
by: NXP Semiconductors

1 Introduction
There are several means for firmware upgrade, including the bootloader,
hardware debugger (such as CMSIS-DAP, J-Link, and ULink), and third-party
programmer (such as Flash Magic). Efficient and fast flash programming in the
production flow is an important part of cost-effective manufacturing and field
servicing of MCUs. From the firmware upgrade tools mentioned above, the
hardware debugger is suitable for product development. The third-party
programmer and bootloader are suitable for mass production. For NXP MCUs,
Flash Magic only supports SWD, Ethernet, and UART (except for the USB).
The secondary bootloader in the NXP MCU bootloader provides multiple serial protocols (such as USB HID/MSC, UART, SPI,
I2C, and CAN) for quick and easy programming through the entire product lifecycle. The USB interface is widely used due to
high data transmission rate and driver support by various mainstream operating systems.

2 Why to port USB bootloader
As described on the official NXP website, a secondary bootloader is supported in the SDK for i.MXRT1050, LPC54018,
LPC54016, and LPC54005. Therefore, the LPC51U68 USB bootloader can be ported from the SDK of the mentioned MCUs.
This application note selects LPC54018 as a reference and describes how to port the USB bootloader from LPC54018 to
LPC51U68.

Figure 1. MCUs supported by secondary bootloader

3 System hardware setup and connection

3.1 System hardware setup
LPCXpresso51U68 version Rev A is used as the evaluation board for USB bootloader porting. Make sure that jumper JP10 is
fitted, so that JP10 connects the VBUS from the target USB connector J5 to the LPC51U68. The other jumpers (configured by
default) are described in Table 1 and Figure 2.

Contents

1 Introduction.. 1

2 Why to port USB bootloader 1

3 System hardware setup and
connection...1

4 USB bootloader porting from
LPC54018 to LPC51U68.....................3

5 References.. 27

AN12689
Porting USB Bootloader from LPC54018 to LPC51U68
Rev. 0 — 02/2020 Application Note

Table 1. Board jumper setting

Jumper number Description Status

J1, J2, J7, J8 Expansion connectors Open

J3 External processor control header Open

J4 PMod™ (SPI / I2C) bridge connector Open

J5 Target MCU power / USB device
connector

Connect to PC via USB cable for
firmware update

J6 Link2 micro USB B-type connector Connect to PC via USB cable for
bootloader preprogramming

JP1 LPC51U68 target SWD disable Open

JP2 Buffer power selection Fit to Loc

JP3 Isolate the Link2 debug probe (SPI
bridge function) from the LPC51U68
target to prevent current leakage.

Open

JP4 Disconnect all reset sources from the
LPC51U68 device, except for the reset
from the AP control port (J3).

Open

JP5 Reduce the voltage sense resistance. Open

JP6 Measure the LPC51U68 current
consumption.

Open

JP7 Link2 (LPC43xx) force DFU boot Open

JP8 Tri-color LED anode voltage enable Open

JP9 Power supply voltage selection Fit pin 2–3 to select 3.3 V power supply

JP10 Target connector USB (J5) VBUS to
LPC51U68 connection

Fit

P1 10-pin SWD connector Open

P2 LPC51U68 VDD current monitor Vsense
measurement

Open

P3 FTDI serial header Open

P4 External ADC reference input Open

NXP Semiconductors
System hardware setup and connection

Porting USB Bootloader from LPC54018 to LPC51U68, Rev. 0, 02/2020
Application Note 2 / 28

Figure 2. Board jumper setting

3.2 Connection
The connection shown in Figure 3 is a must for normal communication between the LPCXpresso51U68 board and PC. The USB
cable connected to connector J6 is used to download the bootloader and the cable connected to connector J5 is used to update
the user application firmware.

Figure 3. USB connection between LPC51U68 and PC

4 USB bootloader porting from LPC54018 to LPC51U68

4.1 Flash-resident USB bootloader porting

NXP Semiconductors
USB bootloader porting from LPC54018 to LPC51U68

Porting USB Bootloader from LPC54018 to LPC51U68, Rev. 0, 02/2020
Application Note 3 / 28

4.1.1 Creating new project and adding necessary files
• Download SDK_2.6.0_LPCXpresso51U68 from the official NXP website. This application note uses the Keil IDE to

perform USB bootloader porting. Therefore, create a new empty project (as shown in Figure 4) by clicking "Project -> New
uVision Project" and selecting the project directory (as shown in Figure 5), assuming that the project directory is \boards.

