
1 Introduction
The LPC54018 features two CAN controllers supporting CAN-FD. The
LPC54018 SDK provides the mcan_interrupt_transfer example to demonstrate
how to use CAN to transfer data. Based on this example, this application note
describes the use of CAN-FDs bit rate switch and transmitter delay
compensation features. Enabling these two features can improve the
throughput and eliminate the bit error caused by transmitter delay.

2 CAN-FD
CAN-FD is defined in the international standard ISO 11898-1:2015. For quick
start on using CAN-FD, this section introduces some key features of CAN-FD
and aims at users who are familiar with CAN.

2.1 Differences between CAN and CAN-FD
There are two key differences between classical CAN and CAN-FD. The first
is that CAN-FD can use much higher bit rates than classical CAN. Bit rate of
classical CAN is limited to 1 Mbps. CAN-FD does not have a theoretical limit,
but in practice it is limited by the transceivers. The second key difference is the increased amount of data per CAN message.
Classical CAN is limited to eight bytes. CAN-FD limit is increased eight-fold to 64 bytes per message.

With the increased amount of data per CAN message, CAN-FD frames need higher bit rate to decrease the delay time in the
communication and increase real-time performance. The CAN-FD frames can reach higher bit rates by enabling bit rate switch
feature.

On another hand, the bit rate is higher, the bit time is shorter. In order to enable a data phase bit time, which is even shorter than
the transmitter delay, the delay compensation is introduced. Without transmitter delay compensation, the bit rate in the data phase
of a CAN-FD frame is limited by the transmitter delay.

2.2 Bit rate switch
In CAN-FD frame, control phase, data phase, and CRC phase are transmitted with a higher bit rate than the beginning and the
end of the frame.

The bit rate switch feature is enabled by setting the BRSE bit in the CCCR register. When enabling the bit rate switch, we also
need to set arbitration phase bit rate (before enabling bit rate switch) and data phase bit rate (after enabling bit rate switch)
correctly. The arbitration phase bit rate is set by the NBTP register, the data phase bit rate is set by DBTP register.

2.3 Transmitter delay compensation
The protocol unit of the MCAN has implemented a delay compensation mechanism to compensate the transmitter delay. The
transmitter delay compensation enables configurations where the data bit time is shorter than the transmitter delay It is described
in detail in the new ISO11898-1. It is enabled by setting the TDC bit in the DBTP register. The TDCO field in the TDCR register
is used for setting the transmitter delay compensation offset. The offset value defines the distance measured between the delay

Contents

1 Introduction.. 1

2 CAN-FD... 1
2.1 Differences between

CAN and CAN-FD..........1
2.2 Bit rate switch............... 1
2.3 Transmitter delay

compensation.................1
3 Demonstration....................................... 2

3.1 Hardware
environment................... 2

3.2 Software
environment................... 3

3.3 Using CAN-FD steps
overview.........................3

3.4 Config CAN-FD Bit
Rate Switch....................4

3.5 Config Transmitter
Delay Compensation......5

3.6 Steps and results..........6

AN12799
How to Use CAN-FD to Transfer Data on LPC54018
Rev. 0 — 23 March 2020 Application Note

from m_can_tx to m_can_rx and the secondary sample point. The transmitter delay compensation offset and secondary sample
point are show in following figure.

Figure 1. MCAN transmitter delay compensation offset and secondary sample point

3 Demonstration
This section provides a brief introduction on how to use CAN-FD to transfer data and enable bit rate switch and transmitter delay
compensation. It is based on the LPC54018 SDKs mcan_interrupt_transfer example.

3.1 Hardware environment
• Boards

— Two LPCXpresso54018 boards (OM40003)

— Two Dual CAN-FD transceiver shields (OM13099)

• Miscellaneous

— Two Micro USB cables

— One 120 Ohms terminated CAN cable

— Personal Computer

• Boards Setup

CAN shields were connected to evaluation boards. The CAN0 interfaces on each shield were connected using the terminated
CAN cable. Connect the micro USB cable between PC and J8 link on the evaluation board for loading and running a demo. This
is also used for UART communication to UART terminal on PC. The boards setup and CAN connection are showen in following
figure.

