

FSCI Blackbox with MCU Host Bluetooth LE Temperature Sensor, Rev. 0, June 2020
Application Note 10 / 33



4.6.2 FSCI code
Folder location: <Project_Directory>\source\FSCI

Table 3. FSCI

File name Description

FSCI_main.c/.h1 Preparing FSCI packets for every GAP, GATT, and GATTDB commands.

SPI.c/.h2 Defined APIs for SPI initialization, configuration, and send FSCI packet to FRDM-KW36 via SPI interface.

UART_main.c/.h2
Defined APIs for UART initialization, configuration, and send FSCI packet to FRDM-KW36 via UART
interface.

1. Do not modify the header file.
2. Source and header files are developed specific to K64F device.

4.6.3 Bluetooth LE device profile code
Folder location: <Project_Directory>\source\profiles

Table 4. Bluetooth LE profile

File name Description

battery_interface.h Interface for battery service. APIs to start, stop, subscribe, and unsubscribe battery service are
defined in this file.

battery_service.c Includes definition of the APIs used in battery interface file.

device_info_interface.h Interface for device information service. APIs to start and stop the service are declared in this file.

device_info_service.c Includes definitions of the APIs used in device information interface file.

temperature_interface.h Interface for temperature service. APIs to start, stop, subscribe, and unsubscribe the temperature
service are declared in this file.

temperature_service.c Includes definition of the APIs used in temperature interface file.

4.6.4 Temperature sensor code
Folder location: <Project_Directory>\source

Table 5. Temperature sensor

File name Description

app_config.c Defined configurations for advertising data and parameters.

ApplMain.c/.h Done button and LED Initialization. Register callback functions for advertising, connection, and
so on.

FreeRTOSConfig.h1 FreeRTOS specific configuration file.

Table continues on the next page...

NXP Semiconductors
Implementation of K64F FSCI application

FSCI Blackbox with MCU Host Bluetooth LE Temperature Sensor, Rev. 0, June 2020
Application Note 11 / 33



Table 5. Temperature sensor (continued)

temperature_sensor.c/.h Initiates set advertisement data and parameter procedures. Added service and characteristics for
temperature sensor application.

semihost_hardfault.c1 Defined hard fault handler functionality.

1. Source and header files are developed specific to K64F device.

 
Based on the application requirements the user can change the files. Consider the following points, when changing
the source code files.

• Source and header files are developed specific to K64F device.

• Do not modify the header file.

  NOTE  

4.7 Summary
The following figure describes the summary of Implementation of K64F FSCI application.

NXP Semiconductors
Implementation of K64F FSCI application

FSCI Blackbox with MCU Host Bluetooth LE Temperature Sensor, Rev. 0, June 2020
Application Note 12 / 33



Figure 7. Communication between K64F (FSCI layers) and KW36

• FRDM-K64F application has three layers: Application layer, Bluetooth LE Abstraction layer, and FSCI layer.

• In this design, the application layer calls the APIs defined at the Bluetooth LE Abstraction layer. For example, when the
advertising procedure is initiated, the application layer calls start advertising API (GAP_StartAdvertising) with the required
parameters.

• Bluetooth LE Abstraction layer adds specific information (OpCode, OpGroup, and length field) and passes this information
to the FSCI layer via a message queue.

• FSCI layer receives this information and forms the FSCI packet for a specific command. FSCI layer sends the FSCI
packet to the FRDM-KW36 Blackbox via a configured serial interface (UART/SPI).

• FRDM-KW36 receives the FSCI packet, takes appropriate action, and sends a response to FRDM-K64F via serial
interface.

• FRDM-K64F receives the response at the FSCI layer and passes the response to the Bluetooth LE Abstraction layer via a
message queue.

NXP Semiconductors
Implementation of K64F FSCI application

FSCI Blackbox with MCU Host Bluetooth LE Temperature Sensor, Rev. 0, June 2020
Application Note 13 / 33



• Bluetooth LE Abstraction layer triggers the callbacks which are defined at the application layer.

 
This K64F FSCI temperature sensor application does not include security (Pairing and Bonding) feature.