Figure 4. Creating new Keil project

Figure 5. Selecting project directory and names

• Download SDK_2.6.0_LPCXpresso54018 from the official NXP website.

• Copy the mcu-boot folder from the SDK_2.6.0_LPCXpresso54018\middleware\ folder to the
SDK_2.6.0_LPCXpresso51U68\middleware folder.

• Modify the "LPC54018" string in the external_memory_property_map_LPC54018.c, hardware_init_LPC54018.c,
memory_map_LPC54018.c, and peripherals_LPC54018.c files in the \middleware\mcu-boot\targets\LPC51U68\src\ folder
to "LPC51U68".

• Create a source file named internalFlashAPI.c (other names are also OK) and a header file named internalFlashAPI.h
(other names are also OK) for the LPC51U68 on-chip flash to provide operations such as erase, read, write, and execute
in the \middleware\mcu-boot\src\memory\src folder.

NXP Semiconductors
USB bootloader porting from LPC54018 to LPC51U68

Porting USB Bootloader from LPC54018 to LPC51U68, Rev. 0, 02/2020
Application Note 4 / 28

• Copy the pin_mux.c, pin_mux.h, clock_config.c, and clock_config.h files from the \boards\lpcxpresso51u68\usb_examples
\usb_device_cdc_vcom\freertos folder to the \boards folder.

• Copy the files shown in Table 2 from the \boards\lpcxpresso51u68\usb_examples\usb_device_msc_ramdisk\freertos folder
to the \boards folder.

Table 2. USB device files

Number File

1 usb_device_ch9.c

2 usb_device_ch9.h

3 usb_device_class.c

4 usb_device_class.h

5 usb_device_config.h

6 usb_device_descriptor.c

7 usb_device_descriptor.h

8 usb_device_msc.c

9 usb_device_msc.h

10 usb_device_msc_ufi.c

11 usb_device_msc_ufi.h

• Copy the usb_device_hid.c and usb_device_hid.h files from the \boards\lpcxpresso51u68\usb_examples
\usb_device_hid_generic\freertos folder to the \boards folder.

• Add the groups and files shown in Table 3 to the project created in the first step.

Table 3. Groups and files

Group File

device \devices\LPC51U68\fsl_device_registers.h

\devices\LPC51U68\LPC51U68.h

\devices\LPC51U68\LPC51U68_features.h

\devices\LPC51U68\system_LPC51U68.c

\devices\LPC51U68\system_LPC51U68.h

startup \devices\LPC51U68\arm\startup_LPC51U68.s

source-usb-bm_composite \middleware\mcuboot\src\bm_usb
\bootloader_hid_report_ids.h

\middleware\mcu-boot\src\bm_usb\composite.c

\middleware\mcu-boot\src\bm_usb\composite.h

\middleware\mcu-boot\src\bm_usb\fat_directory_entry.h

\middleware\mcu-boot\src\bm_usb\hid_bootloader.c

\middleware\mcu-boot\src\bm_usb\hid_bootloader.h

\middleware\mcu-boot\src\bm_usb\msc_disk.c

Table continues on the next page...

NXP Semiconductors
USB bootloader porting from LPC54018 to LPC51U68

Porting USB Bootloader from LPC54018 to LPC51U68, Rev. 0, 02/2020
Application Note 5 / 28

Table 3. Groups and files (continued)

