
1 Introduction
This application note describes how to implement a USB to multiple VCOMs'
functions on K32L2 series FRDM boards (FRDM-K32L2B3/FRDM-K32L2A).
The function of USB to VCOM can be implemented by using the common AT
commands in the subclass of the abstract control model in the CDC class
specified by the USB protocol. A USB device can support one or more VCOMs,
the number of VCOM depends mainly on the number of endpoints (EP)
supported by USB device. The Full-speed (FS) USB device controller for
K32L2 series MCU supports 16 bidirectional endpoints and supports up to 15
VCOMs. Based on the SDK code
(dev_composite_cdc_vcom_cdc_vcom_lite_bm), this application note
implements the function of a USB to 15 VCOMs and the development tool is
MCUXpresso IDE.

2 USB descriptor configuration

The USB descriptor is equivalent to the business card of the USB device, and
describes all the attributes and configurable information of the USB device,
such as the class, interface information, and endpoint information. If the
descriptor of the device is obtained, the type, purpose, and the parameters of
the communication of the device, etc. are known, and the USB host can
configure it so that both parties of the communication work with the same
parameters.

The function of a USB to multiple VCOMs can be implemented by using the USB Composite class. The Composite class is a
special USB class that can implement multiple different functions in a USB device. Such as a device can implement “Mouse +
Keyboard” function, or “VCOM + Keyboard” function. In fact, the USB Composite class can implement almost any combination
of USB functions, and it is not just a combination of two functions, it can be three or more, so you can use the composite class
to implement the functions of two CDCs or multiple CDCs.

A CDC class device consists of two subclass interfaces: a CDC class interface and a data class interface. A CDC device can
contain zero or more data interfaces.

• The CDC class interface uses a standard interface descriptor that requires a control endpoint and an optional interrupt IN
endpoint.

• The data class interface requires a Bulk IN and a Bulk OUT type of endpoint. But since the 16 endpoints on the K32L2B3/
K32L2A are bidirectional endpoints, an endpoint can implement both input and output functions, ie the functions of Bulk IN
and Bulk OUT can be implemented by one endpoint.

In order to support more VCOM, the interrupt IN endpoint in CDC class interface can be removed, so that in addition to a common
control endpoint only one bidirectional endpoint is needed to implement a VCOM. That is, except that EP0 is used as the control
endpoint, the other 15 endpoints can implement 15 VCOMs and this application note implement such a feature. The descriptor
structure of the composite class containing 15 CDC subclasses used in this application note is shown in Figure 1.

Contents

1 Introduction.. 1

2 USB descriptor configuration................. 1

3 Endpoint usage......................................2

4 Endpoint Buffer Configuration................4
4.1 Buffer Descriptor Table...........4
4.2 Endpoint Buffer....................... 6

5 Software workflow chart.........................8
5.1 USB interrupt service

function flowchart.................. 11
5.2 USB device request.............. 13

6 Key Steps.. 15
6.1 How to expand the number

of supported VCOMs.............15
6.2 How to remove the

Interrupt IN endpoint in the
CDC interface........................16

6.3 Code optimization................. 18

7 Function Test....................................... 23

8 Conclusion... 24

9 References.. 24

AN12597
USB to Multi VCOM on K32L2 Series MCU
Rev. 0 — November 2019 Application Note

Figure 1. USB descriptor structure block diagram

In Figure 1, the interface association descriptor associates a CDC interface with a data interface to describe a VCOM function.
For details on the USB descriptor, refer to Chapter 9.6, Standard USB Descriptor Definitions, USB Specification 2.0 and SDK
code.

If the interrupt endpoint of the CDC interface is removed, the serial port status cannot be sent and received. For
example, the RTS and DTR signals in RS232 cannot be transmitted. If the serial port debugging terminal on the
PC is already turned on, the serial port data can still be sent and received.

 NOTE

3 Endpoint usage

As described in Chapter 2, each CDC class requires 1 bidirectional endpoint, and 15 CDC classes require 15 endpoints. The
EP0 is used as a control endpoint. The usage of the endpoints of USB devices in this application note is shown in Table 1.

Table 1. Endpoint usage

Endpoint Direction Endpoint type Packet size (byte) Use or not

EP0 OUT Control 64 YES

EP0 IN Control 64 YES

EP1 OUT CDC1 Bulk 64 YES

EP1 IN CDC1 Bulk 64 YES

EP2 OUT CDC2 Bulk 64 YES

EP2 IN CDC2 Bulk 64 YES

EP3 OUT CDC3 Bulk 64 YES

Table continues on the next page...

NXP Semiconductors
Endpoint usage

USB to Multi VCOM on K32L2 Series MCU, Rev. 0, November 2019
Application Note 2 / 25

https://www.usb.org/document-library/usb-20-specification

Table 1. Endpoint usage (continued)

EP3 IN CDC3 Bulk 64 YES

EP4 OUT CDC4 Bulk 64 YES

EP4 IN CDC4 Bulk 64 YES

EP5 OUT CDC5 Bulk 64 YES

EP5 IN CDC5 Bulk 64 YES

EP6 OUT CDC6 Bulk 64 YES

EP6 IN CDC6 Bulk 64 YES

EP7 OUT CDC7 Bulk 64 YES

EP7 IN CDC7 Bulk 64 YES

EP8 OUT CDC8 Bulk 64 YES

EP8 IN CDC8 Bulk 64 YES

EP9 OUT CDC9 Bulk 64 YES

EP9 IN CDC9 Bulk 64 YES

EP10 OUT CDC10 Bulk 64 YES

EP10 IN CDC10 Bulk 64 YES

EP11 OUT CDC11 Bulk 64 YES

EP11 IN CDC11 Bulk 64 YES

EP12 OUT CDC12 Bulk 64 YES

EP12 IN CDC12 Bulk 64 YES

EP13 OUT CDC13 Bulk 64 YES

EP13 IN CDC13 Bulk 64 YES

EP14 OUT CDC14 Bulk 64 YES

EP14 IN CDC14 Bulk 64 YES

EP15 OUT CDC15 Bulk 64 YES

EP15 IN CDC15 Bulk 64 YES

The endpoint configuration in the "usb_device_descriptor.h" file is shown as Figure 2.