  NOTE  

5 FRDM-KW36 DCDC mode configuration
By default, the FRDM-KW36 Blackbox application operates with Buck mode at 1.8 V and FRDM-K64F application operates at
3.3 V, therefore there is a voltage level difference between the boards.

There are two methods to reconfigure FRDM-KW36 operating voltage at 3.0 V:

1. The main method is to increase the Buck mode output voltage to 3.0 V (only software change required). See 
Modification for Buck mode configuration.

2. The other method is to operate the FRDM-KW36 Blackbox application at 3.0 V by configuring the Bypass mode
(software and hardware changes required). See Modification for Bypass mode configuration.

 
Multiple ground connections are required as mentioned in Table 8 to get the correct data over the SPI bus. See 
Modifications for SPI interface to enable the SPI interface in the FRDM-KW36 FSCI Blackbox application.

  NOTE  

Operating the FRDM-KW36 board at 3.0 V meets the required threshold for communication between the platforms, but if user
uses the DCDC at 3.3 V, it is limited by the D8 diode.

If the user requires 3.3 V on FRDM-KW36, then provide 3.6 V external power supply and modify the DCDC configuration.

For more details on power management circuit in the FRDM-KW36, see FRDM-KW36 Freedom Development Board User’s Guide
section Power management.

5.1 Modification for Buck mode configuration
To operate FRDM-KW36 Blackbox in Buck mode at 3.0 V, perform the following changes in the software.

Software changes:

• In board/board.c file, modify DCDC output value from 1.8 V to 3.0 V as:

.dcdc1P8OutputTargetVal = gDCDC_1P8OutputTargetVal_3_000_c

• If gDCDC_Enabled_d is not defined in source/app_preinclude.h file, then add gDCDC_Enabled_d in the same file as:

#define gDCDC_Enabled_d 1

• In board/board.h file, make sure APP_DCDC_MODE macro is set to gDCDC_Mode_Buck_c.

5.2 Modification for Bypass mode configuration
To operate FRDM-KW36 Blackbox in Bypass mode at 3.0 V, perform the following changes in hardware and software.

Hardware changes:

• Short pins as shown in the following figure.

• Cut the traces between the pins as shown in the following figure.

NXP Semiconductors
FRDM-KW36 DCDC mode configuration

FSCI Blackbox with MCU Host Bluetooth LE Temperature Sensor, Rev. 0, June 2020
Application Note 14 / 33

https://www.nxp.com/docs/en/user-guide/FRDMKW36UG.PDF


Figure 8. Bypass mode hardware changes

Software changes:

• In board/board.h file, update APP_DCDC_MODE as:

#define APP_DCDC_MODE (gDCDC_Mode_Bypass_c)

6 FRDM-KW36 FSCI Blackbox application
This section describes the software changes required for enabling UART and SPI interface on the FSCI Blackbox application.

6.1 Modifications for UART interface
• Update the UART instance inside source/app_preinclude.h file.

#define APP_SERIAL_INTERFACE_INSTANCE 1

• Add the pin muxing for UART inside BOARD_InitLPUART () function.

File: board/pin_mux.c

void BOARD_InitLPUART (void) {

CLOCK_EnableClock(kCLOCK_PortA);

PORT_SetPinMux(PORTA, PIN17_IDX, kPORT_MuxAlt3);

PORT_SetPinMux(PORTA, PIN18_IDX, kPORT_MuxAlt3);

SIM->SOPT5 = ((SIM->SOPT5 &

(~(SIM_SOPT5_LPUART1TXSRC_MASK | SIM_SOPT5_LPUART1RXSRC_MASK)))

| SIM_SOPT5_LPUART1TXSRC(SOPT5_LPUART0TXSRC_LPUART_TX)

| SIM_SOPT5_LPUART1RXSRC(SOPT5_LPUART0RXSRC_LPUART_RX));

}

NXP Semiconductors
FRDM-KW36 FSCI Blackbox application

FSCI Blackbox with MCU Host Bluetooth LE Temperature Sensor, Rev. 0, June 2020
Application Note 15 / 33



Also, add the following defines in the same file.