Group File

\middleware\mcu-boot\src\bm_usb\msc_disk.h

\middleware\mcu-boot\src\bm_usb\usb_descriptor.c

\middleware\mcu-boot\src\bm_usb\usb_descriptor.h

\middleware\mcu-boot\targets\LPC51U68\src
\usb_device_config.h

source-autobaud \middleware\mcu-boot\src\autobaud\autobaud.h

\middleware\mcu-boot\src\autobaud\src\autobaud_irq.c

source-bootloader \middleware\mcu-boot\src\bootloader\bl_app_crc_check.h

\middleware\mcu-boot\src\bootloader\bl_command.h

\middleware\mcu-boot\src\bootloader\bl_context.h

\middleware\mcu-boot\src\bootloader\bl_irq_common.h

\middleware\mcu-boot\src\bootloader\bl_peripheral.h

\middleware\mcu-boot\src\bootloader
\bl_peripheral_interface.h

\middleware\mcu-boot\src\bootloader\bl_shutdown_cleanup.h

\middleware\mcu-boot\src\bootloader\bl_user_entry.h

\middleware\mcu-boot\src\bootloader\bl_version.h

\middleware\mcu-boot\src\bootloader\bootloader.h

source-bootloader-src \middleware\mcu-boot\src\bootloader\src\bl_app_crc_check.c

\middleware\mcu-boot\src\bootloader\src\bl_command.c

\middleware\mcu-boot\src\bootloader\src\bl_context.c

\middleware\mcu-boot\src\bootloader\src
\bl_exception_handler.c

\middleware\mcu-boot\src\bootloader\src\bl_main.c

\middleware\mcu-boot\src\bootloader\src\bl_misc.c

\middleware\mcu-boot\src\bootloader\src
\bl_shutdown_cleanup.c

\middleware\mcu-boot\src\bootloader\src\bl_tree_root.c

\middleware\mcu-boot\src\bootloader\src\bl_user_entry.c

\middleware\mcu-boot\src\bootloader\src
\usb_hid_msc_peripheral_interface.c

source-crc \middleware\mcu-boot\src\crc\crc16.h

\middleware\mcu-boot\src\crc\crc32.h

\middleware\mcu-boot\src\crc\src\crc16.c

Table continues on the next page...

NXP Semiconductors
USB bootloader porting from LPC54018 to LPC51U68

Porting USB Bootloader from LPC54018 to LPC51U68, Rev. 0, 02/2020
Application Note 6 / 28

Table 3. Groups and files (continued)

Group File

\middleware\mcu-boot\src\crc\src\crc32.c

source-include \middleware\mcu-boot\src\include\bootloader_common.h

\middleware\mcu-boot\src\include\bootloader_core.h

source-memory \middleware\mcu-boot\src\memory\memory.h

source-memory-src \middleware\mcu-boot\src\memory\src\device_memory.c

\middleware\mcu-boot\src\memory\src\device_memory.h

\middleware\mcu-boot\src\memory\src\memory.c

\middleware\mcu-boot\src\memory\src\normal_memory.c

\middleware\mcu-boot\src\memory\src\normal_memory.h

\middleware\mcu-boot\src\memory\src\pattern_fill.h

\middleware\mcu-boot\src\memory\src\pattern_fill.s

\middleware\mcu-boot\src\memory\src\sram_init.h

\middleware\mcu-boot\src\memory\src\sram_init_lpc.c

\middleware\mcu-boot\src\memory\src\internalFlashAPI.c

\middleware\mcu-boot\src\memory\src\internalFlashAPI.h

source-packet \middleware\mcu-boot\src\packet\command_packet.h

\middleware\mcu-boot\src\packet\serial_packet.h

source-packet-src \middleware\mcu-boot\src\packet\src\serial_packet.c

source-property \middleware\mcu-boot\src\property\property.h

source-sbloader \middleware\mcu-boot\src\sbloader\sb_file_format.h

\middleware\mcu-boot\src\sbloader\sbloader.h

source-sbloader-src \middleware\mcu-boot\src\sbloader\src\sbloader.c

source-utilities \middleware\mcu-boot\src\utilities\fsl_assert.h

\middleware\mcu-boot\src\utilities\fsl_rtos_abstraction.h

\middleware\mcu-boot\src\utilities\vector_table_info.h

source-utilities-src \middleware\mcu-boot\src\utilities\src\fsl_assert.c

\middleware\mcu-boot\src\utilities\src\fsl_rtos_abstraction.c

source-drivers \middleware\mcu-boot\src\drivers\smc\smc.h

source-property-src \middleware\mcu-boot\src\property\src\property_lpc.c

LPC51U68 \middleware\mcu-boot\targets\LPC51U68\src
\bootloader_config.h

\boards\clock_config.c

Table continues on the next page...