NXP Semiconductors
Endpoint usage

USB to Multi VCOM on K32L2 Series MCU, Rev. 0, November 2019
Application Note 3 / 25

Figure 2. Endpoint configuration

4 Endpoint Buffer Configuration
Each endpoint needs a buffer to store the received data or data to be sent. This chapter describes the configuration of the USB
endpoint buffer.

4.1 Buffer Descriptor Table

To manage USB endpoint communications, USBFS implements a Buffer Descriptor Table (BDT) in system memory，as shown
in Figure 3 . The BDT resides on a 512 byte boundary in system memory and is pointed to by the BDT Page Registers. Every
endpoint direction requires two 8-byte Buffer Descriptor (BD) entries. Therefore, a system with 16 fully bidirectional endpoints
would require 512 bytes of system memory to implement the BDT. The two BD entries allow for an EVEN BD and ODD BD entry
for each endpoint direction. The contents stored in the BDT are shown in Table 2.

Table 2. Buffer descriptor format

31:26 25:16 15.8 7 6 5 4 3 2 1 0

RSVD BC

(10 bits)

RSVD OWN DATA0/1 KEEP/ NINC/ DTS/ BDT_STA
LL/

0 0

Table continues on the next page...

NXP Semiconductors
Endpoint Buffer Configuration

USB to Multi VCOM on K32L2 Series MCU, Rev. 0, November 2019
Application Note 4 / 25

Table 2. Buffer descriptor format (continued)

TOK_PID[
3]

TOK_PID[
2]

TOK_PID[
1]

TOK_PID[
0]

Buffer Address(32-Bits)

The address of the EP Buffer is stored in the Buffer Address field. BDT is stored in a 512 byte aligned space and the location of
the BDT can be determined by BDT Page registers: BDT Page register 1, BDT Page register 2 and BDT Page register 3. These
three registers provide bit 9 -bit 31 bits of the BDT address, where bit 0-bit 8 is 0, as shown in Table 3.

Table 3. BDT Address

BDT Page
register 3

BDT Page
register 2

BDT Page register 1

BDT
address

bit 31— bit
24

bit 23 — bit
16

bit 15 — bit 9 0 0 0 0 0 0 0 0 0

To compute the entry point into the BDT, the BDT_PAGE registers are concatenated with the current endpoint and the TX and
ODD fields to form a 32-bit address. This address mechanism is shown in Table 4.

Table 4. BDT Address Calculation

31:24 23:16 15:9 8:5 4 3 2

BDT_PAGE_03 BDT_PAGE_02 BDT_PAGE_01[
7:1]

Endpoint TX ODD 000

Table 5. BDT address calculation fields

Field Description

BDT_PAGE BDT_PAGE register in the Control Register Block

ENDPOINT ENDPOINT field from the USB TOKEN

TX 1 for transmit transfers and 0 for receive transfers

ODD Maintained within the USBFS SIE. It corresponds to the buffer currently in
use. The buffers are used in a ping-pong fashion.

According to the values of several fields in Table 4, you can find the corresponding BD in BDT and the corresponding EP Buffer,
as shown in Figure 3.

NXP Semiconductors
Endpoint Buffer Configuration

USB to Multi VCOM on K32L2 Series MCU, Rev. 0, November 2019
Application Note 5 / 25

Figure 3. Buffer descriptor table

Software should manage buffers for USBFS by updating the BDT when needed. This allows USBFS to manage data transmission
and reception, while the microprocessor performs communication overhead processing and other function-dependent
applications.

4.2 Endpoint Buffer
The buffer of the control endpoint is not fixed. When receiving the Setup data, the EP0 buffer is
s_UsbDeviceKhciState.setupPacketBuffer[8*2]; When processing the IN transaction, the EP0 buffer is generally an array of
descriptors: g_UsbDeviceDescriptor[], g_UsbDeviceConfigurationDescriptor[], etc. The buffer configuration of non-control
endpoint is shown in Table 6.

Table 6. EP buffer configuration

VCOM number Endpoint direction EP Buffer

VCOM1 1 OUT s_currRecvBuf[0][64]

VCOM1 1 IN s_currSendBuf[0][64]

VCOM2 2 OUT s_currRecvBuf[1][64]

VCOM2 2 IN s_currSendBuf[1][64]

VCOM3 3 OUT s_currRecvBuf[2][64]

Table continues on the next page...

NXP Semiconductors
Endpoint Buffer Configuration

USB to Multi VCOM on K32L2 Series MCU, Rev. 0, November 2019
Application Note 6 / 25

Table 6. EP buffer configuration (continued)

VCOM3 3 IN s_currSendBuf[2][64]

VCOM4 4 OUT s_currRecvBuf[3][64]

VCOM4 4 IN s_currSendBuf[3][64]

VCOM5 5 OUT s_currRecvBuf[4][64]

VCOM5 5 IN s_currSendBuf[4][64]

VCOM6 6 OUT s_currRecvBuf[5][64]

VCOM6 6 IN s_currSendBuf[5][64]

VCOM7 7 OUT s_currRecvBuf[6][64]

VCOM7 7 IN s_currSendBuf[6][64]

VCOM8 8 OUT s_currRecvBuf[7][64]

VCOM8 8 IN s_currSendBuf[7][64]

VCOM9 9 OUT s_currRecvBuf[8][64]

VCOM9 9 IN s_currSendBuf[8][64]

VCOM10 10 OUT s_currRecvBuf[9][64]

VCOM10 10 IN s_currSendBuf[9][64]

VCOM11 11 OUT s_currRecvBuf[10][64]

VCOM11 11 IN s_currSendBuf[10][64]

VCOM12 12 OUT s_currRecvBuf[11][64]

VCOM12 12 IN s_currSendBuf[11][64]

VCOM13 13 OUT s_currRecvBuf[12][64]

VCOM13 13 IN s_currSendBuf[12][64]

VCOM14 14 OUT s_currRecvBuf[13][64]

VCOM14 14 IN s_currSendBuf[13][64]

VCOM15 15 OUT s_currRecvBuf[14][64]

VCOM15 15 IN s_currSendBuf[14][64]

The s_currRecvBuf and s_currSendBuf are two global arrays, defined as follows:

USB_DMA_NONINIT_DATA_ALIGN(USB_DATA_ALIGN_SIZE) static uint8_t

NXP Semiconductors
Endpoint Buffer Configuration

USB to Multi VCOM on K32L2 Series MCU, Rev. 0, November 2019
Application Note 7 / 25

s_currRecvBuf[USB_DEVICE_CONFIG_CDC_ACM][DATA_BUFF_SIZE];
USB_DMA_NONINIT_DATA_ALIGN(USB_DATA_ALIGN_SIZE) static uint8_t
s_currSendBuf[USB_DEVICE_CONFIG_CDC_ACM][DATA_BUFF_SIZE];

The value of the macro DATA_BUFF_SIZE is 64.