#define PIN17_IDX 17u

#define PIN18_IDX 18u

6.2 Modifications for SPI interface
• By default in KW36 FSCI Blackbox application gSerialMgrUseUART macro is enabled, the user must disable it by the

following macro in source/app_preinclude.h file.

#define gSerialMgrUseUART_c 0

• To enable the SPI interface, user must update the following macro in source/app_preinclude.h file

#define gSerialMgrUseSPI_c 1

#define APP_SERIAL_INTERFACE_INSTANCE 1

• Add pin muxing for SPI interface inside BOARD_InitSPI() function.

File: board/pin_mux.c

void BOARD_InitSPI(void) {

CLOCK_EnableClock(kCLOCK_PortC);

PORT_SetPinMux(PORTA, 16u, kPORT_MuxAlt2);

PORT_SetPinMux(PORTA, 17u, kPORT_MuxAlt2);

PORT_SetPinMux(PORTA, 18u, kPORT_MuxAlt2);

PORT_SetPinMux(PORTA, 19u, kPORT_MuxAlt2);

}

7 Running the demonstration application
This section describes how to use the FRDM-K64F FSCI temperature sensor application with the FRDM-KW36 FSCI Blackbox
application to communicate with FRDM-KW36 Bluetooth LE collector device.

For details regarding how FRDM-KW36 wireless application works, see Bluetooth Low Energy Demo Applications User Guide.
Document is available inside FRDM-KW36 SDK at location: SDK_2.2.2_FRDM-KW36\docs\wireless\Bluetooth.

Figure 9. System setup

NXP Semiconductors
Running the demonstration application

FSCI Blackbox with MCU Host Bluetooth LE Temperature Sensor, Rev. 0, June 2020
Application Note 16 / 33



7.1 FRDM-K64F build configuration
This section describes how to edit the build configuration. The K64F application supports UART and SPI interfaces to
communicate with FSCI Blackbox on the KW platform. Select one of the interfaces using the following steps.

1. Right click on the K64F FSCI temperature sensor project and select Properties option.

2. From Properties, navigate to C/C++ Build → Settings →Tool Settings →Preprocessor.

3. In the Preprocessor folder, add the macro gSPISupported to enable the SPI interface or the macro gUARTSupported to
enable the UART interface. One interface is enabled at a time. By default, the SPI interface is enabled. The following
figure shows the build configuration for the SPI interface.

Figure 10. Update the build configuration

 
The user can also enable the debug log by adding macro DEBUG_PRINT_ENABLE in the above preprocessor build
configuration.

  NOTE  

7.2 Loading the application
This section provides the detail for building the application and download it to the evaluation boards. The steps are as follows:

NXP Semiconductors
Running the demonstration application

FSCI Blackbox with MCU Host Bluetooth LE Temperature Sensor, Rev. 0, June 2020
Application Note 17 / 33



1. Open MCUXpresso by using an existing or a new workspace.

2. Import the SDKs for FRDM-K64F and FRDM-KW36, drag and drop SDK zip files to the Installed SDKs tab in
MCUXpresso. Reference for downloading the SDK is provided in Development environment.

3. Import the project: navigate to File →Import →General →Existing projects into Workspace. Browse the project location
and select the project to import as shown in the following figure.

Figure 11. Import project to workspace

4. When the project is imported successfully, the project explorer tab in MCUXpresso displays the status.

5. Right click on the project and perform clean build by Clean Project option.

6. See FRDM-K64F build configuration to update the build configuration for the K64F project only.

7. Right click on the project and select the option Build Project.

8. In MCUXpresso console tab user can see the progress of the build. When the build is completed, the user can drag and
drop the generated binary from the location <MCUXpresso Workspace>/<Project>/Debug/ or use MCUXpresso
to download and debug the application.

NXP Semiconductors
Running the demonstration application

FSCI Blackbox with MCU Host Bluetooth LE Temperature Sensor, Rev. 0, June 2020
Application Note 18 / 33



9. To download the binary, power up the hardware using a micro USB cable. When the device is connected, it shows as a
device-specific drive on PC. Drag and drop the application binary to the same drive.