NXP Semiconductors
Demonstration

How to Use CAN-FD to Transfer Data on LPC54018, Rev. 0, 23 March 2020
Application Note 2 / 7

Figure 2. Boards setup and CAN connection

3.2 Software environment
• Tool chain

— MCUXpresso10.3.0 or above

• Software package

— lpcxpresso54018_mcan_interrupt_transfer_canfd.zip

• UART terminal program

— PuTTy, or similar one

3.3 Using CAN-FD steps overview
This application note provides a mcan_interrupt_transfer_canfd software package. It demonstrates the use of CAN-FD to transfer
data. In this example, the following steps are required:

• Set the system clock

• Set the MCAN clock

— Divide the system clock for MCAN module

NXP Semiconductors
Demonstration

How to Use CAN-FD to Transfer Data on LPC54018, Rev. 0, 23 March 2020
Application Note 3 / 7

• Initialize MCAN

— Enable MCAN clock

— Reset the MCAN module

— Configure the MCAN Control Register, enable CAN-FD and bit rate switch

— Set arbitration phase bit rate and data phase bit rate

— Enable transmitter delay compensation

• Set Message RAM

• Set message ID filter configuration and element

• Set the configuration of Rx FIFO and Tx buffer

• Enter MCAN normal mode

• Transfer data

— Configure TX frame data and send

— Receive data

On the LPC54018 SDKs mcan_interrupt_transfer example, it uses the classical CAN nodes on bus by default. The data phase
bit rate setting needs the same with the arbitration phase bit rate setting. They should also comply classical CAN bus protocol.

But in the example of this document, it uses the CAN-FD nodes on bus. The CAN-FD arbitration phase bit rate is set to 1 Mbps
and the data phase bit rate is set to 5 Mbps. It must enable the bit rate switch and transmitter delay compensation features.

The follow sections introduce some key steps for using CAN-FD.

3.4 Config CAN-FD Bit Rate Switch
Enabling the CAN-FD Bit Rate Switch can increase the throughput. In the example, it calls the MCAN_SetBaudRate() function
to set arbitration phase bit rate and calls the MCAN_SetBaudRateFD() function to set data phase bit rate. The MCAN clock is set
to 60 MHz.

3.4.1 Set arbitration phase bit rate to 1 Mbps
As per the CAN specification, the nominal bit rate is the number of bits per second transmitted in the absence of resynchronization
by an ideal transmitter. The relationship between nominal bit rate and the nominal bit time is NOMINAL BIT TIME = 1 / NOMINAL
BIT RATE. So, if the arbitration phase bit rate is set to 1 Mbps, the arbitration phase bit time is 1µs.

The time quantum (t_q) is a fixed unit of time derived from the MCAN clock period. There exists a programmable prescaler with
integral values ranging from at least 1 to 32. Starting with the MCAN clock period, the t_q can have a length of

t_q = m * MCAN clock period = m / MCAN clock

with m the value of the prescaler.

In the MCAN_SetBaudRate() function, we need to define a variable whose type is mcan_timing_config_t for setting arbitration
phase bit time. The structure mcan_timing_config_t is defined as Fig 3.

NXP Semiconductors
Demonstration

How to Use CAN-FD to Transfer Data on LPC54018, Rev. 0, 23 March 2020
Application Note 4 / 7

Figure 3. MCAN protocol timing characteristic configuration structure

The prescaler m is equivalent to (preDivider + 1). The t_q can have a length of

t_q = (preDivider + 1) / 60 MHz = (preDivider + 1) / 60 (µs)

with the structure element preDivider.

The total number of t_q in an arbitration phase bit time can be programmed in the range of 4 to 385 time quanta. The length of

Arbitration phase bit time = MCAN_TIME_QUANTA_NUM_ARBIT * t_q.

We define a macro MCAN_TIME_QUANTA_NUM_ARBIT as 20 in the example. The arbitration phase bit time is 1 µs, t_q is 1/20
µs, preDivider is 2.

The macro

MCAN_TIME_QUANTA_NUM_ARBIT = 1 + (seg1 + 1) + (seg2 + 1)

where the structure elements seg1 and seg2 stands for phase buffer segment 1 and 2 minus one respectively. We set the element
seg1 to the value 13, and the element seg2 to 4 in the example. Calling the updated MCAN_SetBaudRate() function, we finish
setting the arbitration phase bit rate to 1 Mbps.