The buffer configuration of non-control endpoint of the OUT direction is performed in the USB_DeviceCdcVcomSetConfigure()
function after the USB device receives the SetConfiguration standard request from the host, while the EP Buffer of the IN direction
is configured before the data will be sent using this IN endpoint.

5 Software workflow chart

The code used in this application note is based on the

usb_device_composite_cdc_vcom_cdc_vcom_lite example in the SDK. The architecture of the USB Device stack is shown in
Figure 4.

Figure 4. SDK USB Device protocol stack architecture

The USB Device protocol stack is the middle part of the architecture and consists of a universal controller driver, a specific
controller driver, and an RTOS (Real-Time Operating System) adaptation layer. The parts marked with yellow in the architecture
diagram are used in this application note, using the Lite version of the application.

• Universal Controller Driver—This provides a unified interface for applications, and users do not need to care about the
details of different hardware controllers.

• Specific controller drivers—There are many types of USB controllers, each of which implements a specific driver. The
USB device controller of the K32L2 series MCU is a Kinetis Full-speed USB device controller.

• RTOS Adaptation Layer—This USB protocol stack can operate not only in different RTOS environments but also in bare-
board environments. RTOS is not used in this application note.

The corresponding relationship between the source code and the USB protocol stack architecture in the project is shown in
Figure 5.

NXP Semiconductors
Software workflow chart

USB to Multi VCOM on K32L2 Series MCU, Rev. 0, November 2019
Application Note 8 / 25

Figure 5. Correspondence between source code and USB protocol stack architecture

The basic workflow of the device stack depends on callback functions and function calls. The callback functions notify all state
changes and data requests of the device stack to application.

There are two types of callback functions in the device stack:

• Device callback function - It notifies the state of device stack to the application.

• Endpoint callback function - It notifies the data transfer result of the corresponding endpoint to application. The control
endpoint callback function handles all USB standard requests and class requests. The Figure 6 briefly describes the
processing of the callback function.

NXP Semiconductors
Software workflow chart

USB to Multi VCOM on K32L2 Series MCU, Rev. 0, November 2019
Application Note 9 / 25

Figure 6. Callback function processing

When the USB host recognizes that a USB device is plugged into the USB interface, it starts an enumeration process. The
essence of USB enumeration is the process in which the USB host obtains the parameter information of the USB device and
configures the configurable parameters. The USB enumeration process is done in the USB interrupt service function. The
processing flow of the USB interrupt service function is shown in Figure 7.

NXP Semiconductors
Software workflow chart

USB to Multi VCOM on K32L2 Series MCU, Rev. 0, November 2019
Application Note 10 / 25

5.1 USB interrupt service function flowchart

Figure 7. Main flowchart of the USB interrupt service function

When a USB interrupt occurs, the interrupt service function determines which type of interrupt: Token done interrupt, Reset
interrupt, Endpoint stalled interrupt, then go to the corresponding operation.

5.1.1 Reset interrupt process
If the USB interrupt is a reset interrupt, the program executes the flow shown in Figure 8.

NXP Semiconductors
Software workflow chart

USB to Multi VCOM on K32L2 Series MCU, Rev. 0, November 2019
Application Note 11 / 25

Figure 8. USB device reset process

The main thing to do in the reset interrupt is to set the USB device to the default state and initialize the control IN pipe and OUT
pipe.

5.1.2 Token done interrupt processing
If it is a Token done interrupt, the program executes the process shown in Figure 9.

NXP Semiconductors
Software workflow chart

USB to Multi VCOM on K32L2 Series MCU, Rev. 0, November 2019
Application Note 12 / 25

Figure 9. Token done interrupt processing

The endpoint callback function includes two types: control endpoint callback function and non-control endpoint callback function.
If the current endpoint is a control endpoint, the control endpoint callback function is called; if the current endpoint is a non-control
endpoint, the non-control endpoint callback function is called. The callback function of the control endpoint implements the
processing of standard and class requests; the non-control endpoint callback function implements the data transmission function,
and transmits the data received by the Bluk OUT endpoint to the host through the Bluk IN endpoint. The non-control endpoint
callback functions for the 15 VCOMs in this application note are the same. The endpoint callback function in IN direction is
USB_DeviceCdcAcmBulkIn(), and the callback function in OUT direction is USB_DeviceCdcAcmBulkOut(), that is, the functions
of the 15 VCOMs implementations are the same: transmits the data received from USB host to the USB host.

5.2 USB device request
The processing of standard requests and class requests is performed in the callback function of the control endpoint. The USB
host obtains the information of the USB device and performs related configuration on the USB device by sending a device request

NXP Semiconductors
Software workflow chart

USB to Multi VCOM on K32L2 Series MCU, Rev. 0, November 2019
Application Note 13 / 25

(Device Request) to the device. The device request is specified by the Setup data of length 8 bytes, and the direction is always
from the USB host to the USB device. Commonly used standard requests are shown in Table 7.

Table 7. Common Standard requests

Standard request Direction

SetAddress OUT

SetConfiguration OUT

GetDescriptor(Device/Configuration/String) IN

CDC class devices also support some class requests in addition to the standard requests. After the USB host obtains various
descriptor information of the CDC class device, it also sends some class requests to the USB device. Common Class requests
are shown in Table 8.

Table 8. Common Class requests

Class request Direction

SetLineCoding OUT

SetControlLineState OUT

GetLineCoding IN

The interrupt IN endpoint is not used in the CDC interface, so SetControlLineState class request cannot be
handled, ignore this class request.

 NOTE

The GetLineCoding request is a request for the host to obtain the serial port attribute, including the baud rate, the stop bit, the
check type, and the number of data bits. The structure of the GetLineCoding request is shown in Table 9.

Table 9. GetLineCoding request structure

bmRequestType bRequestCode wValue wIndex wLength Data

10100001B GET_LINE_CODIN
G

Zero Interface Size of Structure Line Coding
Structure

The contents of Line Coding Structure are shown in Table 10.