10. When the application is programmed to the board, then power-on reset the board to start and run the application.

11. User can download and debug the application using the Debug option available in the Quickstart Panel tab inside the
MCUXpresso, as shown in the following figure.

Figure 12. Download and debug option

12. After selecting the Debug option, MCUXpresso shows all the supported probes that are attached to your computer.
Select the probe through which you want to debug and click OK button. See the following figure.

NXP Semiconductors
Running the demonstration application

FSCI Blackbox with MCU Host Bluetooth LE Temperature Sensor, Rev. 0, June 2020
Application Note 19 / 33



Figure 13. Attached probe list

13. When the probe is selected, the application is downloaded to the target and automatically runs to main() as shown in
the following figure. To run the application, further use the Resume button.

NXP Semiconductors
Running the demonstration application

FSCI Blackbox with MCU Host Bluetooth LE Temperature Sensor, Rev. 0, June 2020
Application Note 20 / 33



Figure 14. Application stopped at main() resume to run the application

For more details on using MCUXpresso IDE see Getting Started with MCUXpresso SDK for MKW36 Derivatives. Document is
available inside FRDM-KW36 SDK at location: SDK_2.2.2_FRDM-KW36\docs.

The following table lists the applications that must be used with specified FRDM boards.

Table 6. Application and hardware module

Application Project name Hardware

Temperature sensor
frdmk64f_Temperature_Sensor FRDM-K64F

frdmkw36_wireless_examples_bluetooth_ble_fscibb_freertos FRDM-KW36

Temperature collector frdmkw36_wireless_examples_bluetooth_temp_coll_freertos FRDM-KW36

7.3 Initialization of the temperature sensor application
FRDM-KW36 Bluetooth LE FSCI Blackbox application and FRDM-K64F FSCI temperature sensor application work together as
a Bluetooth LE temperature sensor application. For communication between two boards of the required interface type, the user
must do pin connections using jumper wires. Below are the details of the pin connections for both UART and SPI interfaces. User
can configure any interface.

 
For DCDC mode related changes, first see FRDM-KW36 DCDC mode configuration.

  NOTE  

NXP Semiconductors
Running the demonstration application

FSCI Blackbox with MCU Host Bluetooth LE Temperature Sensor, Rev. 0, June 2020
Application Note 21 / 33



Figure 15. UART connections

Table 7. UART connection

Pin name K64F jumper and pin KW36 jumper and pin

UART-RX J1-2 J1-5

UART-TX J1-4 J1-7

GND J2-14 J2-7

 
Ensure that RX and TX pins are crossed between the FRDM-K64F FSCI and FRDM-KW36 FSCI Blackbox board.

  NOTE  

NXP Semiconductors
Running the demonstration application

FSCI Blackbox with MCU Host Bluetooth LE Temperature Sensor, Rev. 0, June 2020
Application Note 22 / 33



Figure 16. SPI connections

Table 8. SPI connection

Pin name K64F jumper and pin KW36 jumper and pin

CLK J2-12 J1-7

CS J2-6 J2-3

MOSI J2-8 J1-5

MISO J2-10 J2-1

GND J2-3 J2-7

GND J2-14 J3-7

When the above-mentioned pin connection is established between the FRDM-K64F and FRDM-KW36 boards, press the SW1
switch to reset the FRDM-KW36 device and FRDM-K64F device in sequence. Now, the FRDM-K64F temperature sensor
application starts sending FSCI commands to initialize the Bluetooth LE custom profile using GATT-DB APIs. It also registers
callback functions for GAP, advertisement, connection procedures, and generic events. When the initialization is completed on
FRDM-K64F, RGB LED starts flashing white color. This RGB LED signals that the user can start the connection procedure as
mentioned in Initiate Bluetooth LE connection between temperature sensor (K64F+KW36) and KW36 temperature collector
device.

 
To observe the output logs on the FRDM-K64F temperature sensor and FRDM-KW36 temperature collector
devices, it requires board console-setup (or a terminal): 115200 Baud Rate, 8 bits, no parity, 1 stop bit, and no
flow control.

