AN12696 MIFARE SAM AV3 - For MIFARE DESFire Rev. 1.3 — 14 July 2020

521513

Application note COMPANY PUBLIC

Document information

Information	Content
Keywords	MIFARE SAM AV3, MF4SAM3, TDEA, AES, RSA, MIFARE DESFire EV2, MIFARE DESFire EV3
Abstract	This application note presents some examples of using MIFARE SAM AV3 for MIFARE DESFire in S-mode.

Revision history

Revision	Revision history						
Rev	Date	Description					
1.3	20200714	Added full EV2 Secure Messaging example					
1.2	20200512	MIFARE DESFire EV3 included					
1.1	20200108	AN number changed, security status changed into "Company Public"					
1.0	20190807	Initial version					

1 Introduction

MIFARE SAMs (Secure Application Module) have been designed to provide the secure storage of cryptographic keys and cryptographic functions for the terminals to access the MIFARE products¹ securely and to enable secure communication between terminals and host (backend).

1.1 Scope

This application note presents examples of using MIFARE SAM AV3 (referred to SAM in this document, if not otherwise mentioned) for MIFARE DESFire EV3 and previous versions. In this document, the SAM is used in S-mode (X interface is described in doc nr. 5219xx). There is a set of application note for MIFARE SAM AV3; each of them is addressing specific features. The list of application note is given in [4].

This application note is a supplement document for application development using MIFARE SAM AV3. Should there be any confusion please check MIFARE SAM AV3 data sheet [1]. Best use of this application note will be achieved by reading this specification [1] in advance.

Note: This application note does not replace any of the relevant data sheets, application notes or design guides.

In this document, the term "MIFARE DESFire card" refers to a MIFARE DESFire ICbased contactless card.

All examples in this document are relevant for all MIFARE DESFire EV3, MIFARE DESFire EV2 and MIFARE DESFire EV1 products, if not explicitly stated otherwise!

1.2 Abbreviation

Refer to Application note "MIFARE SAM AV3 – Quick Start up Guide" [4].

1.3 Examples presented in this document

The following symbols have been used to mention the operations in the examples:

- = Preparation of data by SAM, PICC or host.
- > Data sent by the host to SAM or PICC (if not mentioned, SAM).
- < Data Response from SAM or PICC (if not mentioned, SAM).

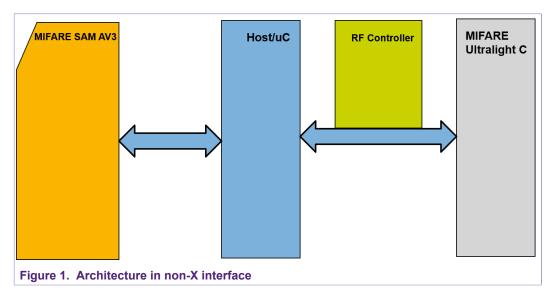
C-APDU:

	CLA	INS	P1	P2	Lc	Data (nc)	Le	
--	-----	-----	----	----	----	-----------	----	--

R-APDU:

Response data	SW1	SW2

Please note, that the numerical data are used solely as examples. They appear in the text in order to clarify the commands and command data.


AN12696

^{1 .} MIFARE Ultralight C, MIFARE Classic, MIFARE Classic EV1, MIFARE Plus, MIFARE Plus EV1, MIFARE Plus EV2, MIFARE DESFire EV1, MIFARE DESFire EV3

<u>Any data, values, cryptograms are expressed as hex string format if not otherwise</u> mentioned, e.g., 0x563412 in hex string format represented as "123456". Byte [0] = 0x12, Byte [1] = 0x34, Byte [2] = 0x56.

1.4 S interface

The host is managing the communication to SAM and MIFARE DESFire EV2.

2 Using MIFARE SAM AV3 for MIFARE DESFire

MIFARE SAM AV3 can be used to perform all the crypto and security features offered by MIFARE DESFire EV3, MIFARE DESFire EV2 and MIFARE DESFire EV1. If not otherwise stated, the examples are valid for all MIFARE DESFire versions.

2.1 Downloading the MIFARE DESFire keys to SAM from Host

Downloading of different keys is explained in [5]. The SAM key entry settings are different for different types of crypto used in MIFARE DESFire. The incorrect setting will result to authentication error. In the following table different options are shown:

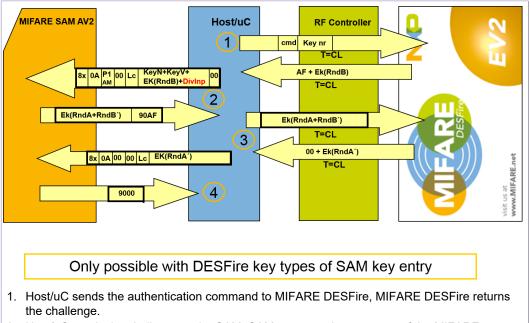

SAM Key entry setting	MIFARE Native TE	DESFire	MIFARE DESFire			MIFARE DESFire std. 3KTDEA key		MIFARE DESFire std. AES key	
Standard setting "S	ET"								
b0: Allow dumping session key.	Up to applicatio			o the on '0'/ '1'.	Up to applicatio	o the on '0'/ '1'.		Up to the application '0'/ '1'.	
b1: RFU must be set to 0.	"()'	"()'	"()'	"()'	
b2: Keep IV	"()'	،،	1'	"	1'	.,	1'	
b6b5b4b3: Key type	TDEA DESFire 4 ('000')		TDEA ISO 10116 (32-bit CRC, 8-byte MAC) ('110')		3TDEA ISO 10116 ('011')		AES 128 ('100')		
b7: PL Key	·0'		"(ʻ0'		·0'		ʻ0'	
b8: Host Auth Key for unlocking the LC	ʻ0'		,0,		ʻ0'		ʻ0'		
b9: Disable key entry	"()'	ʻ0'		'0'		ʻ0'		
b10: Lock Key	"()'	·0'		ʻ0'		·0'		
b11: Disable SAM_ ChangeKeyPICC	'0' in card personal ization / issuing machine SAMs.	'1' in check in/out terminal SAMs	'0' in card personal ization / issuing machine SAMs.	ʻ1' in check in/out terminal SAMs	'0' in card personal ization / issuing machine SAMs.	'1' in check in/out terminal SAMs	'0' in card personal ization / issuing machine SAMs.	ʻ1' in check in/out terminal SAMs	
b15b14b13b12	'0000'		·0000'		'0000'		ʻ0000'		
Extended setting "ExtSET"									
b2b1b0: Key class	'001' PICC Key								
b3: Allow dumping secret key. <u>Not</u> recommended to set.	'('0'		·0'		ʻ0'		ʻ0'	

Table 1. SAM Key Entry setting for different MIFARE DESFire Keys

MIFARE SAM AV3 - For MIFARE DESFire

SAM Key entry setting	MIFARE DESFire Native TDEA key	MIFARE DESFire std. TDEA key	MIFARE DESFire std. 3KTDEA key	MIFARE DESFire std. AES key
b4: Restricted for diversification. <u>Strongly</u> recommended to <u>use</u> .	'1'	'1'	'1'	'1'
b15b14b13b12b11 b10b9b8b7b6b5	'00000000000'	'00000000000'	'00000000000'	'00000000000'

2.2 Authenticating MIFARE DESFire using the SAM

The full authentication is managed by host microcontroller.

2. Host/uC sends the challenge to the SAM. SAM prepares the response of the MIFARE

- DESFire challenge and generates its own challenge.
- 3. Host/uC sends the response of SAM to MIFARE DESFire. MIFARE DESFire returns the response of the SAM challenge.
- 4. Host/uC sends the MIFARE DESFire response to the SAM for verification. SAM checks it and finally returns the status of the authentication.