Table 10. Line Coding Structure

Offset Field Size/byte Description

0 dwDTERate 4 Data terminal rate, in bits per
second

4 bCharFormat 1 Stop bits

0: 1 Stop bit

1: 1.5 Stop bit

2: 2 Stop

5 bParityType 1 Parity

0: None 3: Mark

Table continues on the next page...

NXP Semiconductors
Software workflow chart

USB to Multi VCOM on K32L2 Series MCU, Rev. 0, November 2019
Application Note 14 / 25

Table 10. Line Coding Structure (continued)

1: Odd 4: Space

2: Even

6 bDataBits 1 Data bits (5,6,7,8 or 16)

SetLineCoding is an output class request, which corresponds to GetLineCoding. The USB host uses this command to set the
serial port property of the device, and its data structure is the same as GetLineCoding. After the USB host completes these
standard requests and class requests, the enumeration process ends, and the USB host will recognize multiple VCOMs. Then
the serial port debugging terminal on the PC can communicate with the USB device of the K32L2 series MCU.

6 Key Steps

6.1 How to expand the number of supported VCOMs
This section uses the SDK code dev_composite_cdc_vcom_cdc_vcom_lite_bm as an example to show how to extend to three
VCOMs based on two VCOMs. The specific steps are as follows:

1. Modify the usb_device_config.h file

• Change the value of the macro USB_DEVICE_CONFIG_CDC_ACM from 2 to 3

#define USB_DEVICE_CONFIG_CDC_ACM (2U) to
#define USB_DEVICE_CONFIG_CDC_ACM (3U)

• Modify the value of the USB_DEVICE_CONFIG_ENDPOINTS macro

#define USB_DEVICE_CONFIG_ENDPOINTS (5U) to
/* Values that meet functional requirements are ok */
#define USB_DEVICE_CONFIG_ENDPOINTS (8U)

2. Modify the usb_device_descriptor.h file

• Change the value of the macro USB_INTERFACE_COUNT from 4 to 6

#define USB_INTERFACE_COUNT (4) to
#define USB_INTERFACE_COUNT (6)

• Add some macro definitions for VCOM3

#define USB_CDC_VCOM_INTERFACE_COUNT_3 (2)

#define USB_CDC_VCOM_CIC_INTERFACE_INDEX_3 (4)
#define USB_CDC_VCOM_DIC_INTERFACE_INDEX_3 (5)
/* If the CDC interface does not require an Interrupt IN endpoint, then this macro is 0 */
#define USB_CDC_VCOM_CIC_ENDPOINT_COUNT_3 (1)

/* If the CDC interface does not require an Interrupt IN endpoint, you do not need to define
this macro*/
#define USB_CDC_VCOM_CIC_INTERRUPT_IN_ENDPOINT_3 (7)

#define USB_CDC_VCOM_DIC_ENDPOINT_COUNT_3 (2)
#define USB_CDC_VCOM_DIC_BULK_IN_ENDPOINT_3 (3)
#define USB_CDC_VCOM_DIC_BULK_OUT_ENDPOINT_3 (3)

#define HS_CDC_VCOM_INTERRUPT_IN_PACKET_SIZE_3 (16)
#define FS_CDC_VCOM_INTERRUPT_IN_PACKET_SIZE_3 (16)

NXP Semiconductors
Key Steps

USB to Multi VCOM on K32L2 Series MCU, Rev. 0, November 2019
Application Note 15 / 25

#define HS_CDC_VCOM_INTERRUPT_IN_INTERVAL_3 (0x07)
#define FS_CDC_VCOM_INTERRUPT_IN_INTERVAL_3 (0x08)

#define HS_CDC_VCOM_BULK_IN_PACKET_SIZE_3 (512)
#define FS_CDC_VCOM_BULK_IN_PACKET_SIZE_3 (64)
#define HS_CDC_VCOM_BULK_OUT_PACKET_SIZE_3 (512)
#define FS_CDC_VCOM_BULK_OUT_PACKET_SIZE_3 (64)

3. Modify the usb_device_descriptor.c file

• Modify the g_interface array

uint8_t g_interface[USB_CDC_VCOM_INTERFACE_COUNT + USB_CDC_VCOM_INTERFACE_COUNT_2
+ USB_CDC_VCOM_INTERFACE_COUNT_3];

• Modify the configuration descriptor array g_UsbDeviceConfigurationDescriptor: add the interface descriptor and
endpoint descriptor of CDC3. Refer to the attached code for details.

4. Modify the virtual_com.c file

• Extend s_lineCoding, s_abstractState, s_countryCode, s_usbCdcAcmInfo array.

• Modify the USB_DeviceCdcVcomSetConfigure() function to increase the initialization of non-control endpoint in CDC3.

The callback functions of the non-control endpoint in multi VCOMs are same in this application note. If you want
to modify the function of the application layer, you can use the callback function of different functions here.

 NOTE

6.2 How to remove the Interrupt IN endpoint in the CDC interface
In order to enable the USB device to support more VCOM, the Interrupt IN endpoint in the CDC interface can be removed. The
specific implementation steps are as follows:

1. Modify the usb_device_config.h file

• Increase the definition of the macro USB_CDC_CIC_INTERRUPT_IN_ENDPOINT_ENABLE

#define USB_CDC_CIC_INTERRUPT_IN_ENDPOINT_ENABLE (0U)

2. Modify the usb_device_descriptor.h file

• Modify the value of the macro USB_CDC_VCOM_CIC_ENDPOINT_COUNT to 0

#define USB_CDC_VCOM_CIC_ENDPOINT_COUNT (0)

And mask the definition of the Interrupt IN endpoint in the CDC interface according to the value of the
USB_CDC_CIC_INTERRUPT_IN_ENDPOINT_ENABLE macro.