3.4.2 Set data phase bit rate to 5 Mbps
Setting the data phase bit rate is similar to setting the arbitration phase bit rate. The data phase bit rate is set in the
MCAN_SetBaudRateFD() function.

One of the differences is that the total number of t_q in a data phase bit time may be programmed in the range of 4 to 49 time
quanta.

In the example, we define a macro MCAN_TIME_QUANTA_NUM_DATA as 12 as the total number of t_q in a data phase bit time.
And the element seg1 is 7, the element seg2 is 2. The element preDivider is 4. Calling the updated MCAN_SetBaudRateFD()
function, we finish setting the data phase bit rate to 5 Mbps, which is the highest bit rate, that the onboard transceiver can support.

3.4.3 Enable Bit Rate Switch
Setting the MCAN CCCR register’s BRSE bit to 1 enables the Bit Rate Switch for CAN-FD. In this application note’s example,
control phase, data phase, and CRC phase of the CAN-FD frame are transmitted at the bit rate of 5 Mbps, while the other phases
of a CAN-FD frame are transmitted at the bit rate of 1 Mbps.

3.5 Config Transmitter Delay Compensation
In this application note’s example, it defines a function to enable the transmitter delay compensation for CAN-FD.

3.5.1 MCAN_SetTransmitterDelayCompensationFD
Set the TDC bit in the DBTP register to 1 to enable the transmitter delay compensation. The TDCO field in the TDCR register
sets the transmitter delay compensation offset

This function sets the second sample point at the middle of the mcan_rx bit time.

The transmitter delay compensation offset = MCAN_TIME_QUANTA_NUM_DATA / 2

NXP Semiconductors
Demonstration

How to Use CAN-FD to Transfer Data on LPC54018, Rev. 0, 23 March 2020
Application Note 5 / 7

where the macro MCAN_TIME_QUANTA_NUM_DATA is defined bysetting the data phase bit rate step.

3.6 Steps and results
On this CAN-FD demo, there are two nodes on the bus to transmit and receive data. One node is selected as A,and the another
is selected as B. Press any key on the node A's terminal console to trigger one-shot transmission. The node B receives this one-
shot transmission data and sends it back to node A. Node A receives the data and this one-shot transmission finish.

The basic steps are:

1. Hardware setup

• See section 3.1 for boards setup and CAN connection

2. Build and download

• Import this demo’s software package to the MCUXpresso IDE and build.

• Download the executable file using debugger.

3. Setup for UART terminal programs

• Check the COM number, which is simulated as LPC-LinkII in Device Manager, on PC.

• Open two UART terminal programs on PC and connect one evaluation board with one UART terminal program.
Configure the communication protocol as 115200 + 8 + N + 1.

4. Run

• Reset two evaluation boards by pressing the SW1(reset) button on each board. One evaluation board selects as node
A, another selects as node B. Press any key on the node A's terminal console to trigger one-shot transmission. The
message appears on the node A terminal is as shown in Figure 4 and the message appears on the node B terminal
is as shown in Figure 5.

Figure 4. Messages printed on the node A terminal

Figure 5. Messages printed on the node B terminal

NXP Semiconductors
Demonstration

How to Use CAN-FD to Transfer Data on LPC54018, Rev. 0, 23 March 2020
Application Note 6 / 7

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, UMEMS, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V.
All other product or service names are the property of their respective owners. AMBA, Arm,
Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,
DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,
SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro,
µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks
and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 23 March 2020
Document identifier: AN12799

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	How to Use CAN-FD to Transfer Data on LPC54018Rev. 0
	Contents
	1 Introduction
	2 CAN-FD
	2.1 Differences between CAN and CAN-FD
	2.2 Bit rate switch
	2.3 Transmitter delay compensation

	3 Demonstration
	3.1 Hardware environment
	3.2 Software environment
	3.3 Using CAN-FD steps overview
	3.4 Config CAN-FD Bit Rate Switch
	3.4.1 Set arbitration phase bit rate to 1 Mbps
	3.4.2 Set data phase bit rate to 5 Mbps
	3.4.3 Enable Bit Rate Switch

	3.5 Config Transmitter Delay Compensation
	3.5.1 MCAN_SetTransmitterDelayCompensationFD

	3.6 Steps and results