Figure 2. MIFARE DESFire EV2 Authentication using SAM

2.2.1 **MIFARE DESFire Authentication, key type AES-128 (non-diversified key)**

This example applies for all MIFARE DESFire types that support EV1 secure messaging (MIFARE DESFire EV1 and above)

In this example key entry number 1 will be used, which has the following attributes

Key Version A = 01

Key Version B = 02

Key Version C = 03

AN12696

MIFARE SAM AV3 - For MIFARE DESFire

 $DF_AID = AE0102$

DF_KeyNo = 03

KeyNoCEK = 00

KeyVCEK = 00

RefNoKUC = FF

SET = 2400

DO NOT allow dump Session key

DO NOT allow crypto with secret key

Keep IV

Key type: AES 128

ExtSET = 01 (Diversification is not mandatory).

In this example, we use the Key Version "01" for authentication. The reference is to the SAM key entry number instead of DESFire key number.

Table 2. MIFARE DESFire EV2 AES Authentication (Non-Diversified key)

step	Indication		Data / Message	Comment
1	Send authentication command to DESFire	>	AA03	Authentication cmd AES and DESFire application key number.
2	Challenge from DESFire	<	AF90F3859EA795A43F3A32 144BAC2B9856	AF is the status byte and 16-byte Ek(RndB).
3	First part of the SAM_ AuthenticatePICC command	>	800A000012010190F3859E A795A43F3A32144BAC2B9 85600	P1 = 00; no key diversification, key selection is by key entry number. Data field is SAM key entry number, version number and Ek(RndB received in step 2).
4	Answer of the SAM	<	025CE60F614B27BEAFA60 FDF733E65F7ED6F4A4A8B 51B625D1C4ADC43BF0294 D90AF	Ek(RndA+RndB´) and status byte 90AF.
5	Answer of the SAM is sent to DESFire	>	AF025CE60F614B27BEAFA 60FDF733E65F7ED6F4A4A 8B51B625D1C4ADC43BF02 94D	AF is the cmd and Ek(RndA +RndB´).
6	Response of the DESFire	<	009B9080079A49F85FEF72 C800264BA4DC	00 is the status means that authentication is successful and Ek(RndA´).
7	Second part of the SAM_ AuthenticatePICC command	>	800A0000109B9080079A49F 85FEF72C800264BA4DC	Ek(RndA´) is sent to the SAM
8	Answer of the SAM	<	9000	SAM decides if the DESFire response is correct or not.

AN12696 Application note COMPANY PUBLIC

If the reference is to be made to the DESFire key number in step 3, Key selection by DESFire key number has to be chosen in P1. In case the DESFire Application (DF_AID = AE0102) has to be selected in SAM using SAM_SelectApplication before step 1. The Data field will then contain the DESFire key number (03) (see the next example) here instead of SAM key entry number 01.

2.2.2 MIFARE DESFire Authentication, key type AES-128 (diversified key)

This example applies for all MIFARE DESFire types that support EV1 secure messaging (MIFARE DESFire EV1 and above)

In this example key entry number 3 will be used, which has the following attributes

```
Key Version A = 01
Key Version B = 02
```

Key Version C = 03

DF AID = AE0102

DF KeyNo = 03

KeyNoCEK = 00

KeyVCEK = 00

RefNoKUC = FF

SET = 2400

DO NOT allow dump Session key

DO NOT allow crypto with secret key

Keep IV

Key type: AES 128

ExtSET = 01 (Diversification is not mandatory).

In this example, we use the Key Version "01" for authentication. The reference is to the DESFire key number instead of SAM key entry number.

Table 3. MIFARE DESFire EV1 AES Authentication (Diversified key)

step	Indication		Data / Message	Comment
1	Send authentication command to DESFire	>	AA03	Authentication cmd AES and DESFire application key number.
2	Challenge from DESFire	<	AFFEC675C728FCDED6C48 22FFE00A3E6F6	AF is the status byte and 16-byte Ek(RndB).
3	First part of the SAM_ AuthenticatePICC command	>	800A0300220301FEC675C7 28FCDED6C4822FFE00A3E 6F68804084561801D808804 084561801D8000	P1 = 03; key diversification, key selection is by DESFire key number. Data field is DESFire key number, version number, Ek(RndB received in step 2) and diversification input (8804084561801D808804084561 801D80).

AN12696

MIFARE SAM AV3 - For MIFARE DESFire

step	Indication		Data / Message	Comment
4	Answer of the SAM	<	14CD4EC79AAC3AF1AEF0 C2F4241E37C6723520FF28 CDF17BBDC9798EF59FAB DC90AF	Ek(RndA+RndB´) and status byte 90AF.
5	Answer of the SAM is sent to DESFire	>	AF14CD4EC79AAC3AF1AE F0C2F4241E37C6723520FF 28CDF17BBDC9798EF59FA BDC	AF is the cmd and Ek(RndA +RndB´).
6	Response of the DESFire	<	0036E87F56560FA0202F6D 33EA94DA65C7	00 is the status means that authentication is successful and Ek(RndA´).
7	Second part of the SAM_ AuthenticatePICC command	>	800A00001036E87F56560F A0202F6D33EA94DA65C7	Ek(RndA´) is sent to the SAM
8	Answer of the SAM	<	9000	SAM decides if the DESFire response is correct or not.

2.2.3 MIFARE DESFire Authentication, key type 3KTDES (non-diversified key)

This example applies for all MIFARE DESFire types that support EV1 secure messaging (MIFARE DESFire EV1 and above)

In this example key entry number 2 will be used, which has the following attributes

Key Version A = 05 Key Version B = 06 DF_AID = 3D0102 DF_KeyNo = 04 KeyNoCEK = 00 KeyVCEK = 00 RefNoKUC = FF SET = 1C00 DO NOT allow dump Session key DO NOT allow crypto with secret key Keep IV Key type: 3KTDES ISO 10116

ExtSET = 01 (Diversification is not mandatory).

In this example, we use the Key Version "05" for authentication. The reference is to the SAM key entry number instead of DESFire key number.

MIFARE SAM AV3 - For MIFARE DESFire

step	Indication		Data / Message	Comment
1	Send authentication command to DESFire	>	1A04	Authentication cmd "standard 3DES" and DESFire application key number.
2	Challenge from DESFire	<	AFA0B9517BACC35E5B7A6 AAEDA18116B5E	AF is the status byte and 16-byte Ek(RndB).
3	First part of the SAM_ AuthenticatePICC command	>	800A0000120205A0B9517B ACC35E5B7A6AAEDA18116 B5E00	P1 = 00; no key diversification, key selection is by key entry number. Data field is SAM key entry number, version number and Ek(RndB received in step 2).
4	Answer of the SAM	<	7B89FB9EFDE0EEA79B09F CA72F40D291640E08DBD5 6374023A7D1D626C8AF261 90AF	Ek(RndA+RndB´) and status byte 90AF.
5	Answer of the SAM is sent to DESFire	>	AF7B89FB9EFDE0EEA79B0 9FCA72F40D291640E08DB D56374023A7D1D626C8AF 261	AF is the cmd and Ek(RndA +RndB´).
6	Response of the DESFire	<	00C4580DB85C8F8F0CA7E 981671AA0C12C	00 is the status means that authentication is successful and Ek(RndA´).
7	Second part of the SAM_ AuthenticatePICC command	>	800A000010C4580DB85C8F 8F0CA7E981671AA0C12C	Ek(RndA´) is sent to the SAM
8	Answer of the SAM	<	9000	SAM decides if the DESFire response is correct or not.

Table 4. MIFARE DESFire EV2 3KTDES Authentication (Non-Diversified key)

2.2.4 MIFARE DESFire Authentication - AuthenticateFirst

In this example, the MIFARE DESFire AuthenticateFirst command will be used. It is exclusive to MIFARE DESFire EV2 and MIFARE DESFire EV3.