NXP Semiconductors
USB bootloader porting from LPC54018 to LPC51U68

Porting USB Bootloader from LPC54018 to LPC51U68, Rev. 0, 02/2020
Application Note 7 / 28

Table 3. Groups and files (continued)

Group File

\middleware\mcu-boot\targets\LPC51U68\src
\external_memory_property_map_LPC51U68.c

\middleware\mcu-boot\targets\LPC51U68\src
\hardware_init_LPC51U68.c

\middleware\mcu-boot\targets\LPC51U68\src
\memory_map_LPC51U68.c

\middleware\mcu-boot\targets\LPC51U68\src
\peripherals_LPC51U68.c

\middleware\mcu-boot\targets\LPC51U68\src
\peripherals_pinmux.h

\middleware\mcu-boot\targets\LPC51U68\src\target_config.h

\middleware\mcu-boot\targets\common\src
\pinmux_utility_lpc.c

\boards\pin_mux.c

\boards\pin_mux.h

usb-device-class-hid \boards\usb_device_hid.c

\boards\usb_device_hid.h

usb-device-class-msc \boards\usb_device_msc.c

\boards\usb_device_msc.h

\boards\usb_device_msc_ufi.c

\boards\usb_device_msc_ufi.h

usb-device-source \boards\usb_device_ch9.c

\boards\usb_device_ch9.h

\middleware\usb\device\usb_device_dci.c

\middleware\usb\device\usb_device_dci.h

usb-device-class \boards\usb_device_class.c

\boards\usb_device_class.h

usb-device-source-lpcip3511 \middleware\usb\device\usb_device_lpcip3511.c

\middleware\usb\device\usb_device_lpcip3511.h

usb-include \middleware\usb\include\usb.h

\middleware\usb\include\usb_misc.h

\middleware\usb\include\usb_spec.h

osa \middleware\usb\osa\usb_osa.h

\middleware\usb\osa\usb_osa_bm.c

Table continues on the next page...

NXP Semiconductors
USB bootloader porting from LPC54018 to LPC51U68

Porting USB Bootloader from LPC54018 to LPC51U68, Rev. 0, 02/2020
Application Note 8 / 28

Table 3. Groups and files (continued)

Group File

\middleware\usb\osa\usb_osa_bm.h

usb-device-include \middleware\usb\device\usb_device.h

drivers devices\LPC51U68\drivers\fsl_clock.c

devices\LPC51U68\drivers\fsl_clock.h

devices\LPC51U68\drivers\fsl_common.c

devices\LPC51U68\drivers\fsl_common.h

devices\LPC51U68\drivers\fsl_crc.c

devices\LPC51U68\drivers\fsl_crc.h

devices\LPC51U68\drivers\fsl_inputmux.c

devices\LPC51U68\drivers\fsl_inputmux.h

devices\LPC51U68\drivers\fsl_inputmux_connections.h

devices\LPC51U68\drivers\fsl_iocon.h

devices\LPC51U68\drivers\fsl_power.c

devices\LPC51U68\drivers\fsl_power.h

devices\LPC51U68\drivers\fsl_reset.c

devices\LPC51U68\drivers\fsl_reset.h

devices\LPC51U68\drivers\fsl_iap.c

devices\LPC51U68\drivers\fsl_iap.h

devices\LPC51U68\drivers\fsl_gpio.c

devices\LPC51U68\drivers\fsl_gpio.h

source-drivers-microseconds \middleware\mcu-boot\src\drivers\microseconds
\microseconds.h

\middleware\mcu-boot\src\drivers\microseconds\src
\microseconds_sysclk.c

4.1.2 Configuring Keil IDE

4.1.2.1 Selecting MCU part number

Click the "Device" tab and select the MCU part number, as shown in Figure 6.

NXP Semiconductors
USB bootloader porting from LPC54018 to LPC51U68

Porting USB Bootloader from LPC54018 to LPC51U68, Rev. 0, 02/2020
Application Note 9 / 28

Figure 6. Selecting MCU part number

4.1.2.2 Generating binary executable file

Click the "User" tab and carry out the configuration (as shown in Figure 7) to generate a binary executable file when the project
is compiled.

Figure 7. Binary executable file generation setting

NXP Semiconductors
USB bootloader porting from LPC54018 to LPC51U68

Porting USB Bootloader from LPC54018 to LPC51U68, Rev. 0, 02/2020
Application Note 10 / 28

4.1.2.3 Seting preprocessor symbols and header file path

Click the "C/C++" tab and use the "_DEBUG=1,DEBUG, CPU_LPC51U68JBD64, USB_STACK_BM,
USB_STACK_USE_DEDICATED_RAM=1, BL_TARGET_FLASH" string as the preprocessor symbols (as shown in Figure 8).