#if USB_CDC_CIC_INTERRUPT_IN_ENDPOINT_ENABLE
/* No need interrupt IN endpoint for CIC interface */
#define USB_CDC_VCOM_CIC_INTERRUPT_IN_ENDPOINT (0)
#define USB_CDC_VCOM_CIC_INTERRUPT_IN_ENDPOINT_2 (0)
#define USB_CDC_VCOM_CIC_INTERRUPT_IN_ENDPOINT_3 (0)
#define USB_CDC_VCOM_CIC_INTERRUPT_IN_ENDPOINT_4 (0)
#define USB_CDC_VCOM_CIC_INTERRUPT_IN_ENDPOINT_5 (0)
#define USB_CDC_VCOM_CIC_INTERRUPT_IN_ENDPOINT_6 (0)
#define USB_CDC_VCOM_CIC_INTERRUPT_IN_ENDPOINT_7 (0)
#define USB_CDC_VCOM_CIC_INTERRUPT_IN_ENDPOINT_8 (0)
#define USB_CDC_VCOM_CIC_INTERRUPT_IN_ENDPOINT_9 (0)
#define USB_CDC_VCOM_CIC_INTERRUPT_IN_ENDPOINT_10 (0)
#define USB_CDC_VCOM_CIC_INTERRUPT_IN_ENDPOINT_11 (0)

NXP Semiconductors
Key Steps

USB to Multi VCOM on K32L2 Series MCU, Rev. 0, November 2019
Application Note 16 / 25

#define USB_CDC_VCOM_CIC_INTERRUPT_IN_ENDPOINT_12 (0)
#define USB_CDC_VCOM_CIC_INTERRUPT_IN_ENDPOINT_13 (0)
#define USB_CDC_VCOM_CIC_INTERRUPT_IN_ENDPOINT_14 (0)
#define USB_CDC_VCOM_CIC_INTERRUPT_IN_ENDPOINT_15 (0)
#endif

3. Modify the usb_device_descriptor.c file

• Modify the array length field in the g_UsbDeviceConfigurationDescriptor configuration descriptor array

USB_SHORT_GET_LOW(USB_DESCRIPTOR_LENGTH_CONFIGURE +
 (USB_IAD_DESC_SIZE + USB_DESCRIPTOR_LENGTH_INTERFACE +
USB_DESCRIPTOR_LENGTH_CDC_HEADER_FUNC +
 USB_DESCRIPTOR_LENGTH_CDC_CALL_MANAG + USB_DESCRIPTOR_LENGTH_CDC_ABSTRACT +
 USB_DESCRIPTOR_LENGTH_CDC_UNION_FUNC + 0 +
 USB_DESCRIPTOR_LENGTH_INTERFACE + USB_DESCRIPTOR_LENGTH_ENDPOINT +
 USB_DESCRIPTOR_LENGTH_ENDPOINT) * USB_DEVICE_CONFIG_CDC_ACM),
USB_SHORT_GET_HIGH(USB_DESCRIPTOR_LENGTH_CONFIGURE +
 (USB_IAD_DESC_SIZE + USB_DESCRIPTOR_LENGTH_INTERFACE +
USB_DESCRIPTOR_LENGTH_CDC_HEADER_FUNC +
 USB_DESCRIPTOR_LENGTH_CDC_CALL_MANAG + USB_DESCRIPTOR_LENGTH_CDC_ABSTRACT +
 USB_DESCRIPTOR_LENGTH_CDC_UNION_FUNC + 0 +
 USB_DESCRIPTOR_LENGTH_INTERFACE + USB_DESCRIPTOR_LENGTH_ENDPOINT +
 USB_DESCRIPTOR_LENGTH_ENDPOINT) *
USB_DEVICE_CONFIG_CDC_ACM),

• Delete interrupt endpoint descriptors in all CDC interfaces

#if USB_CDC_CIC_INTERRUPT_IN_ENDPOINT_ENABLE
/*Notification Endpoint descriptor */
 USB_DESCRIPTOR_LENGTH_ENDPOINT,
 USB_DESCRIPTOR_TYPE_ENDPOINT,
 USB_CDC_VCOM_CIC_INTERRUPT_IN_ENDPOINT |(USB_IN << 7U), USB_ENDPOINT_INTERRUPT,
 USB_SHORT_GET_LOW(FS_CDC_VCOM_INTERRUPT_IN_PACKET_SIZE),
 USB_SHORT_GET_HIGH(FS_CDC_VCOM_INTERRUPT_IN_PACKET_SIZE),
 FS_CDC_VCOM_INTERRUPT_IN_INTERVAL,
 #endif

4. Modify the virtual_com.c file

• Modify the processing of the SetControlLineState class request in the USB_DeviceCdcVcomClassRequest() function.

 if (0 == vcomInstance->hasSentState)
 {
#if USB_CDC_CIC_INTERRUPT_IN_ENDPOINT_ENABLE
 error = USB_DeviceSendRequest(handle, vcomInstance->interruptEndpoint,
 acmInfo->serialStateBuf, len);
 if (kStatus_USB_Success != error)
 {
 usb_echo("kUSB_DeviceCdcEventSetControlLineState error!");
 }
#endif
 vcomInstance->hasSentState = 1;
}

• Add g_CdcVcomInterruptInPackageSzie, g_CdcVcomInterruptInInterval,
 g_CdcVcomInterruptInEndpoint, g_CdcVcomDicBulkInEndpoint,
 g_CdcVcomDicBulkInEndpoint, g_CdcVcomDicBulkOutEndpoint,

NXP Semiconductors
Key Steps

USB to Multi VCOM on K32L2 Series MCU, Rev. 0, November 2019
Application Note 17 / 25

 g_CdcVcomDicInterfaceIndex g_CdcVcomCicInterfaceIndex,
 g_CdcVcomBulkInPacketSize, g_CdcVcomBulkOutPacketSize array.

These arrays are only used to simplify the initialization of each endpoint in the
USB_DeviceCdcVcomSetConfigure() function.

 NOTE

Modify the initialization process for the interrupt endpoint in each CDC class in the USB_DeviceCdcVcomSetConfigure() function.

 if (USB_COMPOSITE_CONFIGURE_INDEX == configure)
 {
 for (uint8_t i = 0; i < USB_DEVICE_CONFIG_CDC_ACM; i++)
 {
 /****** Initiailizecdc endpoint *****/
 g_deviceComposite-> cdcVcom [i]. attach = 1;
#if USB_CDC_CIC_INTERRUPT_IN_ENDPOINT_ENABLE
 /* Initiailizeendpoint for interrupt pipe */
 epCallback.callbackFn = USB_DeviceCdcAcmInterruptIn;
 epCallback.callbackParam = (void

 *)&g_deviceComposite->cdcVcom[i].communicationInterfaceNumber;
 epInitStruct.zlt = 0;

 epInitStruct.transferType = USB_ENDPOINT_INTERRUPT;
 epInitStruct.endpointAddress =
 g_CdcVcomCicInterruptInEndpoint[i] | (USB_IN <<