Key Version A = 01 Key Version B = 02 Key Version C = 03 DF_AID = AE0102 DF_KeyNo = 03 KeyNoCEK = 00 KeyVCEK = 00 RefNoKUC = FF SET = 2400 DO NOT allow dump Session key

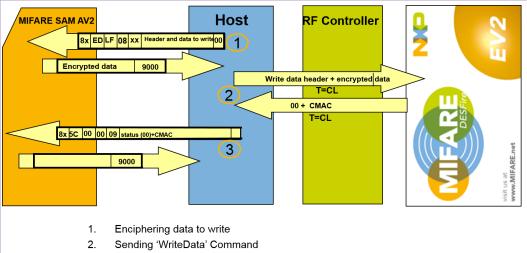
DO NOT allow crypto with secret key

Key type: AES 128

ExtSET = 01 (Diversification is not mandatory).

In this example, we use the Key Entry "06" and KeyVersion "01" for authentication. The reference is to the SAM key entry number instead of DESFire key number.

 Table 5. MIFARE DESFire EV2 AES Authentication (Non-Diversified key)


step	Indication		Data / Message	Comment
1	Send authentication command to DESFire	>	710000	AuthenticateFirst command
2	Challenge from DESFire	<	AF3C12D5A104C5E63102D 39D60C5D1DBD3	AF is the status byte and 16-byte PDChal
3	First part of the SAM_ AuthenticatePICC command	>	800A8000130601003C12D5 A104C5E63102D39D60C5D 1DBD300	P1 = 80; EVx authentication Type, AuthenticateFirst, no key diversification, key selection is by key entry number. Data field is SAM key entry number, version number and Ek(RndB received in step 2).
4	Answer of the SAM	<	43AAF5D75D40352FFD919 4DE07026728C36839CC3C A4DF4EEA66DD4DBD1083 6390AF	PCDChalResp and status byte 90AF.
5	Answer of the SAM is sent to DESFire	>	AF43AAF5D75D40352FFD9 194DE07026728C36839CC 3CA4DF4EEA66DD4DBD10 8363	AF is the cmd and PCDChalResp.
6	Response of the DESFire	<	0029B033E337CD4FD21FC 3E0B677D3D06FE62B689B 540BC9767A2CFA7C00F09 770	00 is the status means that authentication is successful and PDResp.
7	Second part of the SAM_ AuthenticatePICC command	>	800A00002029B033E337CD 4FD21FC3E0B677D3D06FE 62B689B540BC9767A2CFA7 C00F0977000	PDResp is sent to the SAM
8	Answer of the SAM	<	000000000000000000000000 09000	SAM decides if the DESFire response is correct or not and answers with the PICC Capabilities and 9000

For AuthenticateNonFirst, only Bit 6 from P1 of step 3 must be set to 1, resulting in 0xC0 for P1.

2.3 Encrypted Write to data file using SAM

All command flow is managed by host microcontroller.

MIFARE SAM AV3 - For MIFARE DESFire

- 3. Verifying CMAC received from DESFire
- 1. Encipher the data to be written using SAM.
- 2. Send the encrypted data to DESFire.
- 3. Verify CMAC returned by DESFire using SAM. For DESFire Native 3DES mode, this step is not required.
- Figure 3. Encrypted write data file using SAM

2.3.1 Encrypted Write to Data file using SAM, 3KTDES mode

DESFire application is authenticated using 3KTDES mode.

File Id = 01;

Offset where to write = 000000;

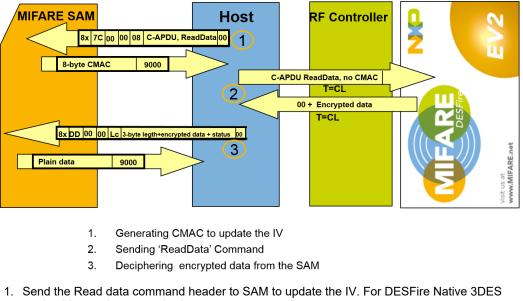
No of bytes to write = 0B0000 ;(11 byte to write).

Data = 0102030405060708091011.

File communication type = Encrypted.

Table 6. Write data file encrypted using SAM, 3KTDES mode

step	Indication		Data / Message	Comment
1	Send data to SAM for encryption	>	80ED0008133D010000000 B000001020304050607080 9101100	P2 = 08; means the encryption starts from 8 th byte of the data in data field (count from 0th). The header of write data cmd = 3D010000003B0000.
2	Encrypted data	<	DBC715E2948F68C4BDAC 454B8CE1C4149000	SAM encrypts the data using the session key. It inserts CRC32 and padding before encryption.
3	Send write command to DESFire	>	3D010000000B0000DBC71 5E2948F68C4BDAC454B8 CE1C414	Header and encrypted data.
4	DESFire answer	<	00511652BFFAB9680A	Status byte 00 and CMAC
5	Verify CMAC using SAM	>	805C00000900511652BFFA B9680A	P2 = 00, means the whole CMAC will be verified.


AN12696 Application note COMPANY PUBLIC

ste	эp	Indication		Data / Message	Comment
6	;	SAM confirms	<	9000	

- For AES mode: the write steps are similar.
- For DESFire Native TDES mode: In step 1 the header is not required to add in the data field (C-APDU >80ED00000B0102030405060708091011 00), step 5 and 6 are not required.

2.4 Encrypted Read from data file using SAM

All command flow is managed by host microcontroller.

- mode, this step is not required.
- 2. Send Read data command to DESFire, DESFire replies the encrypted data.
- 3. Decrypt data using SAM.

Figure 4. Encrypted Read from a data file using SAM

2.4.1 Encrypted Read from Data file using SAM, 3KTDES mode

DESFire application is authenticated using 3KTDES mode.

File Id = 01;

Offset from where to Read = 000000;

No of bytes to be read = 0B0000 ;(11 bytes).

File communication type = Encrypted.

Table 7. Read data file encrypted using SAM, 3KTDES mode

s	step	Indication		Data / Message	Comment
	1	Send data to SAM for generating CMAC	>	807C000008BD010000000 B000000	CMAC is generated to update the SAM IV. The read command header is the data field same will be sent to DESFire in step 3.

AN12696 Application note COMPANY PUBLIC © NXP B.V. 2020. All rights reserved.

MIFARE SAM AV3 - For MIFARE DESFire

step	Indication		Data / Message	Comment
2	Generated CMAC from SAM	<	176B5374BE4DF4699000	CMAC is not sent to DESFire with read command.
3	Send read command to DESFire	>	BD01000000B0000	Read command from file number 1 from offset 000000 and 0B0000 bytes to read.
4	DESFire answer	<	006D898674E4655D031CB 76D0C0FAF6F50	1-byte status and 16-byte encrypted data. Which includes 11 bytes user data, 4-byte CRC32 and padding?
5	The encrypted data is sent to SAM for deciphering.	>	80DD0000140B00006D898 674E4655D031CB76D0C0F AF6F50 00 00	Status byte is appended in the end of the encrypted data in the data filed.
6	SAM replies the user data	<	0102030405060708091011 9000	0102030405060708091011 – 11- byte user data and status word.

• In AES mode: the read data command is similar.

• In DESFire native 3DES mode: step 1 and 2, and adding status byte in step 5 are not required.

2.5 Write data (C)MAC communication

The commands flow is similar as described in 2.4. In the following, one example is shown.

2.5.1 CMACed Write to Data file using SAM, AES mode

DESFire application is authenticated using AES mode.

File Id = 14;

Offset where to write = 0A0000;

No of bytes to write = 0E0000; (14-byte to write).