Figure 8. Preprocessor symbols setting

Click the "C/C++" tab and add the header file search path. Click the "Include Paths" button (as shown in Figure 9) and enter the
"Folder Setup" interface to add the header file search path (as shown in Figure 10). Add the header file directories according to
Table 4.

Figure 9. Enter folder setup interface

NXP Semiconductors
USB bootloader porting from LPC54018 to LPC51U68

Porting USB Bootloader from LPC54018 to LPC51U68, Rev. 0, 02/2020
Application Note 11 / 28

Figure 10. Folder setup interface

Table 4. Header file directories

Number Header file directory

1 ..\CMSIS\Include

2 ..\boards

3 ..\devices

4 ..\devices\LPC51U68

5 ..\devices\LPC51U68\drivers

6 ..\middleware\mcu-boot\src

7 ..\middleware\mcu-boot\src\autobaud

8 ..\middleware\mcu-boot\src\crc

9 ..\middleware\mcu-boot\src\bootloader

10 ..\middleware\mcu-boot\src\bm_usb

11 ..\middleware\mcu-boot\src\include

12 ..\middleware\mcu-boot\src\startup

13 ..\middleware\mcu-boot\src\utilities

14 ..\middleware\mcu-boot\src\drivers

15 ..\middleware\mcu-boot\src\drivers\microseconds

16 ..\middleware\mcu-boot\src\drivers\smc

17 ..\middleware\mcu-boot\src\drivers\lpc_gpio

18 ..\middleware\usb\device

Table continues on the next page...

NXP Semiconductors
USB bootloader porting from LPC54018 to LPC51U68

Porting USB Bootloader from LPC54018 to LPC51U68, Rev. 0, 02/2020
Application Note 12 / 28

Table 4. Header file directories (continued)

Number Header file directory

19 ..\middleware\usb\include

20 ..\middleware\usb\osa

21 ..\middleware\mcu-boot\targets\LPC51U68\src

4.1.2.4 Assembly setting

Click the "Asm" tab and perform the assembly language settings (as shown in Figure 11).

Figure 11. Assembly language setting

4.1.2.5 Linker setting

Uncheck the "Use Memory Layout from Target Dialog" checkbox to use the scatter file to assign the memory area for the binary
executable file and carry out the miscellaneous control settings shown in Figure 12.

NXP Semiconductors
USB bootloader porting from LPC54018 to LPC51U68

Porting USB Bootloader from LPC54018 to LPC51U68, Rev. 0, 02/2020
Application Note 13 / 28

Figure 12. Linker setting

Click the "Edit" button and edit the scatter file shown in Figure 14. The memory setting in the scatter file is derived from the
memory map shown in Figure 13.

NXP Semiconductors
USB bootloader porting from LPC54018 to LPC51U68

Porting USB Bootloader from LPC54018 to LPC51U68, Rev. 0, 02/2020
Application Note 14 / 28

Figure 13. LPC51U68 memory map

NXP Semiconductors
USB bootloader porting from LPC54018 to LPC51U68

Porting USB Bootloader from LPC54018 to LPC51U68, Rev. 0, 02/2020
Application Note 15 / 28

Figure 14. Scatter file

NXP Semiconductors
USB bootloader porting from LPC54018 to LPC51U68

Porting USB Bootloader from LPC54018 to LPC51U68, Rev. 0, 02/2020
Application Note 16 / 28

4.1.2.6 Debug setting

Click the "Debug" tab and select the simulator according to the actual situation. This application note uses the on-board J-Link
debugger of the LPCXpresso51U68 board. Check the "Load Application at Startup" and "Run to main()" checkboxes (as shown
in Figure 15).

Figure 15. Debug setting

4.1.3 Compiling and fixing errors
Errors are generated when compiling the project. To fix these errors, make these modifications:

• Open \middleware\mcu-boot\targets\LPC51U68\src\bootloader_config.h and remove this macro:

#define FSL_FEATURE_SYSCON_FLASH_PAGE_SIZE_BYTES (0)

• Open \middleware\mcu-boot\src\crc\src\crc16.c and modify the header file include command from #include "lpc_crc/
fsl_crc.h" to #include "fsl_crc.h".