  NOTE  

NXP Semiconductors
Running the demonstration application

FSCI Blackbox with MCU Host Bluetooth LE Temperature Sensor, Rev. 0, June 2020
Application Note 23 / 33



7.4 Initiate Bluetooth LE connection between temperature sensor (K64F+KW36) and KW36
temperature collector device

Follow these steps to start connection between the K64+KW36 Bluetooth LE temperature sensor and the KW36 Bluetooth LE
temperature collector.

1. To start scanning:

a. When low-power mode is disabled, press SW2 from FRDM-KW36 temperature collector device.

b. When low-power mode is enabled, press SW3 from FRDM-KW36 temperature collector device.

 
User can enable or disable the Low-power mode by setting or clearing the cPWR_UsePowerDownMode macro
defined in app_preinclude.h file (inside Source folder) of the temperature collector project.

  NOTE  

2. When the scanning is started, 'scanning…' message displayed on the KW36 temperature collector console as shown in 
Figure 18. It remains active for 10 seconds.

3. User must start advertising from the K64F temperature sensor application within 10 seconds duration to make
successful connection with KW36 temperature collector device.

4. To start the advertisement from K64F temperature sensor application board press SW3.

5. When the advertisement starts '---------- ADVERTISEMENT STARTED ----------' message displayed on K64F FSCI
temperature sensor console as shown in Figure 19. Advertisement remains active for 30 seconds.

6. RGB LED on K64F board flashes with RED color to indicate advertisement in progress.

7. When the connection is successfully established between the two Bluetooth LE devices, then the RGB LED on K64F
board remains steady with RED color to indicate connected.

8. On the console of Bluetooth LE collector device and also on K64F device, the message 'Connected!' and '----------
CONNECTED ----------' is displayed respectively.

NXP Semiconductors
Running the demonstration application

FSCI Blackbox with MCU Host Bluetooth LE Temperature Sensor, Rev. 0, June 2020
Application Note 24 / 33



Figure 17. FSCI message flow diagram

When both devices are connected, the temperature sensor application system is ready to send temperature data as described
in Temperature value sending mechanism. The above figure shows the message flow between the boards.

NXP Semiconductors
Running the demonstration application

FSCI Blackbox with MCU Host Bluetooth LE Temperature Sensor, Rev. 0, June 2020
Application Note 25 / 33



Figure 18. FRDM-KW36 temperature collector device console

Figure 19. FRDM-K64F temperature sensor device console

NXP Semiconductors
Running the demonstration application

FSCI Blackbox with MCU Host Bluetooth LE Temperature Sensor, Rev. 0, June 2020
Application Note 26 / 33



 
For more detailed information about OpCode & OpGroup, see Bluetooth Low Energy Host Stack FSCI Reference
Manual. Document is available inside FRDM-KW36 SDK at location: SDK_2.2.2_FRDM-KW36\docs\wireless
\Common.

  NOTE  

Enumeration and structures describes the enumerations used for opCode and opGroup in this application.

7.5 Temperature value sending mechanism
FRDM-K64F FSCI temperature sensor application reads temperature from the sensor available on the FRDM-K64F board using
ADC. The temperature value is written over FSCI into GATT-DB maintained by the FRDM-KW36 Blackbox application. So,
whenever both devices get connected and the CCCD event is received from the FRDM-KW36 board (Blackbox application), the
K64F FSCI temperature sensor application uses SendNotification() method to send temperature data to FRDM-KW36
temperature collector device. There are two methods for sending temperature data to the collector device.

1. Manual: Press the SW3 button on the FRDM-K64F board.

2. Periodic: At every 3 seconds interval, the temperature value is sent.

Both methods are enabled by default in the K64F FSCI temperature sensor application.

User can disable the Periodic method by commenting gTempTimerSupported macro defined in ApplMain.c.

When the temperature sensor sends temperature value to the temperature collector device user can see the temperature value
print on the collector console.