Data = 112233445566778899aabbccddee.

File communication type = (C)MAC.

Table 8. Write data	file CMACed	AES mode
---------------------	-------------	----------

step	Indication		Data / Message	Comment
1	Calculate CMAC from SAM	>	807C0000163D140A00000 E000011223344556677889 9AABBCCDDEE00	Data field contains header and data to be written.
2	CMAC is returned by SAM	<	9C47E352194D48689000	CMAC and status word.
3	Write command is sent to DESFire together with CMAC	>	3D140A00000E0000112233 445566778899AABBCCDD EE9C47E352194D4868	
4	Answer of DESFire	<	003F16CACD362B14D9	1-byte status "00"and CAMC.

MIFARE SAM AV3 - For MIFARE DESFire

step	Indication		Data / Message	Comment
5	The status and CMAC are sent to SAM for verification	>	805C000009003F16CACD3 62B14D9	
6	SAM confirms	<	9000	CMAC received from DESFire is ok.

• For standard 3DES mode: the write steps are similar.

• For DESFire Native 3DES Mode: in step 1 adding the header, step 5 and step 6 are not required.

2.6 Read data (C)MAC communication

The commands flow is similar to that described in 2.4. In the following, one example is provided.

2.6.1 MACed Read from Data file using SAM, AES mode

DESFire application is authenticated using AES mode.

File Id = 14;

Offset where to read = 0A0000;

No of bytes to read = 0E0000; (14-byte).

File communication type = (C)MAC.

Table 9. Read data file CMAC communication AES mode

step	Indication		Data / Message	Comment
1	Read command is sent to SAM for CMAC generation	>	807C000008BD140A00000 E000000	CMAC is generated to update the init vector, but won't be sent to DESFire.
2	CMAC from SAM	<	CCC44BC88134433D9000	8-byte CMAC and status
3	Read command is sent to DESFire	>	BD140A00000E0000	No CMAC only read command with parameters.
4	Data together with CMAC from DESFire	<	00112233445566778899AA BBCCDDEE75CC1B0B072 B5A4E	First byte is the status and last 8- byte is the CAMC.
5	Data is sent to SAM for CMAC verification	>	805C000017112233445566 778899AABBCCDDEE0075 CC1B0B072B5A4E	Status is appended after the data and before the CMAC.
6	SAM response	<	9000	SAM confirms the CMAC.

• For standard 3DES mode: the read steps are similar.

• For DESFire Native 3DES Mode: step 1, step 2 and adding status byte in step 5 are not required.

2.7 Changing MIFARE DESFire Key using MIFARE SAM AV3

MIFARE SAM AV3 supports the functionality of changing all keys in the MIFARE DESFire, card master key (key number 0 at card level) and application keys (key number 0 up to 13 in applications). Before changing the key, MIFARE DESFire card or application must be authenticated using the correct key using SAM.

2.7.1 Changing DESFire Card Master Key TDES native to AES

In this example, MIFARE DESFire EV2 card crypto type and key are changed to AES mode from DESFire native mode.

The old key is DESFire native key SET = "0000", ExtSET = "01"

The new key is AES 128 key SET = "2400", ExtSET = "01"

Table 10. SAM_ChangeKeyPICC for changing card master key

step	Indication		Data / Message	Comment				
	Authentication using SAM with a key entry of DESFire native type and PICC class.							
1	SAM_ ChangeKeyPICC C-APDU to SAM	>	80C4011004020003 0000	 MIFARE DESFire current PICC master key SAM key entry nr. 02 and version 00. MIFARE DESFire new PICC = SAM key entry nr. 02 and version 00. b0 of P1 is set as it is case 2, see detail in [9], b4 of P2 is set as the card master key is changed. 				
2	SAM_ ChangeKeyPICC R-APDU to SAM	<	DDFBBC0092D4BB4 20931F67829D2386 6E5DE3D982CD0DF C09000	The cryptogram for sending to the MIFARE DESFire.				
3	Change key command to MIFARE DESFire	>	C480DDFBBC0092D 4BB420931F67829D 23866E5DE3D982C D0DFC0	The key number is 80, as the new card crypto will be AES.				
4	MIFARE DESFire response	<	00	The key has been changed successfully.				

2.7.2 Changing DESFire Card Master Key AES to AES

In this example MIFARE DESFire EV2 card master key is changed, the crypto remains same AES.

The current key is AES 128 key SET = "2400", ExtSET = "01"

The new key is AES 128 key SET = "2400", ExtSET = "01"

Table 11. SAM_ChangeKeyPICC for changing card master key

step	Indication		Data / Message	Comment			
	Authentication using SAM with a key entry of AES type and PICC class.						

MIFARE SAM AV3 - For MIFARE DESFire

step	Indication		Data / Message	Comment
1	SAM_ ChangeKeyPICC C-APDU to SAM	>	80C4011004030003 0100	 MIFARE DESFire current PICC master key SAM key entry nr. 03 and version 00. MIFARE DESFire new PICC = SAM key entry nr. 03 and version 01. b0 of P1 is set as it is case 2, see detail in [9], b4 of P2 is set as the card master key is changed.
2	SAM_ ChangeKeyPICC R-APDU to SAM	<	8C3DDB802614AA1 5E93998FD00303B0 5C8B1D86AC99CE5 06DCDB36D10C1D8 2659000	The cryptogram for sending to the MIFARE DESFire.
3	Change key command to MIFARE DESFire	>	C4808C3DDB80261 4AA15E93998FD003 03B05C8B1D86AC9 9CE506DCDB36D10 C1D8265	The key number is 80, as the card crypto is AES.
4	MIFARE DESFire response	<	00	The key has been changed successfully.

2.7.3 Changing MIFARE DESFire Application Keys

MIFARE DESFire application keys can be changed using MIFARE SAM AV3. In the following, one example is shown.

The current key is AES 128 key SET = "2400", ExtSET = "01"

The new key is AES 128 key SET = "2400", ExtSET = "01"

Application is authenticated using application change-key key using SAM.

Table 12.	Change	application	key	number 1	using	SAM
-----------	--------	-------------	-----	----------	-------	-----

step	Indication		Data / Message	Comment
1	SAM_ ChangeKeyPICC C-APDU to SAM	>	80C422000B03000301041D 7461801D8000	P1 = 22; Application key case 1 see detail in [9]. New key will be diversified using CMAC-based key diversification. DivInp = 041D7461801D80 (7-byte UID of MIFARE DESFire). P2 = 0x01; key number 0x01 will be changed.
2	SAM_ ChangeKeyPICC R-APDU to SAM	<	FFBE73AAE8E2DBE7A246 395F46DCFAA4E504A0FC C288FA7DAE2A3E5E71A9 05359000	Cryptogram for changing key
3	Send change key command to DESFire	>	C401FFBE73AAE8E2DBE7 A246395F46DCFAA4E504A 0FCC288FA7DAE2A3E5E7 1A90535	DESFire change key command for key number 01.
4	Response of DESFire card	<	00DA03ABEA752659CE	Status "00" and CMAC.

AN12696 Application note COMPANY PUBLIC

17 / 34

MIFARE SAM AV3 - For MIFARE DESFire

step	Indication		Data / Message	Comment
5	Verify CMAC using SAM	>	805C00000900DA03ABEA7 52659CE	Status and CMAC are sent to SAM.
6	SAM response	<	9000	CMAC is correct.

2.7.4 Changing MIFARE DESFire Application Master Key

MIFARE DESFire application keys can be changed using MIFARE SAM AV3. In the following, one example is shown.