• Open \middleware\mcu-boot\src\crc\src\crc32.c and modify the header file include command from #include "lpc_crc/
fsl_crc.h" to #include "fsl_crc.h".

• Open \middleware\mcu-boot\src\crc\src\crc16.c and modify the "crc16_onfi_update" function. For the specific function
definition, see the project code that matches the documentation.

• Open \middleware\mcu-boot\targets\LPC51U68\src\hardware_init_LPC51U68.c and modify the "init_hardware" function.
For the specific function definition, see the project code that matches the documentation.

• Open \middleware\mcu-boot\targets\LPC51U68\src\hardware_init_LPC51U68.c and include the pin_mux.h header file:

#include “pin_mux.h”

• Open \middleware\mcu-boot\targets\LPC51U68\src\hardware_init_LPC51U68.c and remove the "spifi_clock_gate",
"spifi_source_clock", and "spifi_iomux_config" functions.

• Open \middleware\mcu-boot\targets\LPC51U68\src\hardware_init_LPC51U68.c and modify the "usb_clock_init" function.
For the specific function definition, see the project code that matches the documentation.

NXP Semiconductors
USB bootloader porting from LPC54018 to LPC51U68

Porting USB Bootloader from LPC54018 to LPC51U68, Rev. 0, 02/2020
Application Note 17 / 28

• Open \middleware\mcu-boot\targets\LPC51U68\src\bootloader_config.h and modify the "BL_CONFIG_USB_HID",
"BL_CONFIG_HS_USB_HID", BL_CONFIG_FLEXCOMM_USART_0", "BL_CONFIG_FLEXCOMM_I2C_2",
"BL_CONFIG_FLEXCOMM_SPI_9", and "BL_FEATURE_SPIFI_NOR_MODULE" macros:

#define BL_CONFIG_USB_HID (1)
#define BL_CONFIG_HS_USB_HID (0)
#define BL_FEATURE_SPIFI_NOR_MODULE (0)
#define BL_CONFIG_FLEXCOMM_USART_0 (0)
#define BL_CONFIG_FLEXCOMM_I2C_2 (0)
#define BL_CONFIG_FLEXCOMM_SPI_9 (0)

• Open \boards\clock_config.c and add the definition of the "configure_clocks" function. For the specific function definition,
see the project code that matches the documentation.

• Open \boards\clock_config.c and include three header files and one macro definition:

#include "bootloader_common.h"
#include "property/property.h"
#include "bootloader/bl_context.h"
#define BOOTLOADER_CLOCK_FREQ 48000000U

• Open \middleware\mcu-boot\src\bootloader\src\bl_shutdown_cleanup.c and add the definition of the "init_interrupts"
function. For the specific function definition, see the project code that matches the documentation.

4.1.4 Testing USB communication between LPCXpresso51U68 and PC
To test the USB communication between the LPCXpresso51U68 board and PC, follow these steps:

• Compile the project.

• Fit the JP10 jumper on the LPCXpresso51U68 board to connect the USB (J5) VBUS to the LPC51U68.

• Use a USB cable to connect the J6 header to the PC and download the project executable binary file to the LPC51U68
flash area.

• Use a USB cable to connect the J5 header to the PC.

• Power up and reset the LPCXpresso51U68 board.

• Run \middleware\mcu-boot\bin\Tools\blhost\win\blhost.exe and enter the blhost command (as shown in Figure 16). If the
following command feedback appears, it indicates that the USB bootloader porting is implemented successfully. The MCU
Bootloader host (blhost) User's Guide (document MCUBLHOSTUG) describes the detailed usage of the blhost commands
mentioned below.

NXP Semiconductors
USB bootloader porting from LPC54018 to LPC51U68

Porting USB Bootloader from LPC54018 to LPC51U68, Rev. 0, 02/2020
Application Note 18 / 28

https://www.nxp.com/doc/MCUBLHOSTUG

Figure 16. USB communication test

4.1.5 Flash API porting
The USB bootloader for LPC54018 updates the firmware to the on-chip Quad SPI Flash through the SPIFI interface. Unlike
LPC54018, LPC51U68 contains a 256-KB on-chip flash, which can be accessed through the Flash In-Application Programming
(IAP). Therefore, the LPC51U68 USB bootloader requires the Flash API which implements the read, write, and erase operations
to update the firmware to the on-chip flash. The Flash API for LPC51U68 is implemented in the internalFlashAPI.c and
internalFlashAPI.h files created in step 8 in Creating new project and adding necessary files.