 USB_DESCRIPTOR_ENDPOINT_ADDRESS_DIRECTION_SHIFT);
 epInitStruct.maxPacketSize = FS_CDC_VCOM_INTERRUPT_IN_PACKET_SIZE;
 epInitStruct.interval = FS_CDC_VCOM_INTERRUPT_IN_INTERVAL;
 g_deviceComposite->cdcVcom[i].interruptEndpoint =

 g_CdcVcomCicInterruptInEndpoint[i];
 g_deviceComposite->cdcVcom[i].interruptEndpointMaxPacketSize =

 epInitStruct.maxPacketSize;
 g_deviceComposite->cdcVcom[i].communicationInterfaceNumber =
 g_CdcVcomCicInterfaceIndex[i];
 USB_DeviceInitEndpoint(handle, &epInitStruct, &epCallback);
#else
 g_deviceComposite-> cdcVcom [i]. communicationInterfaceNumber =
 g_CdcVcomCicInterfaceIndex[i];
#endif

Do not delete the following content

g_deviceComposite->cdcVcom[i].communicationInterfaceNumber =
USB_CDC_VCOM_CIC_INTERFACE_INDEX;. To see the complete code, refer to AN12597SW.

 NOTE

6.3 Code optimization
The steps in Sections 6.1 and 6.2 are a bit complicated. Users need to have some understanding of the USB protocol stack. If
there is a step error, it may cause the function to fail. For each additional VCOM, users need to repeat the steps in Section 6.1.
To make the process more convenient to use the function of VCOM, some optimizations are made on the code based on section
6.1 and 6.2, which makes it easy for users to configure the number of VCOM and to decide whether to use the interrupt IN endpoint
in CIC interface through macro definition.

NXP Semiconductors
Key Steps

USB to Multi VCOM on K32L2 Series MCU, Rev. 0, November 2019
Application Note 18 / 25

https://www.nxp.com/docs/en/application-note-software/AN12284SW.zip

6.3.1 Use loop instead of list
For example, the USB_DeviceCdcVcomConfigureEndpointStatus () function in the virtual_com.c file:

usb_status_t USB_DeviceCdcVcomConfigureEndpointStatus(usb_device_handle handle, uint8_t ep, uint8_t
status)
{
 usb_status_t error = kStatus_USB_Error;
 if (status)
 {
 if ((USB_CDC_VCOM_DIC_BULK_IN_ENDPOINT == (ep & USB_ENDPOINT_NUMBER_MASK)) &&
 (ep & USB_DESCRIPTOR_ENDPOINT_ADDRESS_DIRECTION_MASK))
 {
 error = USB_DeviceStallEndpoint(handle, ep);
 }
 else if ((USB_CDC_VCOM_DIC_BULK_OUT_ENDPOINT == (ep & USB_ENDPOINT_NUMBER_MASK)) &&
 (!(ep & USB_DESCRIPTOR_ENDPOINT_ADDRESS_DIRECTION_MASK)))
 {
 error = USB_DeviceStallEndpoint(handle, ep);
 }
 else if ((USB_CDC_VCOM_DIC_BULK_IN_ENDPOINT_2 == (ep & USB_ENDPOINT_NUMBER_MASK)) &&
 (ep & USB_DESCRIPTOR_ENDPOINT_ADDRESS_DIRECTION_MASK))
 {
 error = USB_DeviceStallEndpoint(handle, ep);
 }
 else if ((USB_CDC_VCOM_DIC_BULK_OUT_ENDPOINT_2 == (ep & USB_ENDPOINT_NUMBER_MASK)) &&
 (!(ep & USB_DESCRIPTOR_ENDPOINT_ADDRESS_DIRECTION_MASK)))
 {
 error = USB_DeviceStallEndpoint(handle, ep);
 }
 else
 {
 }
 }
 else
 {
 if ((USB_CDC_VCOM_DIC_BULK_IN_ENDPOINT == (ep & USB_ENDPOINT_NUMBER_MASK)) &&
 (ep & USB_DESCRIPTOR_ENDPOINT_ADDRESS_DIRECTION_MASK))
 {
 error = USB_DeviceUnstallEndpoint(handle, ep);
 }
 else if ((USB_CDC_VCOM_DIC_BULK_OUT_ENDPOINT == (ep & USB_ENDPOINT_NUMBER_MASK)) &&
 (!(ep & USB_DESCRIPTOR_ENDPOINT_ADDRESS_DIRECTION_MASK)))
 {
 error = USB_DeviceUnstallEndpoint(handle, ep);
 }
 else if ((USB_CDC_VCOM_DIC_BULK_IN_ENDPOINT_2 == (ep & USB_ENDPOINT_NUMBER_MASK)) &&
 (ep & USB_DESCRIPTOR_ENDPOINT_ADDRESS_DIRECTION_MASK))
 {
 error = USB_DeviceUnstallEndpoint(handle, ep);
 }
 else if ((USB_CDC_VCOM_DIC_BULK_OUT_ENDPOINT_2 == (ep & USB_ENDPOINT_NUMBER_MASK)) &&
 (!(ep & USB_DESCRIPTOR_ENDPOINT_ADDRESS_DIRECTION_MASK)))
 {
 error = USB_DeviceUnstallEndpoint(handle, ep);
 }
 else
 {
 }

NXP Semiconductors
Key Steps

USB to Multi VCOM on K32L2 Series MCU, Rev. 0, November 2019
Application Note 19 / 25

 }
 return error;
 }

usb_status_t USB_DeviceCdcVcomConfigureEndpointStatus(usb_device_handle handle, uint8_t ep,
uint8_t status)
{
 usb_status_t error = kStatus_USB_Error;
 uint8_t i;
 if (status)
 {
 for(i = 0; i < USB_DEVICE_CONFIG_CDC_ACM; i++)
 {
 if ((g_CdcVcomDicBulkInEndpoint[i] == (ep & USB_ENDPOINT_NUMBER_MASK)) &&
 (ep & USB_DESCRIPTOR_ENDPOINT_ADDRESS_DIRECTION_MASK))
 {
 error = USB_DeviceStallEndpoint(handle, ep);
 }
 else if ((g_CdcVcomDicBulkOutEndpoint[i] == (ep & USB_ENDPOINT_NUMBER_MASK)) &&
 ep & USB_DESCRIPTOR_ENDPOINT_ADDRESS_DIRECTION_MASK))
 {
 error = USB_DeviceStallEndpoint(handle, ep);
 }
 }
 }
 else
 {
 for(i = 0; i < USB_DEVICE_CONFIG_CDC_ACM; i++)
 {
 if ((g_CdcVcomDicBulkInEndpoint[i] == (ep & USB_ENDPOINT_NUMBER_MASK)) &&
 (ep & USB_DESCRIPTOR_ENDPOINT_ADDRESS_DIRECTION_MASK))
 {
 error = USB_DeviceUnstallEndpoint(handle, ep);
 }
 else if ((g_CdcVcomDicBulkOutEndpoint[i] == (ep & USB_ENDPOINT_NUMBER_MASK)) &&
 (ep & USB_DESCRIPTOR_ENDPOINT_ADDRESS_DIRECTION_MASK))
 {
 error = USB_DeviceUnstallEndpoint(handle, ep);
 }
 }
}
return error;
}