The current key is AES 128 key SET = "2400", ExtSET = "01"

The new key is AES 128 key SET = "2400", ExtSET = "01"

Application is authenticated using application master key (key nr. 0) using SAM.

step	Indication		Data / Message	Comment
1	SAM_ ChangeKeyPICC C-APDU to SAM	>	80C423000B03000301041D 7461801D8000	P1 = 23; case 2, see detail in [9]. New will be diversified using the CMAC-based key diversification. DivInp = 041D7461801D80 (7-byte UID of MIFARE DESFire). P2 = 0x00; key number 0x00 will be changed.
2	SAM_ ChangeKeyPICC R-APDU to SAM	<	B28DB23B8259B1A65CF2B D0B940C8FBE4D91BD4A0 2187F52D132F0E95D3D12 159000	Cryptogram for changing key
3	Send change key command to DESFire	>	C400B28DB23B8259B1A65 CF2BD0B940C8FBE4D91B D4A02187F52D132F0E95D 3D1215	DESFire change key command for key number 00.
4	Response of DESFire card	<	00	Status "00" and CMAC.

Table 13. Change application master key using SAM

2.8 Full Transaction example using EV2 Secure Messaging

Following is an example of a full transaction using EV2 Secure Messaging, demonstrating the use of SAM_Apply_SM / SAM_Remove_SM commands. The transaction looks like the following:

- 1. AuthenticateFirst (CardKey 0x01)
- 2. ReadData (CommMode.Full)
- 3. GetValue (CommMode.Plain)
- 4. AuthenticateFirst (CardKey 0x02)
- 5. WriteRecord (CommMode.Full)
- 6. Debit (CommMode.Full)
- 7. CommitTranscation

The example assumes to have a card with an application containing a StdDataFile, a RecordFile and a ValueFile. Key number 0x01 is used for read access to those files, key

AN12696
Application note
COMPANY PUBLIC

MIFARE SAM AV3 - For MIFARE DESFire

number 0x02 is used for writing. CardKey number 0x00(Application Master Key) is not used in this example.

The KeyEntry used in SAM AV3 is number 0x02, which is configured as a PICC Key. The plain key values are

The key versions represent the corresponding MIFARE DESFire card key number. No other special setting is needed for this key entry.

2.8.1 AuthenticateFirst with CardKey 0x01

This example shows the second authentication with CardKey Number **0x01** is used, which corresponds to SAM AV3 KeyEntry 0x02 Version **0x01**. Still, AuthenticateFirst command is used.

step	Indication		Data / Message	Comment
1	Send AuthenticateFirst to PICC	>	710100	AuthenticateFirst with KeyNumber 0x01
2	Receive the challenge from MIFARE DESFire	<	AFD05950B359032E23D36 E53418ECF5D26	StatusByte (0xAF) + 16 bytes challenge
3	Send SAM_ AuthenticatePICC command	>	800A800013020100D05950 B359032E23D36E53418EC F5D2600	SAM_AuthenticatePICC, P1 = 0x80 (EVx authentication, no key diversification), P2 = 0x00, data field consists of key number, key version, AuthMode (EV2) and the 16 byte challenge
4	Receive data to be provided to the PICC	<	6EFC56347B9EABBAA565 EEE45E30B19B36849336C 40104F926AC8BBCE0F35C D490AF	SAM response, data field to provide to MIFARE DESFire + status word 90AF
5	Send data from SAM AV3 to PICC	>	AF6EFC56347B9EABBAA5 65EEE45E30B19B3684933 6C40104F926AC8BBCE0F 35CD4	Send data field from SAM to DESFire card
6	Receive PICC response	<	0026AA64F56B37D8C9251 85F3D4CA34785DBF1D6A BE6AE60560B713CE59146 A8C1	Response from DESFire card, status byte 0x00 means success, 32 bytes PICC response for the SAM to verify
7	Provide PICC response to SAM AV3	>	800A00002026AA64F56B3 7D8C925185F3D4CA34785 DBF1D6ABE6AE60560B71 3CE59146A8C100	Forward data from DESFire to SAM AV3 using again the SAM_ AuthenticatePICC command, but with P1 and P2 = 0x00
8	Receive Capabilities and status word	<	00000000000000000000000000000000000000	SAM AV3 sends back the decrypted capabilities + status word 9000, meaning success

Table 14. Example

Now, new session keys are created and the counters are reset.

2.8.2 Read data file

After a successful authentication, the standard data file can be read in CommMode.Full (fully enciphered + CMAC). For this purpose, the SAM AV3 provides the SAM_Apply_SM and SAM_Remove_SM commands. Those commands automatically prepare dataframes that can be transmitted to, and decrypt dataframes coming from a MIFARE DESFire PICC, given the CommMode.

DataFile to reader: 0x00

Offset: 0x000000

Length: 0x0F0000 (15 byte)

Table 15.	Example
-----------	---------

step	Indication		Data / Message	Comment
1	SAM_Apply_SM	>	80AE001008BD000000000 F000000	The SAM_Apply_SM command creates the CMAC for the given command to send. The command alone is "BD00000000F000000". As CommMode, given in P2 = 0x10, only CommMode.MAC is used, as there is no data to encrypt.
2	CMAC of command input	<	C0B3B4A1C4F426D99000	The SAM replies with the CMAC.
3	Send ReadData command + CMAC to DESFire	>	BD000000000F0000C0B3B 4A1C4F426D9	Command + CMAC are transmitted to the DESFire PICC.
4	Encrypted Data + CMAC	<	0037F632279295788522D9 A13720073AF6831EB752A CC51BD0	Status byte (0x00) + 16 byte encrypted data + 8 Byte CMAC
5	Send the received cryptogram to SAM AV3	>	80AD0030190037F6322792 95788522D9A13720073AF6 831EB752ACC51BD000	The whole received data including the status byte are transmitted to SAM AV3. The CommMode in P2 is now CommMode.Full (0x30).
6	Decrypted data	<	44454D4F496E7374616C6 C6174696F9000	The SAM replies with the decrypted data (In this case, it is the hex representation of the ACSII text "DEMOInstallatio" + the status word 0x9000.)

2.8.3 GetValue

The application on the DESFire in this case allows "Free Get Value", this means, the GetValue command needs to be sent in CommMode.Plain.

The ValueFile is the file number 0x01.

MIFARE SAM AV3 - For MIFARE DESFire

Table 16. Example						
step	Indication		Data / Message	Comment		
1	SAM_Apply_SM	>	80AE0000010100	This command is needed to maintain internal transaction counters (R_Ctr, W_Ctr) in the SAM AV3 in sync with the PICC. The data field in the command only contains the data field of the DESFire command (in this case 0x01), P2 =0x00 means CommMode.Plain		
2	Status word	<	9000	The status word of the SAM. No data is returned, as the command will be sent in plain		
3	Command sent to DESFire PICC	>	6C01	Get ValueCommand sent to DESFire		
4	Response in plain	<	000900000	DESFire Response. The value in the value file is 0x09000000 (4 byte LSB first)		

2.8.4 AuthenticateFirst with CardKey 0x02

This example shows the second authentication with CardKey Number **0x02** is used, which corresponds to SAM AV3 KeyEntry 0x02 Version **0x02**. Still, AuthenticateFirst command is used.