4.1.6 Memory map porting
The memory maps for LPC54018 and LPC51U68 are different. Open \middleware\mcu-boot\targets\LPC51U68\src
\memory_map_LPC51U68.c and redefine the "g_memoryMap" structure, as shown in Figure 17.

Figure 17. LPC51U68 memory map structure

Open \middleware\mcu-boot\targets\LPC51U68\src\bootloader_config.h and define the
"BL_FEATURE_USING_INTERNAL_FLASH" macro:

#define BL_FEATURE_USING_INTERNAL_FLASH (1)

Open \middleware\mcu-boot\src\memory\memory.h and export "g_internalFlashInterface":

#if BL_FEATURE_USING_INTERNAL_FLASH
extern const memory_region_interface_t g_internalFlashInterface;
#endif

NXP Semiconductors
USB bootloader porting from LPC54018 to LPC51U68

Porting USB Bootloader from LPC54018 to LPC51U68, Rev. 0, 02/2020
Application Note 19 / 28

4.1.7 Testing flash operations for flash-resident version
To test flash operations such as erase, read, write, and reset for a flash-resident version, follow these steps:

• Compile the project.

• Fit the JP10 jumper on the LPCXpresso51U68 board to connect the USB (J5) VBUS to the LPC51U68.

• Use a USB cable to connect the J6 header and PC and download the project executable binary file to the LPC51U68 flash
area.

• Use a USB cable to connect the J5 header and PC.

• Power up and reset the LPCXpresso51U68 board.

• Run \middleware\mcu-boot\bin\Tools\blhost\win\blhost.exe and enter the blhost commands shown in Figure 18, Figure 19,
and Figure 20. If the following command feedbacks appear, it indicates that the bootloader porting of flash operations is
implemented successfully. Note that gpio_led_output.bin is an example of a user application binary file (other user binary
file names are also OK). Note that "0x80d5" in the execute command is a routine entry address which is a reset handler
address in a vector table and it can be read from a binary file (as shown in Figure 21).

Figure 18. Flash erase all

Figure 19. Flash write

NXP Semiconductors
USB bootloader porting from LPC54018 to LPC51U68

Porting USB Bootloader from LPC54018 to LPC51U68, Rev. 0, 02/2020
Application Note 20 / 28

Figure 20. Execute program

Figure 21. Entry address and stack pointer address

4.2 RAM-resident USB bootloader porting

4.2.1 Configuring Keil IDE
The project configurations for the RAM-resident version are basically consistent with the flash-resident version. The following are
the differences between the RAM-resident version and the flash-resident version.

4.2.1.1 Setting preprocessor symbols and header file path

Click the "C/C++" tab and use character string "_DEBUG=1,DEBUG, CPU_LPC51U68JBD64, USB_STACK_BM,
USB_STACK_USE_DEDICATED_RAM=1, BL_TARGET_RAM" as the preprocessor symbols (see Figure 22).

NXP Semiconductors
USB bootloader porting from LPC54018 to LPC51U68

Porting USB Bootloader from LPC54018 to LPC51U68, Rev. 0, 02/2020
Application Note 21 / 28

Figure 22. Setting bootloader target location

4.2.1.2 Linker setting

The scatter file for the RAM-resident version is shown in Figure 23. It is different from that for the flash-resident version.

NXP Semiconductors
USB bootloader porting from LPC54018 to LPC51U68

Porting USB Bootloader from LPC54018 to LPC51U68, Rev. 0, 02/2020
Application Note 22 / 28

Figure 23. Scatter file

4.2.1.3 Debug setting

Click the "Debug" tab and select the simulator according to the actual situation. This application note uses the on-board J-Link
debugger of the LPCXpresso51U68 board. Uncheck the "Load Application at Startup" checkbox (as shown in Figure 24). Click
the "Edit" button in the "Initialization File" area and edit the JLink Settings.ini file (as shown in Figure 25).

NXP Semiconductors
USB bootloader porting from LPC54018 to LPC51U68

Porting USB Bootloader from LPC54018 to LPC51U68, Rev. 0, 02/2020
Application Note 23 / 28

Figure 24. Debug setting

Figure 25. Initialization file

4.2.1.4 Utilities setting

Click the "Utilities" tab and uncheck the "Update Target before Debugging" checkbox (as shown in Figure 26). Click the "Settings"
button and enter the "Cortex JLink/JTrace Target Driver Setup" interface. The download and programming algorithm settings are
shown in Figure 27.