There is a lot code in fact can be replaced by loop, It is a key step to make automatic composite class for application. Other similar
code is not listed here, Refer to the code released with this application note for more details.

6.3.2 Remove unnecessary settings
The following settings can be merged, as in most cases, user do not need to tune the parameters at all. Even in some special
case that some users need to tune the parameters, it is also supported in runtime initialization.

/* Packet size. */
#define HS_CDC_VCOM_INTERRUPT_IN_PACKET_SIZE (16)
#define FS_CDC_VCOM_INTERRUPT_IN_PACKET_SIZE (16)
#define HS_CDC_VCOM_INTERRUPT_IN_INTERVAL (0x07) /* 2^(7-1) = 8ms */
#define FS_CDC_VCOM_INTERRUPT_IN_INTERVAL (0x08)

NXP Semiconductors
Key Steps

USB to Multi VCOM on K32L2 Series MCU, Rev. 0, November 2019
Application Note 20 / 25

/* Packet size. */
#define HS_CDC_VCOM_INTERRUPT_IN_PACKET_SIZE_2 (16)
#define FS_CDC_VCOM_INTERRUPT_IN_PACKET_SIZE_2 (16)
#define HS_CDC_VCOM_INTERRUPT_IN_INTERVAL_2 (0x07) /* 2^(7-1) = 8ms */
#define FS_CDC_VCOM_INTERRUPT_IN_INTERVAL_2 (0x08)
#define HS_CDC_VCOM_INTERRUPT_IN_PACKET_SIZE_3 (16)
#define FS_CDC_VCOM_INTERRUPT_IN_PACKET_SIZE_3 (16)
#define HS_CDC_VCOM_INTERRUPT_IN_INTERVAL_3 (0x07) /* 2^(7-1) = 8ms */
#define FS_CDC_VCOM_INTERRUPT_IN_INTERVAL_3 (0x08)
#define HS_CDC_VCOM_INTERRUPT_IN_PACKET_SIZE_4 (16)
#define FS_CDC_VCOM_INTERRUPT_IN_PACKET_SIZE_4 (16)
#define HS_CDC_VCOM_INTERRUPT_IN_INTERVAL_4 (0x07) /* 2^(7-1) = 8ms */
#define FS_CDC_VCOM_INTERRUPT_IN_INTERVAL_4 (0x08)
#define HS_CDC_VCOM_INTERRUPT_IN_PACKET_SIZE_5 (16)
#define FS_CDC_VCOM_INTERRUPT_IN_PACKET_SIZE_5 (16)
#define HS_CDC_VCOM_INTERRUPT_IN_INTERVAL_5 (0x07) /* 2^(7-1) = 8ms */
#define FS_CDC_VCOM_INTERRUPT_IN_INTERVAL_5 (0x08)
...

After merge, the above code becomes:

/* Packet size. */
#define HS_CDC_VCOM_INTERRUPT_IN_PACKET_SIZE (16)
#define FS_CDC_VCOM_INTERRUPT_IN_PACKET_SIZE (16)
#define HS_CDC_VCOM_INTERRUPT_IN_INTERVAL (0x07) /* 2^(7-1) = 8ms */
#define FS_CDC_VCOM_INTERRUPT_IN_INTERVAL (0x08)

Other similar code is not listed here, refer to the code attached with this application note for more details.

6.3.3 Use MACRO to avoid modify code manually

#define USB_INTERFACE_COUNT (30)

#define USB_INTERFACE_COUNT (2*USB_DEVICE_CONFIG_CDC_ACM)

#define USB_DEVICE_CONFIG_ENDPOINTS (16U)

#define USB_DEVICE_CONFIG_ENDPOINTS (1+2*USB_DEVICE_CONFIG_CDC_ACM)

Other similar code is not listed here, refer to the code attached with this AN for more details.

6.3.4 Use run time initialization instead of static initialization

6.3.4.1 Assign interface number dynamically

void USB_CdcVcomInterfaceIndexInit(void)
{
 uint8_t i;
 for(i = 0; i < USB_DEVICE_CONFIG_CDC_ACM; i++)
 {
 g_CdcVcomCicInterfaceIndex[i] = 0 + i*2;
 g_CdcVcomDicInterfaceIndex[i] = 1 + i*2;

NXP Semiconductors
Key Steps

USB to Multi VCOM on K32L2 Series MCU, Rev. 0, November 2019
Application Note 21 / 25

 }
}

6.3.4.2 Assign endpoint number dynamically

void USB_CdcVcomEndpointInit(void)
{
 uint8_t i;
 for(i = 0; i < USB_DEVICE_CONFIG_CDC_ACM; i++)
 {
 #if USB_CDC_CIC_INTERRUPT_IN_ENDPOINT_ENABLE

 g_CdcVcomCicInterruptInEndpoint[i] = 1 + i*2;
 g_CdcVcomDicBulkInEndpoint[i] = 2 + i*2;
 g_CdcVcomDicBulkOutEndpoint[i] = 2 + i*2;
 #else
 g_CdcVcomDicBulkInEndpoint[i] = 1 + i*1;
 g_CdcVcomDicBulkOutEndpoint[i] = 1 + i*1;

 #endif
 }
}

6.3.4.3 Run time initialization for config descriptor

void USB_DescriptorInit(void)
{
 uint8_t *p = NULL;
 uint8_t i;
 /* copy configuration descriptor */
 memcpy(g_UsbDeviceConfigurationDescriptor + 0, g_CdcConfigurationDescriptorTemplate,
USB_DESCRIPTOR_LENGTH_CONFIGURE);