Table	able 17. Example						
step	Indication		Data / Message	Comment			
1	Send AuthenticateFirst to PICC	>	710200	AuthenticateFirst with KeyNumber 0x02			
2	Receive the challenge from MIFARE DESFire	<	AF171CDB5D9309280691B 01E48243A6AC2	StatusByte (0xAF) + 16 bytes challenge			
3	Send SAM_ AuthenticatePICC command	>	800A800013020200171CD B5D9309280691B01E4824 3A6AC200	SAM_AuthenticatePICC, P1 = 0x80 (EVx authentication, no key diversification), P2 = 0x00, data field consists of key number, key version, AuthMode (EV2) and the 16 byte challenge			
4	Receive data to be provided to the PICC	<	AE63C37DEEB1A7DAF206 EBD1597D10E4C2C0F3BA 40892839C3E535DD88BA0 7E490AF	SAM response, data field to provide to MIFARE DESFire + status word 90AF			
5	Send data from SAM AV3 to PICC	>	AFAE63C37DEEB1A7DAF2 06EBD1597D10E4C2C0F3 BA40892839C3E535DD88B A07E4	Send data field from SAM to DESFire card			
6	Receive PICC response	<	008CCAC2A7D5339AE25E F8907EBFDF58422FF0B5B 898328C7ED2F0BE1C3099 09FD	Response from DESFire card, status byte 0x00 means success, 32 bytes PICC response for the SAM to verify			

Table 17. Example

step	Indication		Data / Message	Comment
7	Provide PICC response to SAM AV3	>	800A0000208CCAC2A7D53 39AE25EF8907EBFDF5842 2FF0B5B898328C7ED2F0B E1C309909FD00	Forward data from DESFire to SAM AV3 using again the SAM_ AuthenticatePICC command, but with P1 and P2 = 0x00
8	Receive Capabilities and status word	<	00000000000000000000000000000000000000	SAM AV3 sends back the decrypted capabilities + status word 9000, meaning success

Now, new session keys are created and the counters are reset.

2.8.5 WriteRecord

A new record is added to the RecordFile on the MIFARE DESFire PICC.

FileNumber: 0x02

Record size: 32 byte

CommMode.Full

RecordData:

00112233445566778899AABBCCDDEEFF00112233445566778899AABBCCDDEEFF

Table 18. Example

step	Indication		Data / Message	Comment
1	SAM_Apply_SM	>	80AE003029083B0200000 200000011223344556677 8899AABBCCDDEEFF0011 2233445566778899AABBC CDDEEFF00	SAM_Apply_SM command, taking the whole DESFire command in plain, with an offset byte in front. The offset is the number of bytes belonging to the DESFire command header (here: 0x08 [command code + file number + 3 byte file offset + 3 byte length])
2	Frame to be sent to DESFire PICC	<	2F2F06EA824B39CA2B1A3 8FD284EE8996AF35FC971 4AD09CD1AB21D5D72C2D A3EFF1D0EFB2ECC94F60 F2CF5ADE35E55D3ED273 3DBA9CC5E99000	Encrypted command data + CMAC
3	Sent to DESFire	>	3B020000002000002F2F06 EA824B39CA2B1A38FD284 EE8996AF35FC9714AD09C D1AB21D5D72C2DA3EFF1 D0EFB2ECC94F60F2CF5A DE35E55D3ED2733D	Command header + encrypted data + CMAC to be sent to DESFire PICC. The comple frame is longer as the configured receive buffer of the DESFire, therefore chaining is needed.
4	Status Byte: Chaining	<	AF	status code: AF indicates that the DESFire PICC is ready for the next frame
5	Second part	>	AFBA9CC5E9	Second part of the command frame
6	Status byte + CMAC	<	009BA3CB8F59EADE44	status byte 0x00 + CMAC

MIFARE SAM AV3 - For MIFARE DESFire

step	Indication		Data / Message	Comment
7	SAM_Remove_ SM	>	80AD001009009BA3CB8F5 9EADE4400	SAM_Remove_SM command. As there is no data to decrypt, P2 = 0x01 (CommMode.MAC), the data field contains the status byte + 8 byte CMAC
8	Status word	<	9000	Status word of the SAM, indicating success

2.8.6 Debit

The debit command reduces the value in the value file by a given amount.

CommMode.Full

Value: 0x01000000 (4 byte LSB first)

Table	Table 19. Example						
step	Indication		Data / Message	Comment			
1	SAM_Apply_SM	>	80AE00300702DC0101000 00000	SAM_Apply_SM command. The command will be sent in CommMode.Full (P2 = 0x30). The play load of this command is the length of the DESFire command header (0x02), the DESFire command header itself (0xDC01, command code 0xDC + File number of the ValueFile 0x01) and the value to be debited.			
2	Frame to be sent to DESFire PICC	<	C68F8F5E8D13CDF808353 DC20C8353830D47153855 B7B7439000	The encrypted frame to be sent to DESFire PICC			
3	Sent to DESFire	>	DC01C68F8F5E8D13CDF8 08353DC20C8353830D471 53855B7B743	The command header + the encrypted frame is sent to the DESFire PICC			
4	Status byte + CMAC	<	0013260828D0EF08E3	Status byte + CMAC			
5	SAM_Remove_ SM	>	80AD0010090013260828D0 EF08E300	SAM_Remove_SM command. As there is no data to decrypt, P2 = 0x01 (CommMode.MAC), the data field contains the status byte + 8 byte CMAC			
6	Status word	<	9000	Status word of the SAM, indicating success			

2.8.7 CommitTransaction

The last command in this transaction commits the changes to the MIFARE DESFire PICC.

The command itself is sent in CommMode.MAC.

MIFARE SAM AV3 - For MIFARE DESFire

Table	Table 20. Example					
step	Indication		Data / Message	Comment		
1	SAM_Apply_SM	>	80AE001001C700	SAM_Apply_SM command with P2 = 0x01 for CommMode.MAC. Data field of the command is the CommitTransaction command code 0xC7		
2	CMAC for command	<	066E6991B44751BA9000	8 byte CMAC + status word		
3	CommitTransaction + CMAC	ן א	C7066E6991B44751BA	Frame to be sent to DESFire PICC: command code + CMAC		
4	Status byte + CMAC	<	00A67A477A0EF1D152	Response: Status byte + CMAC		
5	SAM_Remove_ SM	>	80AD00100900A67A477A0 EF1D15200	SAM_Remove_SM command. As there is no data to decrypt, P2 = 0x01 (CommMode.MAC), the data field contains the status byte + 8 byte CMAC		
6	Status word	<	9000	Status word of the SAM, indicating success		

2.9 Delegated Application Management

This section shows two examples of how to create delegated applications and change the DAM Keys on a DESFire EV2 Card. **This feature is exclusive for MIFARE DESFire EV2 and MIFARE DESFire EV3**. Details about how delegated applications work can be found in the MIFARE DESFire EV2 <u>datasheet</u> or in <u>features and hints</u> respectively in the MIFARE DESFire EV3 <u>datasheet</u> and <u>features and hints</u>.

2.9.1 Card issuer

The delegated application feature allows card issuers to sell/rent space on their cards to 3rd parties. Therefore, the card issuer needs to personalize the card in a way that allows a card user to install applications from 3rd parties, so called application provides, on the card. Therefore, some information needs to be secretly shared between the card issuer and the application provider, in order to allow the application to be installed in an appropriate slot on the card.

The following example gives an idea on how a MIFARE SAM AV3 can be used to handle the keys and data on the card issuer side.