7.6 Disconnection
To disconnect both the connected devices use one of the following methods:

1. Disconnect using temperature data receive time out

If KW36 temperature collector does not receive any temperature data for more than 5 seconds, it sends a disconnection
request to the temperature sensor device. This method is available only when the KW36 temperature collector application
has low-power mode enabled. To Enable or Disable low-power mode see Initiate Bluetooth LE connection between
temperature sensor (K64F+KW36) and KW36 temperature collector device. If low-power mode is disabled, then the KW36
temperature collector device does not send a disconnect request.

2. Manual disconnect

K64F FSCI temperature sensor application can send a disconnect request on long press more than 1 second of the SW3
button at the FRDM-K64F board. By default, this method is enabled in the K64F FSCI temperature sensor application.

When a disconnection is completed, user can see a 'Disconnected!' and a '---------- DISCONNECTED ----------' messages
on the terminal consoles of FRDM-KW36 temperature collector device and FRDM-K64F Temperature sensor device respectively.

See Bluetooth Low Energy Demo Applications User Guide for more details about Temperature Sensor and Temperature Collector
application example. Document is available inside FRDM-KW36 SDK at location: SDK_2.2.2_FRDM-KW36\docs\wireless
\Bluetooth.

8 Enumeration and structures
The list of various request response enumerations are described in this section. Source\ BLE_Abstraction \ble_FSCI.h file
located inside BluetoothLE_Abstraction folder contains details of numerical values of the mentioned enumerations.

• typedef enum bleOpGroupType_t

Enumeration for opGroup field.

NXP Semiconductors
Enumeration and structures

FSCI Blackbox with MCU Host Bluetooth LE Temperature Sensor, Rev. 0, June 2020
Application Note 27 / 33



Table 9. opGroup

Enumeration opGroup

bleGATT GATT messages

bleGATTDB GATT-DB messages

bleGAP GAP messages

• typedef enum bleGATTDBOpCodeType_t

Enumeration for opCode used for GATT-DB layer messages.

Table 10. GATT-DB request opCode

Enumeration GATT-DB opCode

gattDBWriteAttribute GATT-DB write attribute request

gattDBReadAttribute GATT-DB read attribute request

gattDBFindServiceHandle GATT-DB find service handle request

gattDBFindCharValueHandleInService GATT-DB request to find characteristic value handle in service

gattDBFindCccdHandleForCharValHandle GATT-DB request to find CCCD handle for characteristic value

gattDBFindDescHandleForCharvalHandle GATT_DB request to find Descriptor handle for the characteristic value

gattDBInit GATT-DB initialization request

gattDBReleaseDB GATT-DB release request

gattDBAddPrimaryService GATT-DB request to add primary service into GATT database

gattDBAddSecondaryService GATT-DB request to add secondary service into GATT database

gattDBAddCharDescAndValue GATT-DB request to add characteristic descriptor and value into
GATT database

gattDBAddCharDescriptor GATT-DB request to add characteristic descriptor into GATT database

gattDBAddCccd GATT-DB request to add CCCD into GATT database

• typedef enum bleGATTOpCodeType_t

Enumeration for opCode used for GATT messages.

Table 11. GATT request opCode

Enumeration GATT opCode

gattServerCallbackRegister GATT server callback registration request

gattSendNotification Send notification request

• typedef enum bleGAPOpCodeType_t

Enumeration for opCode used for GAP messages.

NXP Semiconductors
Enumeration and structures

FSCI Blackbox with MCU Host Bluetooth LE Temperature Sensor, Rev. 0, June 2020
Application Note 28 / 33



Table 12. GAP request opCode

Enumeration GAP opCode

gapSetAdvParameter GAP request to set advertisement parameter

gapSetAdvData GAP request to set advertisement data

gapStartAdvertisement GAP request to start advertisement

gapStopAdvertisement GAP request to stop the advertisement

gapCheckNotificationStatus GAP request to check the notification status

gapDisconnect GAP to send disconnect request

• typedef enum bleGapRespOpCodeType_t

Enumeration for opCode used for GAP response messages.