NXP Semiconductors
USB bootloader porting from LPC54018 to LPC51U68

Porting USB Bootloader from LPC54018 to LPC51U68, Rev. 0, 02/2020
Application Note 24 / 28

Figure 26. Utilities setting

Figure 27. Download and programming algorithm

4.2.2 Testing flash operations for RAM-resident version
To test the flash operations such as erase, read, write, and reset for the RAM-resident version, follow these steps:

NXP Semiconductors
USB bootloader porting from LPC54018 to LPC51U68

Porting USB Bootloader from LPC54018 to LPC51U68, Rev. 0, 02/2020
Application Note 25 / 28

• Compile the project.

• Fit the JP10 jumper on the LPCXpresso51U68 board to connect the USB (J5) VBUS to the LPC51U68.

• Use a USB cable to connect the J6 header and PC and download the project executable binary file to the LPC51U68 RAM
area.

• Use a USB cable to connect the J5 header and PC.

• Power up and reset the LPCXpresso51U68 board.

• Run \middleware\mcu-boot\bin\Tools\blhost\win\blhost.exe and enter the "blhost" command (as shown in Figure 28,
Figure 29, and Figure 30). If the following command feedbacks appear, the bootloader-porting flash operations are
implemented successfully.

Figure 28. Flash erase all

Figure 29. Flash write

NXP Semiconductors
USB bootloader porting from LPC54018 to LPC51U68

Porting USB Bootloader from LPC54018 to LPC51U68, Rev. 0, 02/2020
Application Note 26 / 28

Figure 30. Execute program

5 References
• SDK_2.6.0_LPCXpresso51U68 URL: https://www.nxp.com/products/processors-and-microcontrollers/arm-

microcontrollers/general-purpose-mcus/lpcxpresso51u68-for-the-lpc51u68-mcus:OM40005

• SDK_2.6.0_LPCXpresso54018 URL: https://www.nxp.com.cn/design/microcontrollers-developer-resources/lpcxpresso-
boards/lpcxpresso54018-development-board:OM40003#buy

NXP Semiconductors
References

Porting USB Bootloader from LPC54018 to LPC51U68, Rev. 0, 02/2020
Application Note 27 / 28

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpcxpresso51u68-for-the-lpc51u68-mcus:OM40005
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpcxpresso51u68-for-the-lpc51u68-mcus:OM40005
https://www.nxp.com.cn/design/microcontrollers-developer-resources/lpcxpresso-boards/lpcxpresso54018-development-board:OM40003#buy
https://www.nxp.com.cn/design/microcontrollers-developer-resources/lpcxpresso-boards/lpcxpresso54018-development-board:OM40003#buy

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, UMEMS, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V.
All other product or service names are the property of their respective owners. AMBA, Arm,
Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,
DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,
SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro,
µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks
and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 02/2020
Document identifier: AN12689

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Why to port USB bootloader
	3 System hardware setup and connection
	3.1 System hardware setup
	3.2 Connection

	4 USB bootloader porting from LPC54018 to LPC51U68
	4.1 Flash-resident USB bootloader porting
	4.1.1 Creating new project and adding necessary files
	4.1.2 Configuring Keil IDE
	4.1.2.1 Selecting MCU part number
	4.1.2.2 Generating binary executable file
	4.1.2.3 Seting preprocessor symbols and header file path
	4.1.2.4 Assembly setting
	4.1.2.5 Linker setting
	4.1.2.6 Debug setting

	4.1.3 Compiling and fixing errors
	4.1.4 Testing USB communication between LPCXpresso51U68 and PC
	4.1.5 Flash API porting
	4.1.6 Memory map porting
	4.1.7 Testing flash operations for flash-resident version

	4.2 RAM-resident USB bootloader porting
	4.2.1 Configuring Keil IDE
	4.2.1.1 Setting preprocessor symbols and header file path
	4.2.1.2 Linker setting
	4.2.1.3 Debug setting
	4.2.1.4 Utilities setting

	4.2.2 Testing flash operations for RAM-resident version

	5 References