2.9.2 Card issuer - example

In this example, a possible way to use SAM AV3 in combination with the delegated application feature on DESFire is shown. The example is intended to make use of all the possibilities on SAM AV3. It is not mandatory to use it exactly like this in a real application(for example, the DAM Default Key does not need to be stored in a SAM)

The structure in the SAM for this example shall look like the following (all Keys key type AES128):

MIFARE SAM AV3 - For MIFARE DESFire

Key No	intended use	Key V 0x00	Key V 0x01	comment
0x01	PICC Keys	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	АААААААААААААА ААААААААААААААА ААААА	Key version 0x00: PICC MasterKey Key version 0x01: DAMAuthKey
0x02	DAM Keys, Key Class PICC	1111111111111111111 1111111111111111	222222222222222222 2222222222222222222	Key version 0x00: DAMMACKey Key version 0x01: DAMEncKey used only to activate DAM Keys on the MIFARE DESFire EV2
0x03	DAM Default Key AES192	000000000000000000 000000000000000000 0000	-	DAM default Key, used to initialize the Application key(s). Export secret needs to be allowed
0x04	DAM Keys, Key Class OfflineCrypto	see KeyNo 0x02 V 0x00	see KeyNo 0x02 V 0x01	Key version 0x00: DAMMACKey Key version 0x01: DAMEncKey same Key values as in KeyNo 0x02, but different Key Class. Those Keys can be used for OfflineCrypto purposes(generating the DAMMAC)

First of all, the DAM Keys on the MIFARE DESFire EV2/EV3 card need to be activated. This happens with a ChangeKey Command, targeting the DAMAuthKey(0x10), DAMMACKey(0x11) and DAMEncKey(0x12). For this, the card needs to be authenticated with the PICC Master Key (KeyNo 0x00, KeyV 0x00). This is not shown here explicitly, see **DESFire EV2** Authentication.

Additionally to above mentioned Keys, th "old Key" for the DAM Keys is needed for the ChangeKey command. for a fresh card, this key is all zeros. The examples use the third key entry in KeyNo 0x01, with KeyVersion 0x02.

Note: Due to reasons regarding backwards compatibility, the ChangeKeyEV2 command needs to be used, otherwise, the card key number 0x1y cannot be specified.

Table 22. Change DAM Keys

step	Indication		Data / Message	Comment
1	ChangeKey Command to SAM AV3	>	80C4002006001001020101 00	Change Key EV2, KeySett number 0x00, card key number 0x10, old key no 0x01, version 0x02(all zeros AES128 key), new key number 0x01, version 0x01 (DAMAuthKey)

MIFARE SAM AV3 - For MIFARE DESFire

step	Indication		Data / Message	Comment
2	Response from SAM AV3	<	1789A708DAD267494A6A5 A2C09DE9A4258C9DCB5A 766BDE2DD432689F82981 F31156CE173A7819589000	cryptogram + SW1SW2
3	Send to MIFARE DESFire EV2	>	C600101789A708DAD2674 94A6A5A2C09DE9A4258C 9DCB5A766BDE2DD43268 9F82981F31156CE173A78 1958	ChangeKeyEV2 command, targeting KeySett 0x00, KeyNo 0x10
4	response from MIFARE DESFire EV2	<	00A1EDB5BFD9E40AAE	00 + MAC
5	SAM_remove_ SM	>	80AD00100900A1EDB5BF D9E40AAE00	removes secure messaging
6	response	<	9000	success

Repeat this also for the Card Keys 0x11 and 0x12. (0x11: use SAM Key 0x02 version 0x00; 0x12: use SAM Key 0x02 version 0x01)

Now, the card is prepared for creating delegated applications on it. In order for an application provide to be able to create delegated applications, the application provider also needs a DAMMAC, and an encrypted DAMDefaultKey. This ensures, that nobody except the dedicated application provider can create a delegated application on the card, as no one else can forge this DAMMAC, as the key is **only** known to the card issuer. Also, an application provider can only create a delegated application with the properties negotiated with the card issuer, as otherwise, the DAMMAC would not fit.

step	Indication		Data / Message	Comment
1	Export value of DAMDefault Key	>	80D6000002030000	Dump secret key entry 0x03 version 0x01
2	Value of the Key	<	0000000000000000000000 000000000000000	Key value and SW1SW2
3	DAMDefaultKey Version	=	00	
4	Get 7 random bytes	>	8084000007	for padding
5	Response	<	F5E876FEE275609000	7 Byte random + SW1SW2
6	Input for Encryption	=	F5E876FEE275600000000 0000000000000000000000000 00000	random KeyValue KeyVersion
7	Activate OfflineKey	>	80010000020401	Activate KeyNo 0x04 version 0x01 for offline usage
8	Response	<	9000	success
9	EncipherOffline	>	800E000020F5E876FEE27 5600000000000000000000000 000000000000	Encipher the value from step 6 using SAM_EncipherOffline

Table 23. Create the Encrypted DAM DefaultKey and DAMMAC

© NXP B.V. 2020. All rights reserved.

MIFARE SAM AV3 - For MIFARE DESFire

step	Indication		Data / Message	Comment
10	Encrypted DAMDefaultKey	<	9232C82A913FA1CFCDC7 ED5EC63AB45CE991C06A 1F485156DB8C3CDCB689 BD279000	Encrypted DAMDefaultKey EncK +SW1SW2
11	Input for DAMMAC	=	C91234560000004000EF81 9232C82A913FA1CFCDC7 ED5EC63AB45CE991C06A 1F485156DB8C3CDCB689 BD27	DAMMAC = MAC _{DAM} (K _{PICCDAMMAC} ,Cmd AID DAMSlotNo DAMSlotVersion QuotaLimit KeySett1 KeySett2 EncK)
12	Activate OfflineKey	>	80010000020401	Activate KeyNo 0x04 version 0x00 for offline usage
13	Response	<	9000	success
14	Generate DAMMAC	>	807C00102BC91234560000 004000EF819232C82A913F A1CFCDC7ED5EC63AB45 CE991C06A1F485156DB8C 3CDCB689BD2700	Generate the DAMMAC with in step 11 generated input
15	returned MAC	<	FD5D929451161283E5B95 C012261412B9000	MAC + SW1SW2
16	DAMMAC	=	5D941683B901612B	The DAMMAC is truncated like in the EV2 secure messaging scheme: every second byte is taken for the final 8-byte MAC

Everything needed from the card issuer is in place. The card issuer can now transfer the DAMAuthKey, the EncK and the DAMMAC to the application provider. This can be done with SAM AV3, or any other secure channel (not in scope of this example).

2.9.3 Create a Delegated Application

In this example, the application provider receives all needed data stored in a SAM AV3, called the "Slave-SAM".

Table 24.	Kev	structure	of the	Slave-SAM
		onaotaro	01 110	

KeyNo	intended use	Key V 0x00	Comment
0x11	PICC Key	ААААААААААААААААААААА АААААААААА	Key Version 0x00: DAMAuthKey a KUC can be applied to this Key to limit the number of usages, hence the number of application installations. In this example, the Key value of this Key is not known to the application provider
0x12	Data, KeyType AES256	9232C82A913FA1CFCDC7ED5 EC63AB45CE991C06A1F48515 6DB8C3CDCB689BD27	This key entry is used to store the EncK, hence it is not a real key, just used for data storage. Export secret needs to be allowed.

MIFARE SAM AV3 - For MIFARE DESFire

KeyNo	intended use	Key V 0x00	Comment
0x13	Data, KeyType AES256	5D941683B901612B00000000 0000000000000000000000000000	This key entry is used to store the DAMMAC, hence it is not a real key, just used for data storage. Export secret needs to be allowed.

Note: For more security, Keys 0x12 and 0x13 should be only accessible if a host authentication with a secret key shared between card issuer and application provider is active. This can be achieved by setting KeyNoAEK to an additionally present host key, or the SAM master key.