Table 13. GAP response opCode

Enumeration GAP response opCode

gapConfirm GAP confirmation message

gapCheckNotfStatusResp GAP check notification status response

gapAdvDataSetupComp GAP Advertisement data set up complete event

gapAdvParamSetupComp GAP advertisement parameter setup complete

gapAdvSetupFailed GAP advertisement setup failed event

gapAdvEventStateChanged GAP advertisement event state change event

gapAdvEventFailed GAP advertisement event fail event

gapConnectionEventConnected GAP connection event connected

gapConnectionEventDisConnected GAP connection event disconnected

gapConnEventLEDataLenChanged GAP connection event LE data length change event

• typedef enum bleGATTRespOpCodeType_t

Enumeration for opCode used for GATT response messages.

Table 14. GATT response opCode

Enumeration GATT response opCode

gattConfirm GATT confirmation message

gattMTUChanged GATT response for the MTU change

gattCharCccdWritten GATT event for the CCCD written

• typedef enum bleGATTDBRespOpCodeType_t

NXP Semiconductors
Enumeration and structures

FSCI Blackbox with MCU Host Bluetooth LE Temperature Sensor, Rev. 0, June 2020
Application Note 29 / 33



Enumeration for opCode used for GATT-DB response messages.

Table 15. GATT-DB response opCode

Enumeration GATT-DB response opCode

gattDBConfirm GATT-DB confirmation message

gattDBAddPrimServResp GATT-DB add primary service response

gattDBAddSecServResp GATT-DB add secondary service response

gattDBAddCharDeclandValResp GATT-DB add characteristic declaration and value response

gattDBAddCharDescResp GATT-DB add characteristic descriptor response

gattDBAddCccdResp GATT-DB add CCCD response

gattDBReadAttrResp GATT-DB read attribute response

gattDBFindSerHandleResp GATT-DB find service handle response

gattDBFindCharValHandleResp GATT-DB find characteristic value handle response

gattDBFindCccdHandleResp GATT-DB find CCCD handle response

gattDBFindDescHandleResp GATT-DB find descriptor handle response

• typedef struct msgBLEabsToFSCI_tag

This structure is used to send data from the Bluetooth LE Abstraction layer to FSCI layer.

uint8_t opGroup: opGroup for the request to send.

uint8_t opCode: opCode for the request to send.

uint8_t length: Length of bleRequestType data.

Union bleRequestType:

Table 16. FSCI request structure

Payload structure Description

gattDiscoverAllCharacteristicDescriptorReq_t Discover all the characteristic descriptor

gattServerSendNotificationReq_t Send notification request

gapAdvertisingParameters_t Set advertisement parameter request

gapSetAdvertisingData_t Set advertisement data request

gapScanResponseData_ Scan response data

gapCheckNotificationStatus_t Check notification status request

gapDisconnect_t Disconnect request

gattDBAddPrimaryServiceReq_t Add primary service request

Table continues on the next page...

NXP Semiconductors
Enumeration and structures

FSCI Blackbox with MCU Host Bluetooth LE Temperature Sensor, Rev. 0, June 2020
Application Note 30 / 33



Table 16. FSCI request structure (continued)

Payload structure Description

gattDBAddSecondaryServiceReq_t Add secondary service request

gattDBAddCharDecandValueReq_t Add characteristic declaration and value request

gattDBAddCharacDescriptorReq_t Add characteristic descriptor request

gattDBWriteAttributeReq_t Write attribute request

gattDBReadAttributeReq_t Read attribute request

gattDBFindSeriveHandleReq_t Find service handle request

gattDBFindCharValueHandleInServiceReq_t Find characteristic value handle in service

gattDBFindCccdHandleForCharValueHandleReq_t Find CCCD handle for the characteristic value handle
request

gattDBFindDescHandleForCharValueHandleReq_t Find descriptor handle for the characteristic value handle
request

The union shows already implemented requests, if user wants to add any other request then edit the above structure and
relative enumeration.