 /* copy cdc iap, interface, endpoint descriptor */
 for(i = 0; i < USB_DEVICE_CONFIG_CDC_ACM ; i++)
 {
 memcpy(g_UsbDeviceConfigurationDescriptor + USB_DESCRIPTOR_LENGTH_CONFIGURE +
 USB_CDC_DESCRIPTOR_INSTANCE_LENGTH * i,
 g_CdcDescriptorTemplate,
 USB_CDC_DESCRIPTOR_INSTANCE_LENGTH
);
 }

 /* update interface and endpoint descirptor */
 for(i = 0; i < USB_DEVICE_CONFIG_CDC_ACM ; i++)
 {
 p = g_UsbDeviceConfigurationDescriptor + USB_DESCRIPTOR_LENGTH_CONFIGURE +
 USB_CDC_DESCRIPTOR_INSTANCE_LENGTH * i;
 /* The first interface number associated with this function */
 p[2] = g_CdcVcomCicInterfaceIndex[i];
 p += USB_IAD_DESC_SIZE;
 /* CIC interface index */
 p[2] = g_CdcVcomCicInterfaceIndex[i];
 p += USB_DESCRIPTOR_LENGTH_INTERFACE;
 p += USB_DESCRIPTOR_LENGTH_CDC_HEADER_FUNC;
 p += USB_DESCRIPTOR_LENGTH_CDC_CALL_MANAG;

NXP Semiconductors
Key Steps

USB to Multi VCOM on K32L2 Series MCU, Rev. 0, November 2019
Application Note 22 / 25

 p += USB_DESCRIPTOR_LENGTH_CDC_ABSTRACT;
 p[3] = g_CdcVcomCicInterfaceIndex[i];
 p[4] = g_CdcVcomDicInterfaceIndex[i];
 p += USB_DESCRIPTOR_LENGTH_CDC_UNION_FUNC;

#if USB_CDC_CIC_INTERRUPT_IN_ENDPOINT_ENABLE
 p[2] = g_CdcVcomCicInterruptInEndpoint[i] | (USB_IN <<7);
 p += USB_DESCRIPTOR_LENGTH_CDC_CIC_INTERRUPT_ENDPOINT;
#endif
 /* data interface descriptor */
 p[2] = g_CdcVcomDicInterfaceIndex[i];

 /* bulk in endpoint descriptor */
 p += USB_DESCRIPTOR_LENGTH_INTERFACE;
 p[2] = g_CdcVcomDicBulkInEndpoint[i] | (USB_IN <<7);

 /* bulk out endpoint descriptor */
 p += USB_DESCRIPTOR_LENGTH_ENDPOINT;
 p[2] = g_CdcVcomDicBulkOutEndpoint[i] | (USB_OUT <<7);
 }
}

Adding CDC class descriptors manually is also an error-prone step. The array length is very long when 15 VCOM descriptors
are used. This dynamic method makes it easy to configure descriptors. After completing the above four optimizations, user can
set the number of VCOMs through the macro USB_DEVICE_CONFIG_CDC_ACM, and user can also use the macro
USB_CDC_CIC_INTERRUPT_IN_ENDPOINT_ENABLE to determine whether to use the interrupt endpoint in the CIC interface.

7 Function Test
Two projects of MCUXpresso version for K32L2B3 are provided in the attachment to this application note. The first project is a
project that has not been optimized by the steps in section 6.3, and the second project is the optimized project. Similarly, two
similar projects were also provided for the K32L2A. Use the optimized project of K32L2B3 for functional testing:

Set the macro USB_DEVICE_CONFIG_CDC_ACM and the macro USB_CDC_CIC_INTERRUPT_IN_ENDPOINT_ENDABLE to
a different value, then compile the project to download the program to the board, the results are as shown in Figure 11.

NXP Semiconductors
Function Test

USB to Multi VCOM on K32L2 Series MCU, Rev. 0, November 2019
Application Note 23 / 25

Figure 11. USB host recognition result

When not using the Interrupt IN endpoint in the CIC interface, a USB device can support up to 15 VCOMs; when using an Interrupt
IN endpoint, a USB device can support up to 7 VCOMs.

If the window system comes with a CDC driver, users do not need to manually install the driver; if the CDC driver
is not installed on the PC, users need to manually drive the driver. For the driver installation, refer to the attached
readme.pdf document.

 NOTE

8 Conclusion
Based on the SDK code, this application note implements the function of an FS USB device to multi VCOMs on the K32L2 series
MCU. It can support up to 15 VCOMs, and each VCOM implements the function of returning received data to the host.

9 References
1. AN12458 USB to Virtual COM on LPC54018 and LPC5500.

2. K32L2B3 Reference Manual.

3. USB 2.0 Specification

4. USB in MCU-Signal and Protocol.

5. Access USB Technology and Application based on Microcontrollers.

NXP Semiconductors
Conclusion

USB to Multi VCOM on K32L2 Series MCU, Rev. 0, November 2019
Application Note 24 / 25

https://www.nxp.com/docs/en/application-note/AN12458.pdf
https://www.usb.org/document-library/usb-20-specification

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, UMEMS, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V.
All other product or service names are the property of their respective owners. AMBA, Arm,
Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,
DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,
SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro,
µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks
and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org.

© NXP B.V. 2019. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: November 2019
Document identifier: AN12597

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	USB to Multi VCOM on K32L2 Series MCU
	Contents
	1 Introduction
	2 USB descriptor configuration
	3 Endpoint usage
	4 Endpoint Buffer Configuration
	4.1 Buffer Descriptor Table
	4.2 Endpoint Buffer

	5 Software workflow chart
	5.1 USB interrupt service function flowchart
	5.1.1 Reset interrupt process
	5.1.2 Token done interrupt processing

	5.2 USB device request

	6 Key Steps
	6.1 How to expand the number of supported VCOMs
	6.2 How to remove the Interrupt IN endpoint in the CDC interface
	6.3 Code optimization
	6.3.1 Use loop instead of list
	6.3.2 Remove unnecessary settings
	6.3.3 Use MACRO to avoid modify code manually
	6.3.4 Use run time initialization instead of static initialization
	6.3.4.1 Assign interface number dynamically
	6.3.4.2 Assign endpoint number dynamically
	6.3.4.3 Run time initialization for config descriptor

	7 Function Test
	8 Conclusion
	9 References