Table 25. Create delegated application

step	Indication		Data / Message	Comment	
	The application provider can now authenticate with the DAMAuthKey using the SAM AV3(see DESFire EV2 Authentication). We assume, the data from Key 0x12 and 0x13 is already dumped.				
1	Send to MIFARE DESFire EV2	>	C91234560000004000EF81	Create Delegated Application 0x123456 with parameters agreed with card issuer(Step 11 in <u>Table 23</u>)	
2	Answer from MIFARE DESFire EV2	<	AF	Expect more data	
3	Send EncK + DAMMAC	>	AF9232C82A913FA1CFCD C7ED5EC63AB45CE991C0 6A1F485156DB8C3CDCB6 89BD275D941683B901612 B306F1E706202ADB8	AF EncK DAMMAC, dumped from SAM AV3	
4	Response from MIFARE DESFire EV2	<	00482CD78C55219DE2	Response 0x00 + MAC	
5	Remove SM using SAM AV3	>	80AD00100900482CD78C5 5219DE200	Verifies the MAC using the current active Authentication	
6	success	<	9000	Success, delegated Application created	

2.10 MIFARE DESFire Light and SAM AV3

MIFARE DESFire Light is a subset of the MIFARE DESFire family. For MIFARE SAM AV3 in S-mode, all examples shown in this document also apply for MIFARE DESFire Light. The only difference is, that commands sent to a MIFARE DESFire Light, need to be transferred in the ISO7816-4 APDU format(See <u>datasheet</u>). This is not influenced by the MIFARE SAM AV3 at all.

For X-mode, especially for the command *DESFire_AuthenticatePICC* and *DESFire_ChangeKeyPICC*, **bit 6** of P2 needs to be set, in order to use ISO7816-4 APDU format. Other than that, everything works according to a DESFire EV2.

3 References

- 1. Data sheet Data sheet of MIFARE SAM AV3, document number 3235xx.
- 2. System guidance manual MF4SAM3 (MIFARE SAM AV3), document number 5385xx.
- 3. Data sheet MIFARE DESFire EV3, document number 4489xx.
- 4. Data sheet MIFARE DESFire EV2, document number 2260xx.
- 5. Data sheet MIFARE DESFire Light, document number 4307xx.
- Application note AN12695 MIFARE SAM AV3 Quick Start up Guide, document number 5210xx, <u>https://www.nxp.com/docs/en/application-note/</u> <u>AN12695.pdf</u>.
- 7. Application note AN5212 MIFARE SAM AV3 Key Management and Personalization, document number 5212xx.
- 8. Application note Symmetric Key Diversifications, document number 1653xx.
- Application note MIFARE SAM AV3 for MIFARE Classic EV1, document number 1828xx.
- 10. Application note AN12704 MIFARE SAM AV3 Host communication, document number 5213xx, <u>https://www.nxp.com/docs/en/application-note/AN12704.pdf</u>.
- 11. Application note MIFARE DESFire EV3 Feature and hints, document number 5881xx.
- 12. Application note MIFARE DESFire EV2 Feature and hints, document number 3630xx.

AN12696

MIFARE SAM AV3 - For MIFARE DESFire

4 Legal information

4.1 Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

4.2 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Evaluation products — This product is provided on an "as is" and "with all faults" basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer. In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages. Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer's exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US\$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — While NXP Semiconductors has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer's applications and products, and NXP Semiconductors accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products.

4.3 Licenses

ICs with DPA Countermeasures functionality

NXP ICs containing functionality implementing countermeasures to Differential Power Analysis and Simple Power Analysis are produced and sold under applicable license from Cryptography Research, Inc.

4.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

MIFARE — is a trademark of NXP B.V. DESFire — is a trademark of NXP B.V. MIFARE Plus — is a trademark of NXP B.V. MIFARE Ultralight — is a trademark of NXP B.V. MIFARE Classic — is a trademark of NXP B.V. NXP — wordmark and logo are trademarks of NXP B.V.

AN12696

MIFARE SAM AV3 - For MIFARE DESFire

Tables

Tab. 1.	SAM Key Entry setting for different MIFARE
	DESFire Keys5
Tab. 2.	MIFARE DESFire EV2 AES Authentication
	(Non-Diversified key)7
Tab. 3.	MIFARE DESFire EV1 AES Authentication
	(Diversified key) 8
Tab. 4.	MIFARE DESFire EV2 3KTDES
	Authentication (Non-Diversified key) 10
Tab. 5.	MIFARE DESFire EV2 AES Authentication
	(Non-Diversified key)11
Tab. 6.	Write data file encrypted using SAM,
	3KTDES mode 12
Tab. 7.	Read data file encrypted using SAM,
	3KTDES mode 13
Tab. 8.	Write data file CMACed AES mode 14
Tab. 9.	Read data file CMAC communication AES
	mode
Tab. 10.	SAM_ChangeKeyPICC for changing card
	master key16

Tab. 11.	SAM_ChangeKeyPICC for changing card	
	master key	16
Tab. 12.	Change application key number 1 using	
	SAM	17
Tab. 13.	Change application master key using SAM	18
Tab. 14.	Example	19
Tab. 15.	Example	20
Tab. 16.	Example	21
Tab. 17.	Example	21
Tab. 18.	Example	
Tab. 19.	Example	23
Tab. 20.	Example	
Tab. 21.	Key structure of the Master-SAM	25
Tab. 22.	Change DAM Keys	25
Tab. 23.	Create the Encrypted DAM DefaultKey and	
	DAMMAC	26
Tab. 24.	Key structure of the Slave-SAM	27
Tab. 25.	Create delegated application	
	e	

MIFARE SAM AV3 - For MIFARE DESFire

Figures

Fig. 1.	Architecture in non-X interface4
Fig. 2.	MIFARE DESFire EV2 Authentication using
-	SAM

- Encrypted write data file using SAM12 Encrypted Read from a data file using SAM13 Fig. 3.
- Fig. 4.

MIFARE SAM AV3 - For MIFARE DESFire

Contents

1	Introduction	3
1.1	Scope	3
1.2	Abbreviation	3
1.3	Examples presented in this document	3
1.4	S interface	
2	Using MIFARE SAM AV3 for MIFARE	•
-	DESFire	5
2.1	Downloading the MIFARE DESFire keys to	Ŭ
	SAM from Host	5
2.2	Authenticating MIFARE DESFire using the	-
	SAM	6
2.2.1	MIFARE DESFire Authentication, key type	
	AES-128 (non-diversified key)	6
2.2.2	MIFARE DESFire Authentication, key type	
	AES-128 (diversified key)	8
2.2.3	MIFARE DESFire Authentication, key type	
	3KTDES (non-diversified key)	9
2.2.4	MIFARE DESFire Authentication -	
	AuthenticateFirst1	
2.3	Encrypted Write to data file using SAM 1	1
2.3.1	Encrypted Write to Data file using SAM,	
	3KTDES mode1	
2.4	Encrypted Read from data file using SAM 1	3
2.4.1	Encrypted Read from Data file using SAM,	-
	3KTDES mode1	
2.5	Write data (C)MAC communication 1	4
2.5.1	CMACed Write to Data file using SAM, AES	
0.0	mode	
2.6	Read data (C)MAC communication	5
2.6.1	MACed Read from Data file using SAM, AES	F
2.7	mode1 Changing MIFARE DESFire Key using	Э
2.7	MIFARE SAM AV3 1	6
2.7.1	Changing DESFire Card Master Key TDES	0
2.7.1	native to AES 1	6
2.7.2	Changing DESFire Card Master Key AES to	U
2.7.2	AES1	6
2.7.3	Changing MIFARE DESFire Application	Ũ
	Keys	7
2.7.4	Changing MIFARE DESFire Application	
	Master Key 1	8
2.8	Full Transaction example using EV2 Secure	
	Messaging1	8
2.8.1	AuthenticateFirst with CardKey 0x011	
2.8.2	Read data file2	
2.8.3	GetValue2	
2.8.4	AuthenticateFirst with CardKey 0x022	21
2.8.5	WriteRecord2	
2.8.6	Debit2	
2.8.7	CommitTransaction2	
2.9	Delegated Application Management2	
2.9.1	Card issuer2	
2.9.2	Card issuer - example2	24

2.9.3	Create a Delegated Application	27
2.10	MIFARE DESFire Light and SAM AV3	
3	References	
4	Legal information	31

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2020.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 14 July 2020 Document identifier: AN12696 Document number: 521513