• typedef struct FSCIResponseMsg_tag

This structure is used by the Bluetooth LE Abstraction layer to decode and process the response received.

uint8_t sync: Frame start markup.

uint8_t opGroup: opGroup of the received response.

uint8_t opCode: opCode for the received response.

uint16_t length: Length of the received response payload.

union ResponseType:

Table 17. FSCI response structure

Payload structure Description

gapCheckNotfStatusResp_t Check notification status response

gapAdvEventFailed_t Advertisement event failed response

GapConfirm_t GAP confirmation message

GattConfirm_t GATT confirmation message

gattDBConfirm_t GATT-DB confirmation message

gattDBAddPrimServResp_t GATT-DB add primary service response

gattDBAddSecServResp_t GATT-DB add secondary service response

Table continues on the next page...

NXP Semiconductors
Enumeration and structures

FSCI Blackbox with MCU Host Bluetooth LE Temperature Sensor, Rev. 0, June 2020
Application Note 31 / 33



Table 17. FSCI response structure (continued)

Payload structure Description

gattDBAddCharDeclandValResp_t GATT-DB add characteristic declaration and value response

gattDBAddCharDescResp_t GATT-DB add characteristic descriptor response

gattDBAddCccdResp_t GATT-DB add CCCD response

gattDBReadAttrResp_t GATT-DB read attribute response

gattDBFindServHandleResp_t GATT-DB find service handle response

gattDBFindCharValHandleResp_t GATT-DB find characteristic value handle response

gattDBFindCccdHandleResp_t GATT-DB find CCCD handle response

gattDBFindDescHandleResp_t GATT-DB find descriptor handle response

uint8_t crc: checksum of the response data.

When a new request is added, the user must update the above structure and relative enumeration for that request related
response handling.

9 Related documents
This section provides the list of the documents which are referred in the development of K64F FSCI temperature sensor
application. Documents are available inside FRDM-KW36 SDK at locations: SDK_2.2.2_FRDM-KW36\docs\wireless\Bluetooth
and SDK_2.2.2_FRDM-KW36\docs\wireless\Common.

1. Bluetooth Low Energy Host Stack FSCI Reference Manual

2. Bluetooth Low Energy Application Developer Guide

3. Bluetooth Low Energy Demo Applications User Guide

4. Bluetooth Low Energy Host Stack API Reference Manual

10 Revision history
Table 18. Revision history

Revision number Date Substantive changes

0 06/2020 Initial release

NXP Semiconductors
Related documents

FSCI Blackbox with MCU Host Bluetooth LE Temperature Sensor, Rev. 0, June 2020
Application Note 32 / 33



How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC,
MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire,
ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,
PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform
in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D
are trademarks of NXP B.V. All other product or service names are the property of their respective
owners.  AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,
CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON,
POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or
its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or
all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are
registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word
marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: June 2020
Document identifier: AN12896

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	FSCI Blackbox with MCU Host Bluetooth LE Temperature Sensor
	Contents
	1 Introduction
	2 Development environment
	3 Bluetooth LE API wrapper architecture
	4 Implementation of K64F FSCI application
	4.1 Application initialization
	4.2 FSCI packet formation
	4.3 Sending FSCI message from K64F to KW36 FSCI Blackbox
	4.4 Receiving an FSCI message from KW36 FSCI Blackbox to K64F
	4.5 Application callbacks
	4.6 Developing with application note
	4.6.1 Bluetooth LE abstraction code
	4.6.2 FSCI code
	4.6.3 Bluetooth LE device profile code
	4.6.4 Temperature sensor code

	4.7 Summary

	5 FRDM-KW36 DCDC mode configuration
	5.1 Modification for Buck mode configuration
	5.2 Modification for Bypass mode configuration

	6 FRDM-KW36 FSCI Blackbox application
	6.1 Modifications for UART interface
	6.2 Modifications for SPI interface

	7 Running the demonstration application
	7.1 FRDM-K64F build configuration
	7.2 Loading the application
	7.3 Initialization of the temperature sensor application
	7.4 Initiate Bluetooth LE connection between temperature sensor (K64F+KW36) and KW36 temperature collector device
	7.5 Temperature value sending mechanism
	7.6 Disconnection

	8 Enumeration and structures
	9 Related documents
	10 Revision history

